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Flux Sow of Abrikosov vortices in type-II superconductors
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The theory of flux flow developed by Bardeen and Stephen (BS) is modified and extended to the high-

field case. The Clem model and Wigner-Seitz circle-cell approximation for vortices are used in our ap-

proach. The distinct boundary of the normal core of a vortex in BS theory is removed and treated natu-

rally. Several interesting results come out as a consequence. The Lorentz force is determined by the
normal current rather than the supercurrent. But the supercurrent can sustain the magnetic-field distri-

bution of flux quanta. From energy dissipation considerations, the Lorentz force is equal to viscosity
force automatically without assumption as made in BS theory. An expression for the viscosity is also ob-
tained.

I. INTRODUCTION

In the mixed state of ideal type-II superconductors,
Abrikosov vortices' penetrate the materials in the form
of flux lines, each carrying a single flux quantum $0. The
Lorentz force Fz due to a transport current Jz. would
drive vortices to move, and it can lead to electrical resis-
tance. This phenomenon is called flux flow. The early
flux-flow theory was developed by Bardeen and Stephen
(BS). We will review the BS theory in the following.

As illustrated in Fig. 1, a single vortex is driven to
move in the direction VL by a uniform transport flow in-
dicated by Vz. The circulation of a stationary vortex
outside of a normal core is indicated by Vo. The total
current is a superposition of the superconducting flow

Fl. =qVL, (2)

where FL = ( l /c)Jr X Pp and ti is the flux-flow viscosity,
which yields

pattern of a stationary vortex, Jo(r), and the transport
current

J=J&+J&(lr VLtl)=—J,+J„,
where J, (J„)is the super (normal) current.

In the BS theory, the current velocity in the vortex
core V& =Vz —V~, where V~ is backflow current veloci-
ty due to the pinning center. In the no-pinning case,
V&=0, i.e., V&=V+. Recently, %'ang and Ting pro-
posed a theory of flux motion with backflow current in
high-~ superconductors. Otherwise, BS thought that part
of Jr came from J, and part from J„. They assumed
(disregarding the Hall eff'ect) the equation of flux flow to
be

V0

l =PoH~2/p» c

and flux-flow resistivity

p/ =p„B/Hc2 (4)

Vy

Vp

FIR. 1. A single vortex moving with a velocity VL is driven
by a uniform transport flow V&. The circulation of a stationary
vortex outside of a normal core is Vo. The polar coordinate
(p, 8) is used.

where p„ is the normal resistivity and B is the flux densi-
ty.

But, after thinking it over, we have two questions
about the BS theory: (I) BS assumed that there is a clear
boundary between the normal state and the supercon-
ducting state in a vortex. The inside of the vortex core
with radius r =g is the region of normal conductivity.
But, in fact, the clear boundary between the normal state
and the superconducting state cannot be determined
rigorously. (2) If the clear boundary between the normal
state and the superconducting state of a vortex does not
exist, what kind of result difFerent from BS theory would
we obtain? On the other hand, the BS theory is valid for
an isolated vortex, i.e., applied magnetic field I H y.

0163-1829/94/50(1)/319(4)/$06. 00 50 319 1994 The American Physical Society



320 J. L. CHEN AND T. J. YANG

Therefore, we believe that the BS theory must be
modified and extended to higher field situation. In this
paper, we try to answer the two questions above. Our ap-
proach is valid for any applied magnetic field above first
critical field H, &. The current due to the electric field is
assigned as J„,then we find the role of J, alone circulates
around the vortex core; moreover the Lorentz force FL is
due to J„, J, has no contribution to FI. Fina11y, we
derive the Lorentz force to be just equal to viscosity force
automatically without regarding it as an assumption in
the BS theory.

II. THEORY

magnetic Geld

H = [aKo(R /X)+bIO(R /A, )]e, ,
4o

and supercurrent density

J, = ~[aK, (R /I) bI,—(R /A, )]e e,
0oc

where K„(x) and I„(x}are modified Bessel functions,

k is the penetration depth. a, b can be determined

by two boundary conditions: J,(p=pc) =0 and

I„„,, „»H.ds=go. We have

En the mixed state of ideal type-EI superconductors,
vortices are arranged in the form of a triangular fiux-line
lattice [as in Fig. 2(a)]. In the following paragraph we
will discuss two cases (i) stationary vortices and {ii) vor-
tices moving along the x-axis with a constant velocity
VL.

A. Stationary vortices

and

I, (R o/A, )

g„[K,(g„/A )Ii(Ro/A, ) —K, (Ro/A, )Ii(g, /A, )]

K, ( Ro/A, )b=
g„[K,(g,/X)I, (R,u) K, (R,—/~)I, (g, /&)]

'

The Ginzburg-Landau (GL) equations near H, 2 have

been solved by Abrikosov. ' But, up to this time, there
are not any exact solutions for H„«H, &&H,z. There-
fore we use the Clem model to solve GL equations quali-

tatively. In Clem's original paper, he only discussed the
single vortex case; but in this paper, we consider the over-

lap between vortices. For convenience, we adopt the
Wigner-Seitz circle-cell approximation. The hexagonal
unit cell of the triangular fiux-line lattice [as Fig. 2(a)] is

replaced by a circular unit cell with equal area [as Fig.
2(b)]. The radius of the circular unit cell is po. We utilize

cylindrical coordinates p =+x +y, 8= tan '(y /x),
and z, and approximate the GL order parameter as

4'(p}=f (p) exp(i8), where f (p)=p/R =p/Qpi+g2,
any g„ is a variational core value parameter. g„=v'2( for
Ir» l. Substituting f (p) into the second GL equation,
and with the help of Maxwell equations, we obtain the
vector potential

A= [1 aRK, (R/A)+—bRIi(R/A)]es,

(8b)

where Re=+pc+/, . Equations (5)—(8) reduce to the

results obtained by Clem in the low-field case, i.e.,

po ))I,.

B. Vortices moving along x axis with a constant velocity Vq

In this case, we assume that vortices still sustain the
form of a triangular fiux-line lattice but move along the x
axis with a constant velocity VL . Similarly, we still adopt
the approximate methods in the case (i). So this case can
be simplified to a single vortex as Fig. 2(b), but it moves

with a constant velocity VL .
In principle, we must solve the time-dependent GL

equations in the moving vortices case. But the velocity

VL is very small, so the extra correct terms due to time

variation are regarded as perturbations. %e may neglect
them. We just only replace x by x —Vz t in the solutions

which have been solved in case (i). But in case (ii), the cy-

lindrical symmetry is broken because of vortices moving.

%e must choose the gauge very carefu11y. According to

FIG. 2. The hexagonal unit cell of the tri-
angular flux-line lattice [shown in (a)] is re-

placed by a circular unit cell with an equal
area [shown in (b}].

(a)
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the Josephson relation, ' we know that the electric field

E induced by vortices moving must include the uniform
background term PoVL/rrpoe . Therefore we choose a
gauge in which the vector potential A includes the term
Po(x —

VL t) /n poe„. We can get the vector potential

Po(x —
VL t)

A= e
7TP0

+ ——
2

— K, (R /A, )+ Ii (R /A, ) ee,
27T p p0 p p

magnetic field

H = [aKo(R /A, }+bIo(R /A, ) ]e, ,27',

and supercurrent density

J, = ~[aK&(R/A, ) bI—&(R/A, )]ee .
0C

Note: where p =Q(x —Vt t)z+y z, 8= tan '[y I
(x —Vt t)] W.e assume the electric potential is constant
in this paper. Electric field

1 Ap= ——
c t

NoVL, „PoVL,
~ 8y+ ~Q

27Tcp0 277c p

RK, (R /A, ) Ko(R /A, )+ +b
p'

RIi(R/A, ) Io(R /A, )

p2 2A,

aKo(R/A, )+bIo(R /A, )
X( sin28e„—cos28e )+ e (12)

The average electric field is

(E)= f d8f Epdp= e =
~p0 0 0 C

SXVL
(13)

where B =go/npo is the flux density. Equation (13}is the Josephson relation. ' The average normal current density
due to (E ) is assumed to follow Ohm's law

&J„&=~(», (14}

where o is the conductivity. The moving vortices can be regarded as the ac magnetic field, and the ac magnetic field
can excite the normal current. This is the reason why the current due to (E) is assigned as the average normal current.
The dissipation of energy per unit length of single vortex is

W=cr f d8f E pdp

o Bgo VL trio Vt+
z [1+Ro[aKo(Roll, }+bIo(Ro/A)] g„[aKo(g„—/A)+bIo(g„/A, )] j =gVL, (15)

2c2 S~c~

where ri is flux-flow viscosity.
The Lorentz force per unit length on a vortex is

F,= ' f"d8—f"(J„+J,)XHpdp

=—f d8 f EXHpdp
C 0 0

o BpoVt ergo VLe„+ I I+Ro[aKo(Ro/A)+bIo(Ro/A)] f„[aKo(g„/A, )+b—Io(g, /A }]]e„.2c 8mc A,
(16)

In Eq. (16), we use Ohm's law (J„)=o ( E). The second
term J, XH will be canceled out by integrating all orien-
tation. Thus, Lorentz force density is equal to
(1/c)J„XH. That is, Lorentz force is determined by the
normal current rather than the supercurrent.

From Eqs. (15) and (16), we get automatically

FL =gVL . (17)
It is worthwhile to mention that Eq. (17) is an assumption

~No 4o
c2 4m

~koB
for p0&(A, .

c

for P0)&A,

I

in the BS theory, but here it is a derived result.
From Eq. (15), and letting a » 1, we have

(18)
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Close to T„o.=o.„,o.„ is normal conductivity. Because
the dissipation energy of a vortex motion is proportional
to Aux density 8, we obtain the viscosity g to be propor-
tional to 8. For po «A, , the viscosity g given by Eq. (18)
is the same as the result of BS theory. For H, )&H„,
(i.e., po «A, ), the average dissipation power of Aux flow

per unit volume is

(19)

This is a reasonable result for physical requirements.
From the above demonstration our theory advances

the BS theory to realize the mechanism of flux flow.
When the applied transport current pushes the vortices
to move, that will induce the electric fie1d and generate
the normal current. Then Lorentz force due to normal
current will push the vortices to move continuously and
be balanced by the viscosity force of flux flow. The su-
percurrent density J, is just to sustain the magnetic-field
distribution of flux quanta. It makes no contribution to
F

III. COCCI.USIQNS

Based on the Clem model and %igner-Seitz circle-ceH
approximation, we have studied the mechanism of Aux
fiow. In this paper, we obtain very important results
which are valid in any applied magnetic field above 0„.
Otherwise, we realize Lorentz force is due to the normal
current rather than the supercurrent. The supercurrent
makes no contribution to the Lorentz force, but it can
sustain the magnetic-field distribution of Aux quanta. Fi-
nally, from the energy dissipation of Aux low, we natu-
rally obtain that the Lorentz force is equal to the viscosi-
ty force without regarding it as an assumption, as in the
BS theory. This is the reason why the vortices can move
with a constant velocity in uniform applied transport
current. Therefore, our theory can explain the Aux-low
phenomenon clearly.
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