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Abstract

We use the Collins integral together with a rate equation to calculate the transverse mode profiles near g1g2 = 1/4 in a

tightly focused end-pumped Nd:YVO4 laser. The transverse mode locking is confirmed from the mode decomposition

into the degenerate empty-cavity eigenmodes and from the observation of beam profile variation along the propagation

distance. We obtain that the calculated transverse excess noise factor without considering the thermal effect is consistent

with the previous research and it depends on the pump size. We further study the influence of the thermal lens effect on

the K factor and discuss how to suppress the laser instabilities that occur near the degeneracy.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The excess noise factor was discussed first by

Petermann [1] in a gain-guided semiconductor la-

ser and thus it is called Petermann K factor. The

K factor is large in unstable laser cavities due to
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non-orthogonality properties of the transverse
modes [2,3]. In the case of a geometrically stable

cavity, introducing apertures inside the cavity

was shown leading to large K factors [4]. Recently,

Maes and Wright [5] found that the K factor is

cavity-configuration-dependent near the degener-

ate cavity configurations in a geometrically stable

cavity with Gaussian gain. They explained that

K = 1 at the exact degeneracies is due to flat phase
front coming from the phase-locked empty-cavity

eigenmodes and that a large value of K beside
ed.
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Fig. 1. Configuration of the laser system.
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the degeneracies is due to highly curved phase

front resulting from the incoherent superposition

of the empty-cavity eigenmodes.

Previously, we have observed the multi-beam-

waist (MBW) modes [6] near the degenerate cavity
of g1g2 = 1/4 in a tightly focused end-pumped

Nd:YVO4 laser. Our laser system that consists of

a plano-concave cavity with the flat end mirror

at the coated face of the Nd:YVO4 crystal is the

same as that of in [5]. We have understood the

MBWmode at the exact degeneracy by a combina-

tion picture of ray and wave optics that is similar

to the notation of the asymmetric modes [7]. Fur-
thermore, in the same system the cavity-configura-

tion-dependent laser instabilities were found on

each side of the degeneracy of g1g2 = 1/4 and the

thermal lens effect induced by the tightly focused

pump were considered to explain the experimental

data [8]. Because the thermal lens effect introduces

a phase distribution into the diffraction, it will

influence the transverse mode and the K factor.
Therefore, it is necessary to include the thermal

lens effect in the calculation of K factor. Moreover,

the laser instabilities appear near the region of

maximal K factor for some conditions, so the laser

parameters should be chosen carefully when one

wants to measure the K factor in such a laser.

In this work, we use the Collins integral to-

gether with a rate equation to calculate the trans-
verse mode profiles near g1g2 = 1/4. We further

use the genetic algorithm (GA) to decompose the

calculated mode profile into the degenerate La-

guerre–Gaussian (LG) modes and thus obtain

their mode weightings and relative phases. Most

importantly, from the experimental observation

of beam profile variation along the propagation

distance, we confirm phase-locking of the degener-
ate transverse modes near the degeneracy. We cal-

culate the K factor with and without considering

the thermal effect and obtain that it is not only

cavity-configuration-dependent but also pump-

size-dependent. In Section 2, we describe the

mode-calculation model including the thermal lens

effect. In Section 3.1, we show the numerical re-

sults of mode calculation together with the fitted
mode expansion and then show the mode profile

variation along propagation distance. The K factor

as a function of the cavity length is studied in Sec-
tion 3.2 with and without considering the thermal

lens effect. The laser instabilities are also discussed.

The conclusions are stated in Section 4.
2. The calculation model

Consider a plano-concave end-pumped solid-

state laser shown in Fig. 1. It consists of a laser

crystal with one of its end faces high-reflection

coated as a flat mirror and of a curved mirror with

radius of curvature R, which are separated by dis-

tance L. Let the reference plane be the place where
the light beam just leaves the laser crystal toward

the curved mirror. Under cylindrical symmetry,

propagation of the light field toward the curved

mirror and back to the flat mirror according to

the Collins integral is [9]

E�
mþ1ðrÞ ¼

�2pi
Bk

Z a

0

expðik2LÞEþ
mðr0Þ

� expfðip=BkÞðAr02 þ Dr2Þg
� J 0ð2prr0=BkÞr0 dr0; ð1Þ

with round trip transmission matrix
A B
C D

� �
.

Here Eþ
mðr0Þ and E�

mþ1ðrÞ are the electric fields of

the mth and the (m + 1)th round trips, respectively,
at the planes immediately after and before the gain

medium (denoted by the superscripts + and �); r 0

and r are the corresponding radial coordinates, k is
the wavelength of the laser, a is the aperture radius

on the reference plane, and J0 is a Bessel function

of zero order. The aperture radius must be chosen

large enough with many times of the fundamental

mode radius to ensure that the diffraction loss can
be neglected. In a thin-slab approximation, we can

relate the electric fields Eþ
mþ1 to E�

mþ1 (after and

before the gain medium) in the same round trip as
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Eþ
mþ1ðrÞ ¼ qE�

mþ1ðrÞ expðrDNdÞPðr=aÞ; ð2Þ
where 1 � q2 is the round-trip energy loss, r is the

stimulated-emission cross-section, DN is the popu-

lation inversion per unit volume, d is the length of

the active medium, and P(r/a) is an aperture func-

tion that equals 1 for r less than aperture radius a

and equals 0 otherwise. Furthermore, assuming
that the evolution of the population inversion fol-

lows the rate equation of a four-level system, we

can write the rate equation as

DNmþ1 ¼ DNm þ RpmDt � cDNmDt �
j Emj2

E2
s

DNmDt;

ð3Þ
where Rpm is the pumping rate, Dt is the round-

trip time, Es is the saturation parameter of the ac-

tive medium, and c is the spontaneous decay rate.

It was found that a standing-wave resonator can
be approximated by a ring resonator if a thin

gain medium is placed close to one of the end

mirrors [10]. This method is similar to the

Fox–Li approach [11] and has been used to ana-

lyze the decay rate of standing-wave laser cavities

[12]. For a continuous Gaussian pump profile

Rpm ¼ Rp0 expð�2r2=w2
pÞ with constant pump

beam radius wp throughout the active medium
(thin slab), the total pump rate over the entire

active medium isZ
V
Rpm dV ¼ P p=hmp; ð4Þ

where Pp is the effective pump power and hmp is the
photon energy of the pumping laser. Because we

concerned chiefly with transverse mode profile,
we did not consider the dispersion of the active

medium or frequency detuning between the atomic

transition and the cavity mode; thus the gain was

assumed to be real. When the thermal lens effect

was considered, we imposed a term exp(�iDU(r))
in the diffraction integral, where DU(r) is the phase
shift induced by thermal lens effect. According to

Eqs. (2), (6), and (11) of [13], the phase shift can
be written as

DUðr0Þ ¼
Z d

0

kDT ðr0; zÞ dn
dT

dz; ð5Þ

where
DT ðr0; zÞ ¼ � 1

Kc

Z rb

r0

anP abs

2p
expð�azÞ

�
1� expð�2r2=w2

pÞ
r

dr

is the temperature difference between the calcu-

lated point (r 0,z) and the boundary point (rb,z),

wp is the pump radius, n is the fractional thermal

loading, Pabs is the absorbed pump power, z is

the axial coordinate, and rb, d, a, Kc, and dn/dT

are the radius, thickness, absorption coefficient,
thermal conductivity, and the thermal-optic coeffi-

cient of the laser crystal, respectively. The thermal

induced stress, the thermal deformation of the

crystal, and the thermal fluctuation were neglected.

In an ordinary axially pumped solid-state laser,

the round-trip propagation time is many orders of

magnitude shorter than the spontaneous decay

time, especially in a short cavity; as a result, it
would take a large number of iterations to arrive

at the convergent state. To reduce computation

time, we used the scaling method [12] to magnify

the c value of the Nd:YVO4 laser by 100 times to

obtain the continuous-wave solution because the

transverse mode distribution is independent of c
as long as Dt � 1/c. Given an initial DN and E,

after the power output undergoes a procedure sim-
ilar to the relaxation oscillation the field distribu-

tion E converges to a cw steady solution. In our

simulation, the aperture was chosen 600 lm that

is much larger than the fundamental beam radius

of 108 lm for g1g2 = 1/4. To implement the Collins

integral by the Romberg method, we divided the

600-lm aperture radius into 1024 segments.
3. Results and discussion

3.1. Transverse mode locking

Theparameters used formode calculation are the

same as in [6]. The important control parameters in

this work are the cavity length L and the pump ra-

dius wp. The other parameters for calculating the

thermal lens effect are n = 0.23, a = 1930 m�1,

Kc = 5.23 W m�1 K�1, and dn/dT = 8.5 · 10�6

K�1. We show the normalized intensity profile and
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the phase profile on the reference plane with solid

circles in Figs. 2(a) and (b) at the degeneracy (L =

6 cm) for wp = 30 lm and the effective pump power

of 100 mW without considering the thermal lens

effect. In order to show the good fitting of mode
decomposition using GA, we plot the fitted results

in Figs. 2(a)–(d) with open circles and use the loga-

rithm scale in Fig. 2(a). The mode decomposition is

done with 13 fitting parameters including six ampli-

tude weightings and seven relative phases. For the

aperture radius of 600 lm on the reference plane,

we expand the calculated mode profile into the 1/

3-degenerate LGpm modes with p = 0, 3, 6, . . . ,18
and m = 0, where p is the radial mode index and m
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Fig. 2. The intensity profile in logarithm scale (a) and the phase pro

mode calculation (solid circles) and from the fitted result of mode deco

linear scale (solid curve) and the saturated gain distribution (dashed cu

for L = 6.01 cm.
is the angular index. The normalized electric field

of LGp0 mode can be expressed as

Ep0ðr; zÞ ¼ Ap0ðr; zÞ exp � r2

wðzÞ2

 !
exp i

kr2

2RðzÞ

� �

� exp i kz� ð2pþ 1Þtan�1 z
zR

� �
þ dp

� �� �
;

where

Ap0ðr; zÞ ¼ E0

wc

wðzÞ L
0
p

2r2

wðzÞ2

 !

is the modal function, E0 is the normalization con-

stant, zR is the Rayleigh length, w(z) is the beam
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file (b) at the exact degeneracy (L = 6.0 cm) obtained from the

mposition (empty circles). Inset in (a) are the intensity profile in

rve). (c) and (d) are, respectively, the intensity and phase profiles
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radius, R(z) is the radius of curvature of the phase

front, r and z are, respectively, the radial and axial

coordinates, and L0
p is the Laguerre polynomial for

mode index p. We assume all the excited LGp0

modes have the same wavenumber and then the
intensity profile |g0E00 + g3E30 + � � � + g18E18,0|

2

with seven amplitude weightings g(g0 be fixed

unity) and seven relative phases dp is fitted to the

mode-calculation profile. We see that the resultant

fitted profiles match with the mode-calculation

profiles extremely well in Figs. 2(a)–(d). From

Fig. 2(a) the central lobe of the intensity profile

is near-Gaussian with the waist radius of �30
lm (approximately equals to the pump radius,

see the solid curve in the inset with linear scale),

which shows that the laser is strongly gain-guided.

Note that the radius of the fundamental mode, wo,

is 108 lm. The seriously saturated gain distribu-

tion is shown with the dashed curve in the inset

of Fig. 2(a). The gain distribution is obtained from

the term exp(rDNd) in Eq. (2), where DN is r-de-
pendent. Fig. 2(b) shows that the phase profile is

flat within r = 200 lm but discontinuously jumps

p phase at some positions of r, e.g., the first phase

jump at r = 200 lm corresponds to the position of

the second intensity zero of the LG3,0 mode. The

relative phases of the degenerate LG modes for

L = 6.0 cm show the degenerate LG modes are

not only phase-locked but also nearly in-phase
on the reference plane. The unusual result of flat

wavefront on the flat end mirror, obtained in our

mode calculation including gain, is the same as

in [5] and this was discussed therein.

When the cavity length is slightly tuned away

from the degeneracy to L = 6.01 cm, the central

lobe of the intensity profile shows a slightly dis-

torted Gaussian in the inset of Fig. 2(c) with the
solid curve in linear scale. Also shown with the

dashed curve in the inset is the saturated gain dis-

tribution. We can see in Fig. 2(d) that the phase

pattern is already highly curved for r < 100 lm
and no longer has p-jumps at some positions of

r. Note that the phase is continuous at r = 223

lm because the phase jump is 2p. Besides, at

L = 6.01 cm the degenerate LGp0 modes are no
longer in-phase on the reference plane but have

monotonically increasing relative phases with the

increase of p. Even so, these LGp0 modes are still
phase-locked to form a stationary mode. Such a

stationary mode exhibits profile variation along

the propagation distance due to the variation of

Gouy phases of the LGp0 modes and it is in fact

an optical bottle beam that has been presented in
[14]. It is worthy to note that nearly the same

behavior for the case of L = 5.99 cm except that

the phase pattern is inverted within r = 100 lm
and the relative phases of the LGp0 modes decrease

monotonically with increase of p.

At L = 6.05 cm, the intensity profile is much

distorted from Gaussian and the phase pattern is

highly curved for r < 150 lm. We will show later
that this cavity length corresponds to where the

maximal K factor is. The mode weightings and

the relative phases of the LGp0 modes for various

cavity lengths are summarized in Figs. 3(a) and (b)

except for the absence of L = 6.04 cm because the

laser instability occurs there. The self-pulsing and

chaotic time evolution have been observed there

and also on the other side of the degeneracy when
the pump radius is smaller than 40 lm [8]. We can

see in Fig. 3 that the mode weightings for the case

of L = 6.05 cm have significant decrease for p = 3,

6, 9 as compared with the case of L = 6.03 cm and

that the relative phases no longer monotonically

increase but alternate for p > 6.

Although the far-field intensity pattern looks

like a Gaussian profile when the cavity is tuned
far away from the degeneracy to L = 6.10 cm,

the mode profile still varies along the propagation.

We can see from Fig. 4(a) that the calculated mode

profile exhibits a dark center from z = 6.8 to 8.0

cm. We therefore used this z-dependent profile to

verify the phase-locking of degenerate transverse

modes as L is tuned from 5.90 to 6.10 cm. The pro-

file will appear a dark center approximately from
19 to 23 cm after a convergent lens with focal

length of 7 cm when the convergent lens is put be-

hind the output coupler at a distance of 12 cm.

Fig. 4(b) shows the photograph taken at a distance

of 20.5 cm after the convergent lens from our

Nd:YVO4 laser as L is set on the right edge of

the phase-locking region. We found experimen-

tally that the phase-locking region has been shifted
�500 lm toward the short cavity side by the ther-

mal lens effect for wp = 30 lm and pump power of

150 mW.
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Fig. 3. The mode weightings (a) and the relative phases (b) of

the LGp0 modes as L is tuned away from the degeneracy.

Fig. 4. (a) The numerical beam profile variation along the

propagation distance z for L = 6.10 cm. The intensity profile

with a dark center can be seen at z = 6.8�8.0 cm that is

transformed to a distance of 19–23 cm after the convergent lens.

(b) The photograph experimentally taken at 20.5 cm after the

convergent lens.
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3.2. Transverse excess noise factor

We calculate the K factor according to the rela-

tion given by [4,5], K ¼ ½
R1
0

j EðrÞj2r dr�2= j
R1
0

E2ðrÞr drj2, that is valid for a plano-concave cavity

with the electric field E(r) at the flat end mirror [5].

The upper limit of the integral in the expression of

K may be replaced by the aperture radius as long

as the aperture radius is large enough. Our calcu-

lation shows that the K factor is indeed independ-

ent of the aperture radius for a convergent solution

E(r) except for L = 6.04 cm where the laser insta-
bility appears. Thus, the variation of K factor

shown below does not result from diffraction via

the aperture [4] but from the inherent mode prop-

erties [5] near the degenerate cavity.
By decreasing the aperture radius on the refer-

ence plane from 600 down to 500 lm, we found

that the K factor is unchanged for the stable out-

put but the laser instabilities (e.g., L = 6.04 cm)

are suppressed. Fig. 5(a) shows the K factor as a

function of L for wp = 40 lm with solid triangles

and wp = 30 lm with solid circles when the aper-

ture radius is 500 lm without considering the ther-
mal lens effect. We obtain that the K factor is

pump-size-dependent besides cavity-configura-

tion-dependent. However, further decreasing the

pump size smaller than 30 lm does not increase

the K factor. It seems that there is a proper pump

size that leads to the largest K-factor. For compar-

ing the value of K with the results of [5] around
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that wo = 116 lm for L = 4 cm near g1g2 = 1/2. (c) The cavity-

dependent K factor for wp = 30 lm and the effective pump

power of 100 mW near g1g2 = 1/4 with (open circles) and

without (solid circles) considering the thermal lens effect.
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g1g2 = 1/2, we calculated two cases of wp = 58 lm
(wp/wo = 1/2, solid triangles) and wp = 40 lm (solid

circles) in Fig. 5(b). The case of wp = 58 lm is con-
sistent with Fig. 2 of [5]. The value of K factor is

comparable for wp = 30 lm in Fig. 5(a) and for

wp = 40 lm in Fig. 5(b) that means the degeneracy

of g1g2 = 1/4 is also a good choice for measuring

the cavity-configuration-dependent K factor.
As aforementioned, a proper small pump size

results in large K but it may lead to the instabilities

and strengthen the thermal lens effect. Because the

thermal lens effect introduces a phase distribution

into the electric field, in turn it will influence the

K factor. When the thermal lens effect is included,

the result plotted as open circles in Fig. 5(c) shows

that the K-curve of wp = 30 lm is shifted and dis-
torted from the feature of without the thermal lens

effect. Also, the K-factor is decreased by the ther-

mal lens effect. When the thermal lens effect is con-

sidered, the laser instabilities occur at L � 5.91 cm

that is shifted from L � 5.96 cm without consider-

ing the thermal lens effect. Further decreasing the

aperture radius to 450 lm is able to fully suppress

the laser instabilities. In experiment, decreasing the
aperture may be achieved by focusing the pumping

beam near the rim of the crystal instead of setting

a real hard aperture against the crystal inside the

cavity. It is worthy to note that the instabilities

are also found near the degeneracy of g1g2 = 1/2,

for which the instability occurs at L = 3.91–3.94

cm and L = 4.06�4.09 cm for wp = 40 lm when

the aperture radius is larger than 500 lm. There-
fore, the laser parameters must be chosen carefully

for measuring the cavity-configuration-dependent

K factor near the degeneracies.
4. Conclusion

We have confirmed the phase-locking of degen-
erate transverse modes near the degeneracy of

g1g2 = 1/4 in a tightly focused end-pumped Nd:

YVO4 laser that can be verified by observation of

beam profile variation along the propagation dis-

tance within a large cavity-length detuning from

the degeneracy. We also decomposed the station-

ary lasing mode into the degenerate Laguerre–

Gaussian modes with their relative locked phase.
Furthermore, we obtained that the K factor is

cavity-configuration-dependent and pump-size-

dependent. When the thermal lens effect is taken
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into account the cavity-configuration-dependent K

factor is shifted and decreased. Although the laser

instabilities appear near the region of maximal K

factor they can be suppressed.
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