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Abstract—In recent years, considerable concern has arisen
over the security of the data stored in the cloud. A number
of studies have suggested the use of cryptographic primitives
to protect the data. As these tools transform the data into
an unintelligible form, secure and efficient retrieval of the
encrypted data from the cloud becomes a major challenge. The
public-key encryption with keyword search (PEKS) scheme and
many of its variants have been proposed to respond to this
challenge. However, given a large number of data (or search-
able keywords) would be tested sequentially in these PEKS
schemes, previous search results should be employed to improve
the efficiency of future searches. In this paper, we present an
interactive construction named iPEKS where the search time
is linear to the total number of distinct searched keywords
instead of the total number of the searchable keywords. The
more the keywords have been searched previously, the better
the efficiency can be improved. We provide theoretical analysis
to show the security and privacy. In addition, implementation
and performance experiments exhibit a great improvement in
efficiency compared with the previous schemes.

Keywords-cloud data, public-key encryption with keyword
search, interactive search, search efficiency, implementation

I. INTRODUCTION

As an increasing amount of data generated and processed

over the years, moving the data to the cloud environment

becomes a more cost-effective choice on a pay-per-use

basis [1], [2]. However, because cloud users no longer

have physical control of their data, the security and privacy

of storing and retrieving becomes a major concern before

adopting this paradigm shift [3], [4]. In addition, traditional

encryption schemes do not support direct searches on the

encrypted data [5], [6], [7]; therefore, cloud users have to

downloading and decrypting all the cloud data first to search

for their interested data locally. There is a high demand for

a secure and more efficient scheme to store and retrieve the

selected data with the help of the cloud [8], [9].

The public-key encryption with keyword search (PEKS)

scheme and many of its variants have been proposed to

respond to this demand [10], [11], [12], [13]. The system

works as follows. Alice and any other users can generate data

with encrypted keywords (aka. searchable keywords) and

send to Bob’s cloud storage. Bob can generate a token (aka.

predicate trapdoor) to ask for the data matching the trapdoor.

These schemes hide the content of both searchable keyword

and predicate trapdoor from the cloud. Furthermore, the

hidden-vector encryption (HVE) [11], [12] schemes enable

equality, range and subset predicates, and conjunction of

these predicates. Finally, the inner-product encryption (IPE)

[13] scheme further realizes the combination of conjunc-

tions/disjunctions of simple boolean predicates.

All of these schemes carry out searching by testing

the specified predicate trapdoor with ALL the searchable

keywords of the user files in the cloud. Given a large number

of stored searchable keywords would be tested sequentially,

previous search results could be employed to improve the

efficiency of future searches. In addition, to support con-

junction/disjunction of richer predicates, the test functions

of these schemes involve a large number of time-consuming

operations of elliptic curves and the corresponding bilinear

pairings. Therefore, we would like to devise a more efficient

test mechanism to enable fast retrieval of user data.

Contribution. In this paper, we present an interactive

construction of PEKS termed iPEKS where the search time

is proportional to the total number of distinct searched

searchable keywords instead of ALL the stored searchable

keywords. The more the keywords have been searched

previously, the better the efficiency can be improved. In

addition, we break down a complicated search predicate into

several simple search predicates. The complex searches can

be obtained more efficiently by combining several simple

searches from the cloud. We provide a thorough theoretical

analysis to show the security and privacy of iPEKS, and

conduct performance experiments to show its efficiency and

practicality for both the cloud and the users.

The rest of the paper is organized as follows. Related

works are described in Section 2, while problem formula-

tion is elaborated in Section 3. The design of iPEKS and

concrete examples are detailed in Section 4. The security

and performance analysis is presented in Section 5. Finally,

the conclusion and future work are provided in Section 6.
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II. RELATED WORKS

In this section, we provide a classification of three mod-

els for the privacy-preserving search: Searchable Private-
key Encryption, Private Information Retrieval (PIR) and

Searchable Public-key Encryption. The common goal of

these schemes is to enable users to store and retrieve the

data in the server while revealing as little information about

the access as possible to the server. The major differences

among these three models are explained as follows.

� Searchable Private-key Encryption. In this setting, the

user possesses the data and can organize the data in any

convenient way, including suitable data structures before

encryption. Later, the user encrypts the data (and corre-

sponding data structures) using his/her private key and stores

them to the server. Only someone with this private key

can efficiently access the encrypted data in the server. In

addition, the access pattern (i.e. which data is actually

demanded) can be hidden from the server [14], [15].

� Private Information Retrieval (PIR). In this setting, the

user retrieves data from a server storing unencrypted data

(like stock quotes or patents) without revealing the access

pattern which is the privacy of the user. Because the data is

unencrypted, any scheme trying to hide the access pattern

must touch all the data; otherwise, the server can learn the

information about which data is interesting or not interesting

to the user. Therefore, a single-database PIR scheme requires

work at least linear in the size of the dataset [16], [17], [18].

� Searchable Public-key Encryption. In this setting, the

user/sender, encrypting the keywords (using public-key of

the receiver), can be different from the receiver (having

the corresponding private key). The receiver can generate

corresponding token (aka. predicate trapdoor) using his/her

private key to retrieve the interested data by the stored en-

crypted keywords (aka. searchable keywords). Boneh et al.
first proposed one sort of practical application called email

routing system by devising the public-key encryption with
keyword search (PEKS) scheme. The searchable keywords

of a mail can be produced by the recipient’s public key.

The recipient can retrieve intended emails by delegating the

predicate trapdoors to the routing server. The server gathers

and returns the mails to the recipient [10].

To extend search predicates, Park et al. proposed public-
key encryption with conjunctive keyword search (PECK)
[19] to enable the conjunctions of equality, while Boneh

et al. [11] further provided a hidden-vector scheme (HVE)
supporting the conjunctions of equality, subset and range

predicates [12]. Later, Katz et al. proposed inner-product
encryption (IPE) supporting the combination of conjunc-

tions/disjunctions of simple boolean predicates [13]. In all of

these constructions, the searching by the server is performed

sequentially to find the matched searchable keywords and

corresponding files. Therefore, the processing time is pro-

portional to the number of stored searchable keywords.
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Figure 1. Cloud Storage Access Model

III. PROBLEM FORMULATION

This section begins by defining the targeted system model

including the system entities and related operations. Fol-

lowing that, the notations used throughout this paper are

explained. Finally, we address the security/privacy threats to

the search and define our design goals.

A. System Model

We consider a general cloud data storage architecture

containing two system entities. (See Fig. 1)

1) Cloud Storage Client (CSC) stores a large number of

data in the cloud. These data are either generated on

his/her own or sent from other CSCs.

2) Cloud Storage Provider (CSP) provides search-based

store/retrieval services for CSCs.

The CSC is further divided into two roles, the sender and

receiver, based on their operations. The sender creates and

sends encrypted data and searchable keywords (aka. PEKS

ciphertexts). The CSP receives/stores the encrypted data

together with PEKS ciphertexts. Later, the CSP performs

search on receiving the predicate trapdoors from the receiver.

The receiver generates trapdoors of intended predicate and

sends it to the CSP to retrieve the matched data.

In particular, iPEKS have two novel approaches to accel-

erate the retrieval time of the CSCs (or the search time of

the CSPs). First, the CSP caches previously-searched results

to avoid the search on all the stored PEKS ciphertexts. Sec-

ondly, the CSC in iPEKS further utilizes the search history

by breaking down one complex predicate into several simple

predicates. The CSC can collect/combine the qualified file

sets of these simple predicates from the CSP. Note that the

retrieval of these sets can be fast given that most of these

sets have been cached and maintained accordingly. The CSC

combines these qualified file sets of the simple predicates to

form the qualified file set of the original (complex) predicate.

The CSC sends this qualified file set to the CSP and retrieves

the intended files. By introducing caching and interaction

approaches, iPEKS can greatly reduce the search complexity

with reasonable storage/computatation overheads on CSPs

when the CSC stores the file. The detailed construction is

elaborated and discussed in Section IV.
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Table I
NOTATIONS

Notation Descriptions

F The file collection

wi,j The keyword of category i, with value j

fid The file with the file identifier id

Cfid The encrypted data with the file identifier id

W The universal keyword set of size n

P(W) The power set of the universal keyword set W
Wfid The keyword set specified for fid

Fwi,j The set of the file identifier containing wi,j

Q The universal set for search predicates over W
q The demanded search predicate q ∈ Q

Wq The keyword set of q converted to simple predicates

Tq The set of trapdoors of simple predicates for q

Sfid The set of searchable keywords for file fi

QFq The qualified file sets for simple predicates in q

FSq The qualified file sets for complex predicate q

For basic operations and keys, we follow the notations

from the PEKS scheme by Boneh et al. [10] to describe our

proposed iPEKS. Their scheme is described below:

(1) KeyGen(s): On input a security parameter s and output

a public/private key pair (Apub, Apriv). (2) PEKS(Apub, w):
On input Apub and a specified keyword w, it outputs the

searchable keywords sw. (3) Trapdoor(Apriv, w
′): On

input Apriv and intended keyword w′, it outputs the trapdoor

tw′ . (4) Test(Apub, tw′ , sw): On input tw′ and sw, it returns

‘yes’ if the keyword w′ in tw′ is the same as the w in sw.

The receiver Bob runs KeyGen(s) to obtain his pub-

lic/private key pair (Apub, Apriv). The sender Alice uses

Bob’s public key Apub to generate one searchable keyword

of keyword w for a file. Later, Bob uses his private key

Apriv to generate the predicate trapdoor tw′ for the intended

keyword w′. The CSP tests each stored searchable keywords

sw with the received predicate trapdoor tw′ . If the test

returns ‘yes’, send the corresponding file to Bob.

The file keywords can be extracted directly from the file

content or specified by the file owner. On the one hand, we

assume each receiver maintains its own keyword set W and

keeps the file collection F in the cloud (See Table I). On the

other, the keyword set W is composed of m keyword cate-

gories, each of which has ni possible values. Thus, we have

n=
∑m

i=1 ni possible keyword values to choose for a file. We

will use the keyword and keyword values interchangeably

throughout the paper. In Table II, W contains three keyword

categories: w1:(article) type, w2:author and w3:(published)

year, thus m is 3. For the ‘type’ category, there are three

possible values: w1,1:[type:conference], w1,2:[type:journal]

and w1,3:[type:tech. report], thus n1 is 3. Similarly, n2 is 3,

while n3 is 4. Therefore, the size of W is n=
∑3

i=1 ni=10.

Table II
COMPLEX PREDICATES TO SETS OF SIMPLE PREDICATES

Complex Predicates Set of Simple Predicates

AND-1
q1 = w2,3w3,3 Wq1={w2,3, w3,3}

(at least)

AND-2
q2 = w2,3w3,3 Wq2={w2,3, w3,3, w2,1, w2,2}

(exactly)

OR q3 = w1,1w1,2 Wq3={w1,1, w1,2}
RANGE q4 = w3,1 ∼ w3,3 Wq4={w3,1, w3,2, w3,3}
W = {w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, w3,1, w3,2, w3,3, w3,4}

· w1,1:[type:conference]; w1,2:[type:journal]; w1,3:[type:tech. report]

· w2,1:[athr:bplin]; w2,2:[athr:rjchen]; w2,3:[athr:fktseng]

· w3,1:[yr:2010], w3,2:[yr:2011], w3,3:[yr:2012], w3,4:[yr:2013]

Each file f in F , denoted as fid, is given a unique

file identifier id to support file management through these

identifiers. Similarly, the encrypted version of fid is denoted

as Cfid . The encryption algorithms can be symmetric or

asymmetric. For the file collection, Wfid represents the

keywords specified for fid, while Fwi,j
denotes the set

of the file identifiers where the keyword wi,j is speci-

fied for the corresponding files. In addition, a file can

be specified one single value or multiple values from the

keyword category wi. In Table II, the keywords in w1:type

is mutually exclusive, only an article type can be specified

for a file. Multiple keyword values in w2:author is selected to

express that multiple authors own this file. To better describe

iPEKS, Fwi
+Fwj

denotes the union of these two sets, while

Fwi ·Fwj (or shorthanded as FwiFwj ), the intersection of the

two. Finally, Fwi−Fwj denotes the set difference.

For the search predicate, the universal set of all possible

predicate is denoted as Q. iPEKS supports the conjunction

and disjunction of all possible keyword values wi,j ∈ W .

Therefore, the size of Q is 2P(W), where P(W) is the

power set of W and |P(W)| = 2n. In Table II, q1 is to

retrieve the files with keyword values w2,3:[athr:fktseng]

and w3,3:[yr:2012], the Wq1 to the CSP is {w2,3, w3,3} and

the QFq1 from the CSP is {Fw2,3
,Fw3,3

}. The predicate

q1 is to retrieve the files owned by at least the author

‘fktseng’ in ‘2012’. To have equivalent predicates, the CSC

intersects the sets in Wq1 to form the qualified file set

FSq1=Fw2,3 ·Fw3,3 and sends it to CSP to retrieve the

intended files. Secondly, the predicate q2 is to retrieve the

files owned solely by ‘fktseng’ in ‘2012’. The CSC has

the Wq2={w2,3, w3,3, w2,1, w2,2} to the CSP and obtains

the QFq2={Fwi,j
|wi,j∈Wq2} from it. The qualified file set

FSq2 = Fw2,3Fw3,3−Fw2,3Fw3,3Fw2,1−Fw2,3Fw3,3Fw2,2 .

Next, the predicate q3 is divided into two simple predicates

and obtains Wq3 and QFq3 . The CSC unites all the sets

in QFq3 to have all the files either of conference or

journal papers. Finally, the predicate q4 contains three simple

predicates to retrieve the files whose year is from 2010

454



to 2012. The qualified file set is obtained by uniting all

the sets in QFq4 . The transformation between complex

predicates and simples predicates are summarized in Table

II. Finally, Sfid={swi,j}wi,j∈Wid
is the set of searchable

keywords of file fid, while Tq={twi,j
}wi,j∈Wq

denotes the

set of trapdoors for simple predicates in q (See Table I).

B. Thread Model and Design Goal
The CSP is assumed to be honest-but-curious in iPEKS.

The CSP follows the specified protocols, but may attempt

to learn extra information from transactions. In face of

malicious CSPs, the authentication mechanisms like those in

[20], [21] can be employed to avoid unexpected tempering

of the stored files and search results. The design goals are

as follows: (1) Search Privacy: The searchable keywords

reveal nothing about the content of the underlying keywords.

Similarly, the search trapdoors leak no information about the

corresponding predicates. The CSP can only use the search

trapdoors to tell if the searchable keyword of a file satisfies

the intended predicate in the predicate trapdoor. (2) Search
Efficiency: The search should be carried out efficiently for

CSPs to help users retrieve their cloud data in time.

IV. PROPOSED SCHEME

Overview. We propose iPEKS, an interactive searchable

public-key encryption consisting of two phases: the sending

phase and the retrieval phase. The CSP maintains two

lists of tuples: the cache list C-List and the unclassified

list N -List. C-List comprises the tuple 〈twi,j , swi,j ,Fwi,j 〉,
while N -List includes the tuple expressed as 〈swi,j

, f〉.
Two lists are initially empty. In the sending phase, the

sender prepares ciphertext Cf and searchable keywords Sf

to the CSP. The CSP includes the file identifier f to Fwi,j

in the C-List if the swi,j has been searched; otherwise,

the CSP includes the remaining {swi,j} to N -List. In the

retrieval phase, when a simple predicate for wi,j is issued,

the CSP searches the cache C-List first to obtain Fwi,j
;

otherwise, the CSP searches the unclassified list N -List to

obtain Fwi,j and includes this information to C-List. Note

that the receiver breaks down the predicate q into simple

predicates stored in Wq . The CSP returns the qualified

file sets QFq={Fwi,j
}wi,j∈Wq

. The receiver builds FSq

according to q and sends FSq to the CSP. The CSP returns

the ciphertexts specified in FSq . The receiver decrypts

{Cfid}id∈FSq to obtain the plaintexts {fid}id∈FSq . The

detailed description of these two phases is as follows:

� Sending Phase:
Step 1. The sender sets C=(Cf , Sk), where Cfk is the

encrypted form of f and Sf={swi′,j′=PEKS(Apub, wi′,j′)|
wi′,j′ ∈ Wfk}. The sender sends C to the CSP.

Step 2. The CSP sets as k the file identifier of the stored file

C. For each swi′,j′ ∈ Sfk , the CSP executes Test(Apub,
swi′,j′ , twi,j

) for each tuple 〈twi,j
, swi,j

,Fwi,j
〉 in the C-

List. If Test returns ‘yes’ for the tuple 〈twi,j
, swi,j

,Fwi,j
〉,

add the file identifier k into Fwi,j
; otherwise, test the next

tuple in the C-List. If Test fails for all tuples in the C-List,

add the tuple 〈fk, swi′,j′ 〉 to the N -List.

� Retrieval Phase:
Step 1. The receiver sets one search predicate q∈Q and Wq .

The receiver sets Tq = {twi′,j′ |twi′,j′ = Trapdoor(Apriv,
wi′,j′) and wi′,j′ ∈Wq}. The receiver sends Tq to the CSP.

Step 2. For each twi′,j′ ∈ Tq , the CSP executes Test(Apub,
swi,j , twi′,j′ ) for each tuple 〈twi,j , swi,j ,Fwi,j 〉 in the C-

List. If Test returns ‘yes’ for the tuple 〈twi,j
, swi,j

,Fwi,j
〉,

add Fwi′,j′ to the qualified file set QFq; otherwise, test

the next tuple in the C-List. If Test fails for all tuples in

the C-List, execute Test(Apub, swi,j , twi′,j′ ) for each tuple

〈f, swi,j 〉 in the N -List. Fwi′,j′ collects the file identifier

f with Test(Apub, swi,j
, twi′,j′ ) returning ‘yes’ and adds

〈twi′,j′ , swi,j
,Fwi′,j′ 〉 in the C-List. The CSP returns the

qualified file sets QFq = {Fwi′,j′ }wi′,j′∈Wq
.

Step 3. The receiver builds one set of file identifiers for each

of the terms in q. Then the receiver unites all these sets to

obtain the targeted set of file identifiers FSq and sends FSq

to the CSP. Note that q = b1Fw1,1+· · ·+bnFwm,nm
+bn+1·

Fw1,1
Fw1,2

+· · ·+b22nFw1,1
Fw1,2

· · ·Fwm,nm
, bi∈{∅, U}. If

bi = ∅, the corresponding term is not included in q.

Step 4. The CSP returns the ciphertexts {Cfid}id∈FSq
.

Step 5. The receiver decrypts the ciphertexts {Cfid}id∈FSq

to obtain the plaintexts {fid}id∈FSq
. �

Example. Set Sf1 = {sw1,1
, sw2,2

, sw3,4
} and Sf2 = {sw1,3

,
sw2,4

, sw3,4
}. The C-List and N -list are initially empty.

When a sender Alice stores Sf1 and Sf2 to the CSP for the

receiver Bob, the CSP adds the tuple 〈f1, sw1,1〉, 〈f1, sw2,2〉
and 〈f1, sw3,4

〉 to the N -List because the C-List is empty.

Also, the CSP stores 〈f2, sw1,3
〉, 〈f2, sw2,4

〉 and 〈f2, sw3,4
〉

to the N -List. Refer to Table II for the keyword set W .

The receiver Bob would like to search with a predicate

q = (w2,1+w2,2)·w3,4 which means retrieving the files in

2013 containing at least ’bplin’ and ’rjchen’ as authors. Bob

breaks down q into three simple predicate (stored inWq) and

generates Tq={tw2,1 , tw2,2 , tw3,4} to the CSP. Because the

C-List is empty, the CSP executes Test(Apub, swi,j
, twi′,j′ )

for all swi,j
∈ N -list and twi′,j′ ∈ Tq . After finishing all

the tests for q, the C-List have entries with Fwi,j
, where

Fw1,1=Fw2,2={1}, Fw1,3=Fw2,4={2} and Fw3,4={1, 2}.
The CSP inserts 〈tw1,1 , sw1,1 ,Fw1,1〉, 〈tw2,2 , sw2,2 ,Fw2,2〉,
〈tw1,3

, sw1,3
,Fw1,3

〉, 〈tw2,4
, sw2,4

,Fw2,4
〉 and 〈tw3,4

, sw3,4
,

Fw3,4
〉 to the C-List. The CSP returns QFq={Fw2,1

,Fw2,2
,

Fw3,4
} to Alice, where Fw2,1

=∅. Alice first builds

Fw3,4={1, 2} and Fw2,1+Fw2,2={1}, and intersects these

sets to obtain the targeted set of file identifiers FSq={f1}=
(Fw2,1

+Fw2,2
)Fw3,4

. The CSP prepares and returns Cf1 to

Alice. Alice decrypts {Cf1} to obtain {f1}.
The sender Carol sends Sf3={sw1,1 , sw2,3 , sw3,4} to the

CSP intended to the receiver Alice. The CSP executes
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Test(Apub, swi′,j′ , twi,j
) for all swi′,j′ ∈ Sf3 and twi,j

in

the tuples in the C-List. The Test returns ‘yes’ for the tuple

〈tw3,4 , sw3,4 ,Fw3,4〉, add the file identifier 3 into Fw3,4 . The

CSP stores 〈f3, sw1,1〉 and 〈f3, sw2,3〉 into the N -List.

The receiver Bob would like to search the CSP with

predicate q′=(w1,3+w3,4). Bob breaks down q′ into simple

predicates and generates Tq′={tw1,3
, tw3,4

} to the CSP. The

CSP executes Test(Apub, swi,j
, twi′,j′ ) for all swi,j

∈N -list

and twi′,j′∈Tq′ . After finishing all the tests, Fw1,3={2} and

Fw3,4={1, 3}. The CSP returns QFq′={Fw1,3 ,Fw3,4} to

Alice. Alice unites these two sets to obtain the targeted

set of file identifiers FSq′={f1, f2, f3}=Fw1,3
+Fw3,4

. The

CSP prepares and returns Cf1 , Cf2 and Cf3 to Alice. Alice

decrypts {Cf1 , Cf2 , Cf3} to obtain {f1, f2, f3}.
V. SECURITY ANALYSIS AND

PERFORMANCE EVALUATION

In this section, we present the security and privacy of

iPEKS by giving formal arguments. Next, we provide de-

tailed description of a systematic attack possibly carried out

by the CSP and provide one corresponding countermeasure

to iPEKS. Moreover, we evaluate the storage, computation

and communication costs for the receiver and CSP in iPEKS.

A. Security Analysis

On the one hand, the security of iPEKS is based on

the security of the underlying PEKS [10]. The security of

the PEKS relies on the bilinear Diffie-Hellman problem
(BDHP). The BDHP is widely believed to be hard that no

algorithm is now available to efficiently find the solution.

Thus we assume BDHP is computationally intractable, that

is, the malicious CSC or CSP could not tell the content of

the searchable keyword and predicate trapdoor because these

actions are involved in solving the hard problem. Formally,

iPEKS is semantically secure against an adaptive chosen

keyword attack assuming BDHP is hard [10].

On the other hand, the interactive retrieval of data

in iPEKS may reveal some useful information for the

CSP to find the intended search predicate. The CSP can

use FSq from the CSC to find the targeted q. Given FSq′ =
b1Fw1,1+· · ·+bnFwm,nm

+bn+1Fw1,1Fw1,2+· · ·+b22nFw1,1 ·
Fw1,2 · · ·Fwm,nm

, bk∈{∅, U}. FSq′ is the union of at most

2m terms. Each term is one member of the power set of

m set of file identifiers, F . The number of possible search

predicates |Q|=2P(W) and the CSP can try each of the

possible search predicates. If the result for one q′ is the

same as FSq′ , q
′ is one candidate of the targeted predicate

q. The CSP has to test all possible q to obtain all the

possible search predicates q′. This systematic attack on

iPEKS by the CSP is described in Algorithm 1.

Once the candidate predicates, off-line keyword guessing

can be used to find the underlying simple predicate wi,j

from the searchable keyword swi,j . We can specify more

simple predicate trapdoors than what is contained in Wq and

Algorithm 1. systematic attack on iPEKS by the CSP

� Input: FSq , the set of matched file identifiers given q

� Output: Qq , the set of search predicates q′ where FSq′=FSq

for j = 1 to 2P(W)(= 22
m
) do

Write j as binary of length 2m and treat the bit k as bk in q′j .

If k = 0, set bk as ∅; otherwise, set bk as U in q′j .

Construct FSq′j
using {〈twi,j , swi,j ,Fwi,j 〉} in the C-List.

If FSq = FSq′j
then

Qq = Qq ∪ {q′j}
end of if

end of for

return Qq

some of them are of no interest to the receiver. To make it

infeasible to the CSP to do exhaust search on all the possible

search predicates, if |Wq| is fewer than 7, randomly generate

simple predicate trapdoors to make |Wq| at least 7. The

number of possible predicates is |Q|=22
7

= 2128, which

is computation-infeasible for the CSP to find the candidate

predicates set {q′} for the targeted search predicate q.

B. Computation and Communication Evaluation

We use the server with Intel Xeon processor E5620 at 2.40
GHz running Ubuntu 11.10. Elliptic curves are using GMP

[22] and PBC [23] libraries. We use a supersingular curve

over one base field of size 1024 bits and the embedding

degree is 2. The size of one group element in G1 is 2048
bits. The cost of scalar multiplication in G1 is 2.24 ms, while

that of the bilinear pairing is 1.8 ms. Hashing one string to

a G1 point takes 26.5 ms, while multiplication in G2 needs

7.3 ms. The rest operations cost less than 1 ms.

When the sender stores files to the CSP, CSP has to update

the C-List and N -List accordingly. Figure 2(a) presents

the time in total to send 50 new files to the CSP when

there are 0 to 100 distinct searched keywords in the C-List.

These files contain 1 to 10 randomly-selected keywords.

As the figure shows, when these are only small number

of distinct searched keywords in the C-List, most of the

searchable keywords are added to N -List and the time for

testing through the C-List can be omitted. On the other hand,

the more the distinct searched keywords in the C-List, the

more time can be saved to maintain the C-List and N -List.

The searchable keyword has higher probability to match a

tuple early in the C-List, which offsets the length increase

of the C-List. Figure 2(b) demonstrates the time in average

to perform 10 searches with 500 to 5000 files in the N -List.

Each file has unclassified searchable keywords ranging from

1 to 10. With the hit rate 0%, all the searchable keywords

are in the N -List, which is equivalent to the original PEKS.

With the increase of the hit rate, the search time is reduced
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(a) Store files into cache line/

uncategoried pool by the CSP

(b) Retrieve files from the cache line/

uncategoried pool by the CSP

Figure 2. Store/Retrieve operation performed by the CSP
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(a) Union of sets (b) Intersection of sets (c) Combination of Union/Intersection of sets

Figure 3. Set operation performed by the CSC.receiver

accordingly and affected slightly by the number of tuples

in the N -List. If all the searchable keywords have been

searched previously, the search time is 0.28 s in average

because there is no need to search the N -List.

On the other hand, the receiver has to build one set of file

identifiers for each of the terms in q. Then the receiver unites

all these sets to obtain the targeted set of file identifiers FSq

and sends FSq to the CSP. Figure 3(a) demonstrates the

time to unite 2 to 20 sets whose size (that is, the number

of file identifiers) is from 500 to 5000. The union of 20
sets (with 5000 file identifier each) is still efficient and can

be carried out within 14 ms. The interaction of sets is also

conducted in the same way as shown in Figure 3(b). The

result is also as efficient. Finally, we assume the receiver

issues predicate trapdoors requiring n set intersection of m
element, and union (n−1) times. The experiment sets m=5
and n=20, which means the predicate q involves 20 terms

and each terms has 5 randomly-selected keyword sets. The

construction of the set of the qualified file identifiers is very

efficient (less than 1.4 ms) for the receiver (see Figure 3(c)).

As for the comparative work HVE [12], the computation

time is related to all possible keyword values in W . Assume

the number of stored PEKS ciphertexts is X=1500, the

number of keyword category is m=3, each of which has 5
values; therefore, the equivalent number of HVE ciphertexts

is 100. When storing a file, the CSP in iPEKS spends extra

0.76 to 0.06 s to maintain the C-List and N -List given that

the C-List is from empty to half-full (the corresponding hit

rate is from 0%∼50%. In addition, the size of C-List and

N -List is proportional to the number of contained entries.

Each entry head costs about 512 B, the following file id is

20 bit each if there is one million files. The overall storage

for C-List/N -List is fewer than 1 GB. The work for the CSC

in iPEKS is corresponding to Wfid , while that in HVE is

proportional to the number of HVE ciphertexts. If the file to

be stored has 10 keywords, the CSC in iPEKS works around

2 times faster than that in HVE scheme to generate predicate

trapdoors. As for testing, the work for the CSP in iPEKS is

proportional to Wq , while that in HVE is corresponding to

the number of HVE ciphertexts. If the predicate contains 5
simple predicates and the hit rate is 80%-100%, the time for

the CSP in iPEKS to obtain the QFq is from 15.28 s down

to 0.14 s and that in HVE is 71.72 s in average, which is 4-

500 times slower. Therefore, iPEKS boost retrieval efficiency

by introducing mild store/computation overheads in the CSP

without increasing the work for the CSC.
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VI. CONCLUSION

In this paper, we present an interactive construction of

PEKS termed iPEKS where the search time is proportional

to the size of C-List instead of ALL the stored searchable

keywords. The more the keywords have been searched

previously, the better the efficiency can be improved. In

addition, the receiver can break down a complex search

predicate into several simple predicates to speed up the

retrieval. We provide the theoretical analysis to show its

security and privacy, and conduct performance experiments

to show its efficiency and practicality. The comparison

between iPEKS and the HVE is also provided. For future

work, we would like to exploit iPEKS to support richer

predicates and evaluate its efficiency with the counterparts.
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