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is 8.5 by 8.5 in., including the printed microstrip transmission 
lines. Figure 8 illustrates a representative measured radiation 
pattern from this array. The measured array performances 
are summarized in Table 2.  Clearly, the sequentially fed array 
gives better VSWR bandwidth, axial ratio, and side-lobe level 
( - 24 dB SLL) performance than the conventional feed array. 
Due to the smaller element spacing for the sequential feed 
array, the peak gain is slightly lower than the conventional 
feed array. Note that the antenna size may be further reduced 
to approximately 6 by 6 in. in size by replacing the feed lines 
with a PCB feed circuit board behind the radiating patch 
elements. 

CONCLUSiON 
Two different low-gain omni antennas (the drooping dipole 
and the TM2,-mode circular patch antennas), and two medium 
gain patch antennas were developed for the successful DBSR 
demonstrations in Pasadena, California and Buenos Aires, 
Argentina. These low-cost antennas can be used either in- 
doors or outdoors to receive digital audio signals from the 
TDRSS satellite. The patch antennas are more conformal than 
the drooping dipole antennas. For the medium gain antenna, 
the sequentially arranged CP fed array has a better CP per- 
formance over a broader bandwidth than the conventionally 
fed array. Finally, these antennas have myriad applications 
in modern satellite or wireless communication systems, such 
as MSAT, INMARSAT, IRIDIUM, Globalstar, Odyssey, 
Geostar, etc. 

TABLE 2 Summary of Medium Gain Antenna Performance at 
2.05 GHz 

Arrav TvDe Conventional Feed Seauential Feed 

Peak gain (dBic) 13.7 12.0 
VSWR 1.13 1.48 
Bandwidth (MHz) 82 132 
Beamwidth (Deg.) 38 46 
Side-lobe level (dB) - 13 - 24 
Axial ratio (dB) 1.4 0.8 

ACKNOWLEDGMENT 
We’d like to thank Mr. C. Chavez for fabricating and testing 
of all the antennas, Mr. R. Thomas for assisting in the design 
of the drooping dipole, Mr. J. Cardone, C. Cruzan and his 
group members for the etching and fabrication of the patch 
antennas and the PCB feed, and Mr. G. Hickey for fabricating 
the Nomex honeycomb sandwich. 

REFERENCES 
1. K. Woo et al., “Performance of a Family of Omni and Steered 

Antennas for Mobile Satellite Applications,” Proc. IMSC, Ot- 
tawa, Canada, 1990, pp. 540-546. 

2. J. Huang, “Circularly Polarized Conical Patterns from Circular 
Microstrip Antennas,’’ IEEE Trans. Antennas Propagat., Vol. AP- 
32, No. 9, Sept. 1984, pp. 991-994. 

3. M. Haneishi and Y. Suzuki, “Circular Polarization and Band- 
width,” in J. R. James and P. s .  Hall, Handbook of Microstrip 
Antennas, Peter Peregrinus Ltd., London, Chap. 4, p. 220. 

4. R. E. Munson, “Microstrip Antennas,” in R. C. Johnson (Ed.), 
Antenna Engineering Handbook (3rd ed.), McGraw-Hill, New 
York, 1993, pp. 7-16. 

5. J. Huang, “A Technique for an Array to Generate Circular Po- 
larization with Linearly Polarized Elements,” IEEE Trans. An- 
tennas Propagat., Vol. AP-34, pp. 1113-1124, Sept. 1986. 

6. T. Teshirogi et al., “Wideband Circularly Polarized Array An- 
tenna with Sequential Rotations and Phase Shifts of Elements,” 
Proc. Int. Symp. on Ant. and Propag., Japan, 1985, pp. 117-120. 

Received 2-24-94 

Microwave and Optical Technology Letters, 7/10, 440-444 
0 1994 John Wiley & Sons, Inc. 
CCC 0895-2477/94 

A FINITE-ELEMENT ANALYSIS OF 
BENDING DIELECTRIC WAVEGUIDES 
WITH REFLECTION WALLS 
Shyh-Jong Chung 
Department of Communication Engineering 
National Chiao Tung University 
Hsinchu, Taiwan, Republic of China 

KEY TERMS 
Bending dielectric waveguide, reflection wall, finite-element method, 
Green’s function 

ABSTRACT 
The jnite-element method together with the Green’s-function tech- 
nique is employed to tackle the scattering problems of bending di- 
electric waveguides with reflection walls. The influences of the fre- 
quency, the ratio of waveguide widths, and the length of the 
reflection wall on the scattering characteristics of 90“ and 120“ bends 
are presented. 0 1994 John Wiley & Som, Inc. 

1. INTRODUCTiON 
Bending dielectric waveguides are basic elements to inte- 
grated circuits operating in the range from millimeter wave 
to optical frequencies. They are necessary in order to reduce 
the large length-width ratio of waveguide chips consisting of 
several coupled devices. Two types of bending waveguides 
have been proposed: curved bending waveguides and sharp 
bending waveguides (corner bends). The latter have the ad- 
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vantage of small bending radius and thus are used for compact 
guided-wave circuits. 

A sharp bending waveguide structure consists of two dif- 
ferently directed semi-infinite waveguides with the ends 
joined together (which make a corner). When a guided mode 
of one of the waveguides is incident toward the corner, some 
of the power is reflected back to the same waveguide, and 
some is transmitted to the other waveguide, both carried by 
the guided modes of the waveguides. In addition to these two 
mechanisms, the rest power is radiated to the surroundings, 
which may interfere with the nearby components. In order to 
reduce the radiated power and increase the transmitted 
power, a number of alternative structures including reflection 
walls are proposed. The reflection wall is made by reactive- 
ion etching [l] or wet-chemical etching [2] at the corner so 
that a mirrorlike facet is formed. When the power is incident 
upon the reflection wall, either total internal reflection or large 
partial reflection occurs at the facet, which greatly increases 
the transmission power. 

For the analysis of bending waveguides, the effective di- 
electric constant (EDC) method has been adopted to reduce 
the original three-dimensional structure into a two-dimen- 
sional one for the purpose of simplicity. Marcatili [3] derived 
a transcendental relation for the attenuation per radian in a 
curved waveguide. Numerical results based on the EDC anal- 
ysis of Furuta, Noda, and Ihaya [4] and curves presented by 
Marcatili show that the difference An in the effective refrac- 
tive index between the waveguide core and its surroundings 
has to be at least 0.01 for acceptable radiation losses of 1 dBi 
rad and that a radius of curvature of a few millimeters is 
required. Himeno, Terui, and Kobayaahi [5 ]  used the plane- 
wave-spectrum method and considered the Goos-Hanchen 
effect to handle the wave reflection at the bend (with reflection 
wall). Morita [6] matched the tangential field at a boundary 
passing through the corner of the bend, and iteratively solved 
the scattering problem. Although Morita's method is more 
rigorous than Himeno's, it looks that the results are difficult 
to converge as the difference of the refractive indices becomes 
large. Furthermore, Morita's method fails to tackle the prob- 
lems of bends with reflection walls. Tanaka and Kojima [7] 
developed a form of volume integral equation for the treat- 
ment of wave propagation in two-dimensional dielectric 
branching waveguides, and then solved it by the method of 
moments. Although this method can be used to handle the 
scattering problem of bending waveguides, it will be CPU 
time consuming because of the calculations of the Green's 
function for all the nodes in the entire waveguide region. 

In this study a variational equation solved by the finite- 
element method is derived for rigorously analyzing the char- 
acteristics of bending waveguides with reflection walls. The 
variations of the reflection and transmission coefficients as 
well as the radiation power are investigated by changing the 
frequency, the ratio of the waveguide widths, and the length 
of the reflection wall. 

II. ANALYSIS 
Figure 1 shows a waveguide bend formed by two dielectric 
waveguides with widths of 2dl and 2dz. The bend angle is 26 
and the effective refractive indices are n, in the core region 
and nd in the surrounding (cladding) region. The two wave- 
guides are both assumed to be single moded. Let the TE  
propagation mode of the left-hand side (LHS) waveguide be 
incident upon the bend. Due to the uniformity of the structure 

t 

E2 

reflection wall 

Figure 1 A bending dielectric waveguide with a reflection wall 

in the y direction, the total electric field is only of y compo- 
nent. 

To tackle the problem by the finite-element method, one 
encloses a finite region SZ by the boundaries Bis ,  i = 1, 2, 3, 
4, as shown in Figure 2. The boundaries B1 and B3 are chosen 
far away from the corner so that only propagation modes can 
exit at these boundaries. By the partial variation principle [8],  
a variational equation can be derived. as follows: 

Ga(w@,,P) = 0, 

= - j du ( k:n2(x, z)E;E, 

where the variational operator 6" operates only on the terms 
with superscript a and n(x ,  z )  is the distribution of the re- 
fractive index in 0, which equals n, in the core region and nd 
in the cladding region. A denotes the outward normal of the 
boundaries B;s. B,+ and B,: represent the surfaces just ex- 
terior and interior to the boundary Bi, respectively. 

To solve (1) the region fi is divided into various triangular 
elements as shown in Figure 2. It is noticed that the boundaries 

Figure 2 An enclosed finite-element regain and the mesh division 
with triangular elements 
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B2 and B4 are set one mesh apart from the waveguide bound- 
aries to avoid handling the singularity of the Green's function 
in the later formulation. Two groups of fields are involved in 
( l ) ,  that is, those interior and exterior to the closed boundary 
ZBi. The former includes the fields in the volume integral and 
the fields at B; in the surface integral; the latter consists of 
those at B: in the surface integral. 

The interior field E; at the eth triangular element is ex- 
panded by the nodal field values $ 7 ~  and the corresponding 
second-order shape functions Ni's [9]: 

where six nodes are specified for each triangular element. 

equivalent current Jy at the core region: 
The exterior fields are obtained through the use of the 

= ki(n: - ni)  6, Ey(x ' ,  z')G(x, z ;  x ' ,  z ' )  du' ,  

(3) 

where the equality J y  = jwco(n; - n;) has been used. G(x, 
z ;  x ' ,  2 ' )  = 1/4j Hiz) is the 2D Green's function for the 
homogeneous medium nd, with k d  = kond and 

p = V(X - x' )2  + ( 2  - z y .  

The integration range in (3), that is, the core region, can 
be divided into three parts: the first part is the core region 
inside R; the second and the third parts are the core regions 
of LHS and right-hand-side (RHS) waveguides, respectively, 
outside 0. The field E J x ' ,  z ' )  of the first part is represented 
as the form of (2). The field of the second part consists of the 
incident and the reflected modal fields of the LHS waveguide: 

Finally, the field of the last part is the transmitted modal field 
of the RHS waveguide: 

Here (x , ,  zi) is the local coordinate for the LHS waveguide 
(i = 1) or the RHS waveguide (i = 2) (with zi being the 
longitudinal direction of the waveguide). p, and ui are the 
propagation constant and the modal function. R and T are 
the reflection coefficient and transmission coefficient, respec- 
tively, which are unknowns. It is noticed that by using the 
asymptotic form of the Green's function, the integrations for 
the second and third parts can be analytically carried out. 

By casting the field representations of (2) and ( 3 )  into (1) 
and using the Galerkin-Ritz procedure, one gets a matrix 
equation of the form 

TABLE 1 Convergence Test of Reflection (R) and 
Transmission (T )  Coefficients of a Bending Waveguide. 
28 = 120°, kodl = kod2 = 0.2, A = 4dl, k&, = koL2 = 10 

MI M2 R T 

0.646 L 6.0" 3 10 
3 15 0.059 L -160.6' 0.645 L 5.9" 

0.645 i 5.8" 3 20 0.059 L -160.3" 
4 20 0.058 L -160.1" 0.646 L 5.4" 

0.059 L - 161.3' 

111. NUMERICAL RESULTS 
In this section some numerical results are presented under 
the specification of n, = 2.2 and nd = 1. As a convergence 
test of the present approach, Table 1 shows the scattering 
coefficients R and T for several mesh divisions. M I  and M2 

are the meshes along the transverse and longitudinal direc- 
tions of the waveguides (Figure 2). L1 and L2 are the distances 
from the boundaries B1 and B3, respectively, to the origin of 
the global coordinate. The convergence of the magnitudes 
and phases of the coefficients verifies the validity of the pres- 
ent work. 

As a further check of the analysis, Figure 3 illustrates the 
magnitudes of the electric fields exterior (solid line) and in- 
terior (dash lines) to the boundaries B,'s. The interior field 
is obtained from the finite-element nodal values along the 
boundaries, and the exterior one is calculated based on the 
equivalent source in the core region and the Green's function 
( 3 ) .  It is seen that the field magnitudes match very well along 
the whole boundaries. Although not shown, the phases of the 
fields also match well with the difference below 1 degree. 

Figure 4 shows the scattering coefficients ( R ,  T )  and the 
total radiation powers P r a d  for 90"- and 120O-bend structures, 
as a function of the normalized frequency kod,. Power- 
conservation law (IRI2 + + P r a d  = 1) is satisfied to within 
0.1% error for each point calculated. Note that the trans- 
mission coefficient T increases with the width of the wave- 
guide. This is because as kodl increases, the guided mode has 
more field concentrated in the core region, so that more power 
meets the reflection wall and is transmitted to the other wave- 

The unknown vector I = [#s, R ,  TIT is obtained after in- 
verting (6), and the radiation field is then calculated from ( 3 ) .  

Figure 3 Magnitude of the electric field along the boundaries B,'s. 
Dotted line, interior field; solid line, exterior field. 20 = 120". 
kodl kod2 = 0.2, A = 4d1, koL, = koL, = 10. M i  = 3,  M2 = 20 
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1 

kod 1 

Figure 4 Scattering coefficients and radiation powers as a function 
of kodl. dz = dl, A = 2dIlc0~ 8, koL, = koL2 = 20. MI = 3, Mz = 
20 

guide. It is also noticed that increasing kodl seems to have 
little influence on the reflection coefficient for both 90” and 
120” bends. 

Figure 5 depicts the scattering coefficients and radiation 
powers as a function of d2/dl for 90” and 120” bends. dl is 
kept constant, and d2 is varied. Because the width of the 
reflection wall changes proportional to d2, the increase of d2 
enhances the transmission coefficients. But as d2 becomes 
larger than 1.25dl, the transmission coefficients reach satu- 
ration values because further increase of d2 (or the width of 
the reflection wall) has little influence on the reflection of the 
incident field, which has a constant field width. 

Figure 6 presents the dependences of the scattering coef- 
ficients and radiation powers on the width A of the reflection 
wall. A/(Zd,/cos 0) equals zero when the reflection wall van- 
ishes, and equals two when the wall touches the connecting 
point of the upper boundaries of the waveguides. For the 
parameters chosen, the variation of A does not change the 
transmission coefficients and radiation powers much, but has 

I c _---- 
oty -7d ,  _ # C C  , 1 , , , , , , , , I 
0.5 1 1.5 2 

d2 /dl 
Figure 5 Scattering coefficients and radiation powers as a function 
of dJd,. kdl = 0.1, A = 2dl/cos 0, koL, = koL, = 20. M I  = 3, 
Mz = 20 

0 
0.5 1 .o 1.5 

A 
2d1 lCOSe 

Figure 6 Scattering coefficients and radiation powers as a function 
Of AI(2dllc0~ 8). kod, = kodz = 0.125, k&l = koL2 = 20. MI = 
3, M,= 20 

large influence on the reflection coefficients. It is seen from 
the figure that the reflection coefficient of the 90” bend de- 
creases monotonically with the increase of A and that of the 
120” bend has a minimum value around the point Al(2dllcos 
6) = 1. 

IV. CONCLUSIONS 
A method combining the finite-element approach and the 
Green’s-function technique has been presented to solve the 
scattering problems of bending dielectric waveguides with re- 
flection walls. The validity of this method has been checked 
by convergence test and by field matching at the finite-element 
boundary. Several numerical results for 90” and 120” bends 
have been analyzed and discussed. With a little modification, 
this method can be applied to tackle the scatterings of branch- 
ing waveguides or intersecting waveguides. 
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ABSTRACT 
The subject of this article is the analysis of planar strat@ed struc- 
tures with a general bianisotropic grounded slab fed by a three- 
dimensional electric point source. The electromagnetic problem is 
solved in terms of the spectral electric Green’s dyad. The elements of 
the first and third column of the spectral Green’s dyad are directly 
derived from the transmission line equations satisfied by the electro- 
magnetic field in the two-dimensional Fourier domain. The reaction 
theorem and the Parseval theorem are then applied to the spectral 
electromagnetic field, and the elements of the second column of the 
spectral Green’s dyad are provided. Finally, as an application of the 
theory, we present the expression of the Gv term when the bianiso- 
tropic grounded slab is a pseudochiral one. 0 1994 John Wiley & 
Sons. Inc. 

1. INTRODUCTION AND FORMULATION OF THE PROBLEM 
Let us consider a planar integrated structure (Figure 1) formed 
by a grounded, linear bianisotropic slab, in the presence of 

Region 3 

Region 2 

Region 1 

Ground Plane 
Figure 1 Planar grounded slab fed by an electric point source 

an isotropic half space, fed by an electric point source located 
inside the slab: 

J = M x )  %(Y + h )  60(z)(Jx% + Jyf + J 2 2 ) ,  (1) 

where %(x) is the Dirac delta function. 
The distribution of the electromagnetic field in the struc- 

ture under examination can be obtained in a complete and 
exact way through the determination of the spectral electric 
Green’s dyad [1, 21. The elements of the first and third column 
of the dyad may be derived in a straightforward manner by 
making use of the equivalent transmission lines. To this end, 
in the two-dimensional Fourier domain defined as 

the electromagnetic field has been decomposed as a super- 
position of TE(9) and TM(f) waves whose transverse com- 
ponents satisfy the transmission-line equations. We found that 
such a decomposition is always possible when the constitutive 
tensors of the medium satisfy the following symmetry con- 
ditions : 

being 

Once the transmission-line problems for the TE(f) and 
TM(9) spectral waves have been solved, the elements of the 
first and third column of the spectral electric Green’s dyad 
are given by 

Gx;xz.k = G X z , k  = (GTM i- G$) sin 6 cos 6 

( k  = 1, 2, 31, 

where 

(Y P sin S = cos s = 
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