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Abstract—With the growth of location-based services and
social services, low-sampling-rate trajectories from check-in data
or photos with geo-tag information becomes ubiquitous. In
general, most detailed moving information in low-sampling-rate
trajectories are lost. Prior works have elaborated on distant-time
location prediction in high-sampling-rate trajectories. However,
existing prediction models are pattern-based and thus not ap-
plicable due to the sparsity of data points in low-sampling-rate
trajectories. For example, it becomes difficult to derive trajectory
patterns, let alone utilizing trajectory patterns for distant-time
location prediction. In this paper, given a query time, the current
location and time, we aim to predict the location of an object
at the query time. To address the sparsity in low-sampling-rate
trajectories, we develop a Reachability-based prediction model
on Time-constrained Mobility Graph (abbreviated as RTMG)
to predict locations for distant-time queries. Specifically, we
design an adaptive temporal exploration approach to extract
effective supporting trajectories that are temporally close to the
query time. These data points are then represented as a Time-
constrained user mobility Graph (refers to as TG). In light
of TG, we further derive the reachability probabilities among
locations in TG. Thus, a location with maximum reachability
from the current location among all possible locations in sup-
porting trajectories is considered as the prediction result. To
efficiently process queries, we proposed an index structure SOIT
to organize location records for on-line query processing. We
conduct extensive experiments on real low-sampling-rate datasets
and demonstrate the effectiveness and efficiency of RTMG.

I. INTRODUCTION

With the growth of location-aware technologies and loca-

tion based Internet services (e.g., Foursquare and Places on

Facebook), tracking or collecting a huge amount of trajec-

tories of users becomes feasible. Given a set of trajectories,

prior works have studied the location prediction problem in

which given the user’s current location, the problem is to

predict the next location or the location at a specific time. In

particular, prior work in [5] formulates a distant-time query,

where given a query time, the current location and time, one

should estimate the location of objects at the query time. The

distant-time query is very useful in many applications, such

as pre-fetching users’ future locations and delivering coupons,

inferring the crowd of a region for tourism recommendations,

and estimating the traffic status for transportation management

[16].

Without loss of generality, a trajectory is considered as

the movements of users and is expressed as a sequence

of data points indicating user location information and the

corresponding time. The trajectories considered in distant-

time query [5] are high-sampling-rate trajectories that reveal

detailed movements of users. Same as in [5], [8], [6], the

next location prediction is based on the high-sampling-rate

trajectories. As users could easilyl perform check-in services

(e.g., Foursquare) to note their locations with a mobile phone,

low-sampling-rate trajectories becomes ubiquitous. The time-

ordered check-in records of a user are able to be expressed

by trajectories. Moreover, on a photo sharing website (e.g.,

Flickr), people share geo-tagged photos whose time-stamps

and geo-locations can be represented as trajectories as well.

Clearly, low-sampling-rate trajectories are substantially dif-

ferent from high-sampling-rate trajectories, where details of

movement information is generally lost. For example, time

intervals between consecutive data points in low-sampling-rate

trajectories may range from seconds to days [18]. In this paper,

we aim to address the sparsity issue for distant-time query in

low-sampling-rate trajectories.

A considerable amount of efforts has been devoted to

inventing location prediction models in high-sampling-rate

trajectories [10], [1], [17], [7]. Prior works assume that

recent locations and velocities are available and employ a

(non)linear movement model to determine near-future location

mainly based on recent location and velocities. On the other

hand, more complex location prediction models have also

been studied in [5], [8], [6] to support distant-time queries.

We mention in passing that the authors in [8] proposed a

location prediction model, which infers next location of a user

based on collective frequent patterns discovered from previous

trajectories of all users. In [6], a path prediction model is

proposed, which predicts the travel path of an object up to a

specified time interval in the future. A hybrid prediction model

(HPM) is proposed in [5], which is able to answer distant-

time future locations. HPM relies on frequent moving patterns

discovered from past trajectories as well as existing motion

functions using the objects recent movements to support future

location queries. While pattern-based prediction models over

high-sampling-rate trajectory databases show promising query

results, it may fail to effectively predict distant-time location

queries over low-sampling-rate trajectories because HPM [5]

may hardly mine any frequent moving patterns from a single

user’s low-sampling-rate trajectory. For example, suppose the
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Fig. 1. Dense regions and low-sampling-rate trajectories

minimum threshold is two, only one frequent pattern, A→ C,

that appears twice can be found from Trj1, Trj2 and Trj3
as shown in Figure 1(b). In this case, HPM [5] always returns

region C as the query result for any queries no matter where

the user is currently located and what the query time is since

only one pattern nearby the query time can be used. However,

the time points of data points located at region C are far away

from query time for some queries. Making prediction based on

limited frequent moving patterns derived from HPM is unre-

liable and results in poor prediction coverage for distant-time

location queries over low-sampling-rate trajectories. Therefore,

the sparsity feature in low-sampling-rate trajectories calls for

a new design for distant-time location prediction.

Most predictive techniques are mainly designed for high-

sampling-rate trajectories based on recent movements or mov-

ing patterns of moving objects. However, future location

over low-sampling-rate trajectories for a particular user is

worth investigating as it can drive innovative applications

for existing location-based services. For example, if we can

effectively infer user’s future location at a specified time

point, time-sensitive information delivery (e.g., coupons) can

intelligently incorporate user’s future location by providing

information that is valid nearby the predicted location at the

specified time point. In this paper we formulate the problem

of distant-time future location prediction over low-sampling-

rate trajectories. Given current location at the current time

point and a query time, we aim to predict the location of a

user at query time. To address the sparsity issue due to low

sampling rate, by leveraging various historical low-sampling-

rate trajectories, we propose a Reachability-based prediction

model on Time-constrained Mobility Graph (abbreviated as

RTMG) that investigates user’s reachability and determines the

possible candidate locations. More specifically, first a spatial-

temporal expansion is utilized to enlarge an investigation scope

for retrieving some historical trajectories that are likely to

infer locations of objects at the specified query time. For

example, the data points that are spatially close are merged

into regions of larger granularity as shown in Figure 1(a).

Moreover, by expanding investigation time interval between

current time and query time, we can infer paths from region

A to other regions within the investigation time interval.

These trajectories are called supporting trajectories. Based

on the supporting trajectories, a Time-constrained mobility

Graph (abbreviated as TG) is constructed. In light of TG, we

derive reachability probabilities of vertexes (i.e., the locations)

in TG and thus determine the most likely location at the

query time. To improve efficiency of query processing, we

also design an index structure, Sorted Interval-Tree (SOIT), to
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Fig. 2. Trajectory database

structure user mobilities according to their time locality into

a data-centric balanced tree. Several operators are defined for

SOIT to support data-centric spatial-temporal expansion and

retrieval, i.e., automatically expanding a spatial-temporal scope

according to the data distribution over time. With SOIT and

its operators, we can efficiently retrieve supporting trajectories

and infer time-constrained mobility network on-the-fly.

The contributions of this paper are summarized as follows:

• To address the sparsity in low-sampling-rate trajectories,

we propose adaptive temporal exploration approach to

retrieve supporting trajectories. These supporting trajec-

tories are further formed into a time-constrained mobility

graph TG.

• We design a Reachability-based prediction model RTMG

for distant-time location prediction.

• We develop an index structure, SOIT, to facilitate data-

centric reprieval and efficient query processing.

• We conduct extensive experiments on real data to evaluate

our proposed framework.

The remainder of this paper is organized as follows. Section

II gives the preliminary of our work. Section III presents a

reachability-based prediction model for distant-time location

queries. Section IV presents the index structure and operators

to organize user mobilities to support dynamic construction

of time-constrained mobility graph. Section V presents the

performance study on RMTG and sensitivity analysis of

RMTG. Related works are presented in Section VI. This paper

concludes with Section VII.

II. PRELIMINARY

In this section, we first define the data model and then

formulate the problem of distant-time location prediction over

low-sampling-rate trajectories.

A trajectory of a user is a sequence of location records

ordered by the time stamps of location records. Note that the

location records discussed in this paper could be the check-in

records, GPS data points or geo-photos. Same as in [19][3], if

the location information in trajectories is represented as a GPS

coordinates, trajectories will be transformed into a sequence of

regions, where regions are determined by existing clustering

algorithms, such as OPTICS [2]. Specifically, given a set of

GPS data points, we will utilize clustering algorithms to derive

a set of regions. Furthermore, for some privacy concerns or

the feature of social medias, the check-in records only indicate

regions of users. Therefore, the location record considered in

this paper is defined below:

Definition (Location Record) A location record g is a three-

tuple 〈u; l; t〉, where u is the user ID, l is a location referring

to a region that u stays at timestamp t.
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Users may present periodic movement behavior hidden in

their trajectories (e.g., daily movement behavior). Same as

in HPM [5], a trajectory of a user is thus decomposed into

smaller trajectories. Thus, we could decompose a trajectory of

a user in daily-scale. Generally, a trajectory could be divided

into sub-trajectories according to a time length determined

by existing periodic methods or specified by users. These

sub-trajectories are thus called decomposed trajectories. The

definition of decomposed trajectories is defined as follows:

Definition (Decomposed Trajectory) Given a time length d

(e.g., a day), a sequence of n location records is segmented

into a set of decomposed trajectories of equal time unit

T
d={T1, ..., Ti} according to their time-stamps. Each sub-

trajectory Ti is a sequence of location records, where all

location records are located within the same time unit d (e.g.,

occurred in the same day). Formally, a decomposed trajectory

Ti = 〈gi,1 → · · · → gi,j → · · · → gi,m〉, where 1 < j ≤ m.

Figure 2 illustrates an example of decomposed trajectories

in daily scale and the location information of records is

represented by region identifications. As shown in Figure 2,

trajectory T1 has six location records 〈g1,1, ..., g1,6〉.
To better capture the spatial and temporal correlations

hidden in decomposed trajectories, we present decomposed

trajectories as a sequence of trajectory snapshots. To discover

regions, we extract location records from decomposed trajec-

tories and represent the location records as a spatial proximity

matrix M, which is a symmetric matrix with each entry Mi,j

indicating spatial distance between location records i and j. As

such, a set of decomposed trajectories is therefore transformed

into a sequence of trajectory snapshots with segmentation in

temporal dimension. The trajectory snapshot is defined below:

Definition (Trajectory Snapshot) Given a decomposed tra-

jectory database T
d and a time cell size δt, a sequence

of trajectory snapshots C(δt,L)={C1, ..., Cn} is obtained by

partitioning the trajectory database in temporal dimension into

n time cells of equal size and transforming locations into

regions L discovered from original location records.

Figure 2 shows an example of trajectory snapshot with time

cell size four hours. For example, we can find two regions C

and D in snapshot C2.

In this paper, we focus on location prediction over low-

sampling-rate trajectories. Usually, the location records in

decomposed trajectories are sparse in terms of the spatial and

temporal domains. Therefore, we utilize the trajectory snap-

shot concept to gather information. The distant-time location

prediction problem is defined as follows:

Problem (Distant-Time Location Prediction) Given a user’s

current location Q.cl, current time Q.ct and query time Q.qt

(Q.ct < Q.qt), we aim at predicting the possible location that

the user is likely to stay at query time Q.qt.

III. ALGORITHM OF LOCATION PREDICTION

In this section, we propose a Reachability-based predic-

tion model on Time-constrained Mobility Graph, RTMG,

���

� � � � � �

� � � � �

� � � � �

���� ���� 	��� 
���� 
���� ����� �����

T1

T2

T3

C1 C2 C3 C4 C5 C6

g1,1 g1,2 g1,3 g1,4 g1,5 g1,6

g2,1 g2,2 g2,3 g2,4 g2,5

g3,1 g3,2 g3,3 g3,4 g3,5

Q.qt=4pmQ.cl=B, Q.ct=5am

(a) Static temporal exploration
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(b) Supporting trajectories

Fig. 3. Static temporal exploration with k = 1 and time-constrained mobility
graph.

for distant-time location prediction. First, we will extract

trajectories to capture user movement behaviors with regard

to a given query. These trajectories are sub-trajectories of

decomposed trajectories, naming supporting trajectories to

facilitate the presentation throughout this paper. Then, in light

of supporting trajectories, we model user behaviors as a Time-

constrained mobility Graph (TG) and propose a reachability-

based prediction algorithm to predict user locations.

A. Extracting Supporting Trajectories

Given a query at location Q.cl at current time Q.ct, we first

determine the set of supporting trajectories that may indicate

user location at the given query time Q.qt. Given a set of

decomposed trajectories Td, we extract supporting trajectories

that satisfy the following two constraints:

• spatial constraint: the trajectory should initiate at location

Q.cl,

• temporal constraint: the time interval between the start

time and the end time of the trajectory should be no

greater than h = Q.qt−Q.ct.

The set of supporting trajectories is denoted as S = {Sp,q,r |
0 < p ≤ |Td|}, where each supporting trajectory Sp,q,r

is a sub-trajectory of a decomposed trajectory Tp by only

extracting location records from the qth to rth location records

in Tp.

In the beginning, we check whether there is any trajectory

containing location record at Q.cl in the snapshot containing

Q.ct. If there is no any trajectory available, we extend the time

information to include more location records. For example,

in Figure 3(a), no trajectory satisfy the spatial (Q.cl = B)

and temporal (Q.ct=5am) constraint in the second snapshot.

Thus, we enlarge the time interval to include potential location

records. We propose two temporal exploration approaches:

(1) static temporal exploration and (2) adaptive temporal

exploration. The static temporal exploration refers to collecting

location records in a static time interval for all queries, whereas

the adaptive temporal exploration dynamically adjusts time

intervals according to different Q.ct.

1) Static Temporal Exploration: Let α(Q.ct) is the snap-

shot that contains the time point Q.ct. Given current location

Q.cl, current time Q.ct and a static exploration time interval

k, we first extract supporting trajectories with their starting
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location record at Q.cl during the time interval Cα(Q.ct)−k ≤
t ≤ Cα(Q.ct)+k. Note that the range of static exploration time

interval k is 0 ≤ k ≤ n
2 and n is the number of snapshots.

Essentially, k = 0 refers to no exploration and k = n
2 refers

to full exploration centered from α(Q.ct) up to the snapshot

that is n
2 away on both sides (i.e., the entire timeline).

Figure 3(a) illustrates the idea of static temporal exploration

with k = 1. The static time interval exploration become

the three trajectory snapshots. Then, we identify the end-

ing snapshot according to Q.qt. In this example, the fourth

trajectory snapshot is thus the ending snapshot. Therefore,

from the decomposed trajectories, we extract sub-trajectories

with their starting location record at B in the static time

interval and the ending location records falling into the ending

snapshot. As a result, we derive three supporting trajectories as

shown in Figure 3(b). An example of supporting trajectories

S3,1,3=B → D → A is the sub-trajectory starting from the

first location record to the third location record in trajectory

T3.

Note that the setting of time intervals for static temporal

exploration is very critical. With a large time interval, we

can collect more supporting trajectories with more location

records. However, these location records may not be relevant

to the query (i.e., far away from the current time and the query

time). On the other hand, if the time interval is too small, the

amount of supporting trajectories may not be sufficient for

prediction. Furthermore, depending the query time Q.ct, the

exploration should result in different time intervals owing to

the intrinsic distribution of location records. Thus, the desired

time interval should be adjusted adaptively for different queries

according to the distribution of location records over the

timeline. As a result, we further propose an adaptive temporal

exploration to dynamically determine a time interval.

2) Adaptive Temporal Exploration: Adaptive temporal ex-

ploration aims to dynamically determine the time interval

for a query based on the temporal correlation between the

query and current set of supporting trajectories. We invoke

adaptive temporal exploration if we do no have sufficient and

high quality supporting trajectories to develops the prediction

model for a given query. Specifically, we broaden the time

interval with the guidance of temporal correlation between

the query and current set of supporting trajectories. Otherwise,

we accomplish the extraction of supporting trajectories in the

desired time interval. If the entire timeline is investigated,

essentially the whole set of trajectories is used to provide more

information, and thus may be more useful.
To measure the temporal correlation between the query and

the current set of supporting trajectories, we first define Local
Dependency for a region Li w.r.t. a snapshot Ij as follows:

Dep
Li

j = p
Li

j (1−HLi ) (1)

where pLi represents the probability that a region Li appears
in snapshot Ij and HLi is the Shannon’s Entropy

HLi (p
Li

1
, p

Li

2
, ..., pLi

n ) = −

n∑
j=1

pLi log p
Li

j (2)

indicating the temporal dependency of a region Li in snapshot

Ij . The value of DepLi

j ranges between 0 and 1. Intuitively,

a region Li that appears exclusively in snapshot Ij (i.e., high

temporal dependency in snapshot Ij) results in DepLi

j = 1.
As a result, the local dependency for all regions in snapshot

Ij is as follows:

DepLj =

|L|∑
i=1

Dep
Li

j . (3)

We claim that a time interval is sufficient for exploring sup-
porting trajectories if the local dependency of the time interval
is higher than the expected value of local dependency under
the assumption that regions are uniformly distributed over the
entire timeline. Let E[H] be the expected value of Shannon’s
Entropy. The expected value of location dependency in any
snapshot should be as follows:

E[DepLj ] =
|L|(1− E[H])

n
(4)

where n is the number of snapshots and |L| is the number of

regions.
As a result, given a time interval Cα(Q.ct)−k ≤ t ≤

Cα(Q.ct)+k (i.e., k time cells away from the snapshot that
contains the current time point Q.ct), we can determine the
quality of the time interval based on the distribution of location
records over the timeline as follows:

min
0≤k≤n

2

DepLt

(2k + 1)E[DepLj ]
≥ 1. (5)

That is, we initiate temporal exploration from k = 0 (no

exploration) up to k = n
2 (full exploration) and terminate

the exploration process if equation (5) holds. When the entire

timeline is investigated (i.e., full exploration with k = n
2 ),

essentially the entire set of trajectories will be considered as

the set of supporting trajectories.

B. Time-Constrained Mobility Graph

Inspired from the previous work [6], we model user mobility

behavior as a Time-constrained mobility Graph, TG. TG is

represented as a directed weighted graph TG
Q=(V ,E,W ),

where each node v ∈ V represents a location and each edge

e(u,v) represents a transition from location u to location v

weighted by transition frequencies denoted w(u,v). TG is built

from the set of supporting trajectories. Explicitly, for each

supporting trajectory Si,j,k, the set of unique locations in Si,j,k

forms V . A path from the location associated with location

record j to the location associated with location record k

is created and the transition probability associated with an

edge e(u, v) is updated accordingly. Consequently, from the

set of supporting trajectories, TG is able to capture movement

behaviors during the time interval [Q.ct, Q.qt].

Figure 3(b) illustrates the time-constrained mobility graph

that is constructed based on the supporting trajectories after

static temporal exploration with k = 1. In total, three nodes are

created for location A, B and D. For the supporting trajectory

S2,3,4=B → A, the edge e(B,A) is created with transition

frequency from B to A once and similarly an edge is created

e(B,D) for S1,3,4 with transition frequency once. Therefore,

we could derive transition probabilities from B to D and from

B to A as 0.67 and 0.33, respectively.
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C. Location Prediction

Most previous studies evaluated the possibility of a candi-

date location merely according to mobility statistics such as

immediate transition probabilities of moving patterns [5] or

the traveling probability of a path [6]. For example, given a

candidate path P : v1 → ... → vk up to a prediction length,

MaxLike in [6] returned the path vk as the predicted answer

if the travel probability of the path P is maximized among all

possible paths between v1 and vk.

The mobility statistics collected from low-sampling-rate

trajectories are very sparse and making prediction merely

based on sparse mobility statistics of a single transition or

a single path derived from a mobility graph may bias the

prediction results. In addition, rather than probabilities of

single immediate transition or single path, the probability of

connectivity between node pairs is an important indicator of

closeness of the node pair. Some node pairs that are located

structurally close to each other in a time-constrained mobility

graph and can be easily identified based on simple mobility

statistics.However, some node pairs that are located far apart

but they may be closely related based on connectivity if there

are multiple paths connecting these two nodes on a mobility

graph.

Consider one example of TG in Figure 3(b), where location

B is structurally close to D with higher immediate transition

probability than w(B,A). However, location A has higher con-

nectivity than D because there are multiple paths connecting

B and A on the mobility graph. To incorporate both immediate

transition frequency and connectivity in distant-time location

prediction, we use the metric, reachability RCH , to estimate

the probability that a user is located at each candidate region

on a TG.

Definition (Reachability) Let A be the |V | × |V | transition

probability matrix of a time-constrained mobility graph TG

G
Q. Given the restart probability c ∈(0,1), the reachability

from Q.cl to any node v ∈ V is denoted as a vector RCHQ.cl.

RCHQ.cl can be derived by

RCHk
Q.cl = cEQ.cl + (1− c)RCHk−1

Q.clA (6)

when RCHQ.cl is converged, where EQ.cl is a vector, the

entry representing Q.cl is one and the rest entries are set to

be zero.

Given a query Q and its TG GQ, we propose to compute

the reachability between Q.cl and v ∈ V in GQ as a metric

to predict the user’s location at query time Q.qt.

IV. INDEX STRUCTURE

In this section, we present our indexing structure Sorted

Interval-Tree (SOIT) in Section IV-A, including index con-

struction and maintenance. Following this, we introduce a set

of operators to support on-line predictive query processing

with SOIT.
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Fig. 4. Indexing scheme and query processing

A. Sorted Interval-Tree

1) Sorted interval-tree construction: The sorted interval-

tree indexes a set of location records into a balanced tree

such that each leaf time cell contains similar amount of data

by partitioning a timeline into a sequence of time cells and

maintaining a set of location records in each time cell no more

than the size of b, where b is the branching factor. Figure 4

illustrates a set of location records indexed by SOIT with a

branching factor of three. Centered at Q.ct=5am, the partitions

that overlap with the time point is N12, which consists of three

location records, one locates at location C and the other two

locate at location D.

Other time cells (varying time interval) are presented in

shaded-color according to their temporal distance to N12

containing the current time Q.ct. For example, N11 and N21

are temporally closer to current time than N31 and thus colored

in lighter grey.

Each leaf time cell of SOIT is associated with a group

of inverted files, where each inverted file stores a group of

location records with their time-stamps covered by the leaf

time cell. Each record in an inverted file that is covered by

time cell N contains four entries:

• Now: location record covered by N .

• Next: location record immediately after Now.

• TD: travel time between the end time of Now and the

start time of Next.

• SD: total time that a user stayed during Next.

A leaf time cell is associated with a minimum bounding

time interval of covered location records. All leaf time cells

are sorted according their start time in ascending order and

are connected into a list with sibling link for efficient query

processing. Suppose {gN1 , ..., gNm} is the set of location records

covered by a leaf time cell N . Then the minimum bounding

time interval of N is a time interval IN=[t(gN1 ), t(gN+1
1 )],

where t(gN1 ) is the start time, t(gN+1
1 ) is the end time and

N + 1 is the next adjacent time cell in ascending order. In

this way, the interval-tree is guaranteed to cover the entire

timeline to ensures efficient query processing. For instance,

SOIT in Figure 4 decomposes the timeline into a sequence

of time cells (N11 to N32) that completely cover the entire

timeline in the order of the start time of minimum bounding

time intervals. The scope of an intermediate time cell is

recorded by the minimum bounding time interval, which is an
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Algorithm 1: Sorted Insertion

Input: the root of current interval-tree, Root, and a
location record to be inserted g;

Output: N : a time cell where g is placed;

1 N ← Root;
2 if N is a leaf then return N ;
3 else
4 for e in N do

5 N ′ ← the time cell pointed by e;
6 if Overlap(N ′,g) then
7 N ← N ′;

8 return SortedInsertion(N , g);

extension of its children time cells. In this example, the time

cell N12 is associated with two inverted files, InvF ile(C,N12)

is specific to location C visited by a user during IN12 and

InvF ile(D,N12) is specific to location D visited during IN12 .

Retrieving the set of requested data points in the worst

case only takes O(b logb n) when a complete linear search is

performed in the target leaf time cell, where b is the branching

factor and n is the number of time cells. Complete coverage

means that for any query point at least one time cell stored in

the subtree is always guaranteed to contain the query point.

This property guarantees that at most one traversal from the

root to a leaf is enough to find requested location records of

the time cell overlapped with a query point. The settings of

minimum bounding time interval for each time cell ensure

our SOIT without holes in the time cell coverage and thus the

property holds in our index structure.

2) Proximity-aware maintenance: The set of location

records can be flexibly grouped based on different criteria.

In this study, in order to retrieve groups of time cells that are

temporally close to a query point, we need to organize the

groups of time cells by their start times.

SOIT facilitates efficient retrieval of time cells based on

their temporal locality. To achieve this, we modify the general

insertion procedure of building a balanced R-tree by grouping

and ordering time intervals according to their start points.

Algorithm 1 presents the idea of finding a time cell that an

incoming location record should be inserted. If the time cell

has enough space, then the location record is inserted to the

time cell. Otherwise the time cell is split into two. Let g denote

a location record to be inserted. If the minimum bounding time

interval of an entry e in a time cell contains the start time of g,

we can place g in entry e in ascending order of their start times.

Then we follow the pointer of the current entry. Recursively,

we continue this procedure until a leaf time cell is reached.

B. Query Processing

First, we define a set of operators for query processing using

SOIT. Following this, we present a speed up version for query

processing with the help of SOIT.

Overlap(N ,g): Given a location record g and the time cell N

at any level, if the time-stamp of g is contained in the minimum

bounding time interval of the time cell N , then return true,

otherwise return false.

Retrieve(t): Given a query point t, time cells overlapped with

the query point are retrieved by performing a depth-first search

through SOIT.

GetNxtTmCell(N ,L): Given a query location L and a leaf

time cell N , we follow the sibling link to obtain adjacent

time cell N + 1 (N − 1) at its right(left) hand side, return

N + 1 (N − 1) if it contains location records at the query

place. Otherwise, cascade this operator until a valid time cell

is found or return null if all time cells are scanned regarding

query place L.

1) Static query processing: We first discuss how overlapped

time cells retrieval facilitates query processing. Without the in-

dex structure, an intuitive approach to retrieve sub-trajectories

for a query Q=(cl, ct, qt) is to scan the entire trajectory

to select location records satisfying location Q.cl and time

constraints Q.ct and extract subsequent location records up to

the prediction length h, which takes O(n) steps where n is

total number of location records of the entire trajectory.

2) Dynamic query processing: With the index structure,

two key techniques are designed to speed up query processing

with the help of sorted interval-tree: (1)overlapped time cells

retrieval and (2) prediction length filtering.

First, Retrieve(Q.ct) operator is applied to select a leaf

time cell overlapped with the query point Q.ct, which takes

O(b logb n). Second, among the groups of inverted files as-

sociated with the time cell, we scan these groups and select

the inverted file that is associated with Q.cl, which in worse

case takes O(m) steps where m is the number of all possible

places. Third, the location records stored in the qualified

inverted file are the set of qualified location records and

likewise subsequent location records for each qualified within

the prediction length h are extracted. Because the third step is

the same as the intuitive approach, we compare the time cost

of these two approach simply based on the first two steps.

Theoretically, static query processing takes O(n) steps to

retrieve the set of location records that satisfy location and

time constants, whereas dynamic query processing takes at

most O(b logb n) + O(m) steps. Empirically, since the number

of possible locations in a leaf time cell is generally much

smaller than m and the branching factor b is simply a constant

number, dynamic query processing can achieve significant

pruning power with SOIT.

To apply the third step with our index structure, we present

prediction length filtering to prune unnecessary examinations.

Considering current location record gi, temporal distance is

defined to estimate the temporal distance between gi and other

candidate location record. Based on the temporal distance,

prediction length filter is adopted to prune candidate location

records that cannot be reached from gi within a prediction

length.

Definition (Temporal Distance) Given an observed transition
from location record gi to gj , its temporal distance D(gi,gj)
is defined as:

D(gi, gj) =

{
gi.SD + gj .TD + gj .SD if gi → gj exists

∞ otherwise
(7)
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Algorithm 2: Speedup Query Processing

Input: A query Q=(Q.cl,Q.ct,Q.qt) and the sorted
interval-tree SOIT ;

Output: L(1 : k): a ranked list of predicted locations;

1 h← Q.qt−Q.ct ;
2 N ←Retrieve(Q.ct);
3 Inv ←Select Invfile(Q.cl,Q.ct) of N ;
4 if Inv is empty then
5 N ← GetNxtTmCell(N ,P );
6 Inv ← Select Invfile(Q.cl,Q.ct) of N ;

7 G← DynamicMobilityGraph(Inv, h, SOIT );
8 L← RWR(G);
9 return top-k ranked locations in L;

where gi.SD(gj .SD) represents the estimated amount of time

that a user spend at regions of gi(gj) and gj .TD stands for

the travel time that a user moved from the region of gi to the

region of gj .

To apply temporal distance to prune candidate location

records, the location record stored in inverted file is sorted

by the sum of SD and TD. Then we define prediction length

filter as follows:

Lemma (Prediction Length Filter) Given an observed transi-

tion from location record gi to gj , where gi is covered by the

leaf time cell Np and gj is covered by the leaf time cell Nq ,

if D(gi, gj) > h then D(gi, gk) > h holds for all gk covered

by Nq+l, where 1 ≤ l.

Proof: Because the time cells are resulted from partition-

ing a timeline and are arranged in ascending order of their

start times, the start time of the time cell Nq always appears

earlier than that of Nq+l in timeline. If D(gi, gj) is greater

than the prediction length h, any location record that appears

after those covered by time cell Nq cannot be reached within

h from gi.

Algorithm 2 shows the pseudo-code of the the speedup

version of query processing. The sorted interval-tree is pre-

constructed. The Retrieve operator is first applied to select time

cells that satisfy time constraint Q.ct (Line 2). After that, the

inverted file that satisfies location constraint Q.cl is retrieved

(Line 3). Then, we apply GetNxtTmCell operator to derive

the adaptive time interval for query Q (Line 4-7). After that,

a time-constrained mobility graph TG is built by algorithm

3 using SOIT (Line 8). Then, we apply Random Walk with

Restart to estimate the reachability of each candidate location

in TG. Note that in this study we utilize the basic power

iteration approach to compute reachability, several existing

techniques can be applied to further speed up reachability

computation [12][4].

Algorithm 3 summarizes the idea of time-constrained mo-

bility graph construction by dynamically probing the index

structure to collect supporting trajectories. At the beginning, a

collection of unchecked transitions are stored into Queue. For

each unchecked transition r and remaining prediction length h,

we first check whether its temporal distance D(r.Src, r.Dst)
is less than h (Line 4). If transition r is less than remaining

prediction length h, we record r by updating the current time-

constrained mobility graph G
Q (Line 5-9). We also update

Algorithm 3: Dynamic Mobility Graph

Input: an inverted file Inv, a prediction length h and the
sorted interval-tree SOIT ;

Output: GQ = (V,E,W ): a time-constrained mobility
graph;

1 Queue← Push(Inv,h);
2 while Queue is not empty do
3 (r,h)← Pop(Queue);
4 if D(r.Now, r.Next) ≤ h then

// update graph

5 Pnow ← the location of r.Now;
6 Pnext ← the location of r.Next;
7 V ← V ∪ Pnow ∪ Pnext;
8 E ← E ∪ e(Pnow, Pnext);
9 w(Pnow, Pnext)++;

// check subsequent records

10 t← the time-stamp of r.Dst;
11 h← h−D(r.now,R.next)− r.SD;
12 N ← Retrieve(t);
13 Inv ← Select Invfile(Pnext,t) of N ;
14 Queue← Push((Inv, h));

15 return G;

check time point t and remaining prediction length h (Line

10-11). After that, we search next time cell satisfying time

constraint Q.ct and retrieve location records from the inverted

file satisfying location constraint Pdst (Line 12-13). We insert

the retrieved location records and updated prediction length

into Queue and repeat the entire process from Line 2 until

no location records is available in Queue. Eventually, a

time-constrained mobility graph G
Q for query Q based on

supporting trajectories is established.

V. PERFORMANCE EVALUATION

In this section, we conducted experiments to evaluate the

performance of our algorithm on real datasets.

A. Datasets and Settings

1) Datasets: In this paper, we use two real datasets to

conduct extensive experimental results.

Nokia: The dataset contains 80 user trajectories, collected over

several months by Nokia, and consists of 16,920 trajectories

after decomposition into daily-scale (i.e., d set to a day). The

GPS coordinates was first transformed into region symbol

by Nokia to exclude GPS coordinates for privacy concern.

Regions are user-specific and they are ordered by the time

of visit. Each region corresponds to a circle with radius 100

meters. Eventually, we are provided with sequences of regions,

where each visit lasts longer than 20 minutes and the average

time interval between consecutive location records over 80

users is approximately 11 hours.

Gowalla: The dataset contains 50 users, 113 decomposed

trajectories in daily-scale, and 30 distinct user-specific regions

on average. The average time interval between consecutive

location records is approximately 17 days. The regions were

discovered by OPTICS [2] with ε set to be 100 meters and

MinPts set to be three.

We divided the dataset into two partitions: a training set

containing earlier 75% consecutive location records in each

trajectory and a testing set containing the rest 25% location
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records in each trajectory. The training set is used for building

prediction model and the testing set is used for performance

evaluation. A query Q is formed by a pair of consecutive

location records in the testing set, where the current location

Q.cl and current time Q.ct are the region, the time-stamp of

the first location record; Q.qt is the time-stamp of the second

record; and the ground-truth of this query is the region of the

second record. In total there are 12,897 distinct queries.

2) Metrics: To evaluate the accuracy of distant-time loca-

tion queries, the prediction accuracy is measured by Hit Rate.

For each query Q, our model returned a ranked list of top-

k locations. We define an outcome to be true positive if the

ground-truth is contained in top-k locations. Given a collection

of queries Qu of user u, we define the hit rate HR of the query

set Qu as HR(Qu) = |TPu|
|Qu| , where |TPu| is the number of

true positive outcomes over Qu for user u. Given a set of

users U , we measure the prediction accuracy by average hit

rate over the set of users U as follows:

HR(QU ) =
1

|U |

∑
u∈U

|TPu|

|Qu|
(8)

We also evaluate the reliability of a prediction model by

measuring the ratio of queries that a prediction model can

return query results among all queries as follows:

Coverage(QU ) =
1

|U |

∑
u∈U

|RTNu|

|Qu|
(9)

where |RTNu| is the amount of queries in Qu that a model

can response to. Intuitively, the more queries that a model can

return query results, the higher coverage of a model.

3) Baselines: To evaluate the performance, we compare the

proposed prediction model with the following two baselines.

Baseline(HPM): To evaluate the effectiveness of a distant-

time prediction model, we compare proposed reachability-

based prediction model (RTMG) with the existing distant-time

prediction model (HPM [5]). Given a user’s recent movements

and a query time, HPM discovered frequent patterns from past

trajectories and then combined with user’s recent movements

to support distant-time queries. The parameter, minimum con-

fidence, is set to 0.3 and the maximum number of time-stamps

for storing recent movements is set to 20.

Baseline(Frequency): As mentioned in [5], user’s recent

movement is less important compared to locations nearby

the query time. Therefore, we collect and rank the set of

locations nearby the query time by the number of occurrences

for distant-time queries. In the experiment, we set the default

time range to be three hours.

B. Performance Study

In this section, we evaluate the performance of proposed

prediction model.

1) Evaluation of prediction quality: We compare the pro-

posed prediction model with two baselines.

Effect of data sparsity: To study the prediction quality

for low-sampling-rate trajectories, we derive trajectories of
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Fig. 5. Effect of different sampling rate

different data sparsity by re-sampling data points of trajec-

tories with varying probabilities p%. A re-sampled trajec-

tory contains p% location records randomly chosen from an

original trajectory. The number of location records of a re-

sampled trajectory decreases as p% decreases. The same as

the baseline Frequency, we set the time cell size δt to three

hours. The top-k is set to be three for all approaches. Figure

5(a) shows the prediction accuracies on Nokia dataset, where

the performances of each prediction model decrease while

the data sparsity increases (i.e., smaller p%). For example,

adaptive RTMG achieves 54.4% hit rate on original trajectories

(p = 100%) and slightly decreases to 39.2% on re-sampled

trajectories (p = 20%). HPM only achieves 12% hit rate

on original trajectories (p = 100%) and decreases to less

than 1% on re-sampled trajectories (p = 20%) due to the

limitation of moving patterns. Figure 5(b) shows that adaptive

RTMG can handle more queries than HPM because of the

adaptive temporal exploration in trajectory extraction while

HPM fails to predict locations due to the lack of moving

patterns. Clearly, not only does adaptive RTMG achieve five

times higher accuracy than HPM, the introduced exploration

approach also promises higher coverage of query processing.

Effect of temporal exploration: To better understand the

effectiveness of adaptive temporal exploration, we also study

the prediction quality for both static and adaptive temporal

exploration to baseline prediction models. Figure 6(a) shows

that the prediction accuracies on Gowalla dataset for all

prediction models, where RTMG (k=1) indicates no temporal

exploration (time-sensitive) and RTMG (k=4) indicants full

temporal exploration (time-irrelevant) for supporting trajectory

extraction. At p = 20%, RTMG(A) (i.e., adaptive RTMG)

outperforms others with 36.3% hit rate on re-sampled trajecto-

ries. Particularly, RTMG (k=4) essentially extracts supporting

trajectories regardless of time constraint and performs worse

than RTMG (k=1) and adaptive RTMG (A). For example,

RTMG (k=1) achieves 27.6% hit rage and RTMG (k=4) 27.2%
respectively at p = 20%. HPM only achieves 22% hit rate at

p = 20% and failed to make further predictions within one

day while the sampling rate decreases after p = 40% due to

the intensive computation on association rule discovery.

Figure 6(b) shows that RTMG (A) can handle more queries

at each re-sampling rate than others because the adaptive

temporal exploration encourage RTMG to explore sufficient

amount of supporting trajectories for different queries while

others such as HPM fail to prediction locations due to the lack

of moving patterns. In summary, adaptive temporal exploration

can extract sufficient and effective supporting trajectories with

124



 0

 10

 20

 30

 40

 50

 60

 20  40  60  80  100

H
it 

ra
te

(%
)

Sampling rate (%)

HPM
Freqency

RTMG(k=1)
RTMG(k=4)

RTMG(A)

(a)

 50

 60

 70

 80

 90

 100

 20  40  60  80  100

C
ov

er
ag

e(
%

)

Sampling rate (%)

HPM
Freqency

RTMG(k=1)
RTMG(k=4)

RTMG(A)

(b)

Fig. 6. Effect of temporal exploration

 35

 40

 45

 50

 55

 60

 1  3  6  12  24

H
it 

ra
te

(%
)

Time cell length δt (hr)

RTMG (p=20)
RTMG (p=100)

(a)

 30

 40

 50

 60

 70

 80

 90

 100

 1  3  6  12  24

C
o
ve

ra
g
e
(%

)

Time cell length δt (hr)

RTMG (p=20)
RTMG (p=100)

(b)

Fig. 7. Effect of different time cell size

the guidance of temporal dependency, leading to higher accu-

racy and higher coverage especially for distant-time location

queries at extremely low-sampling-rate.

Effect of time cell: To investigate the effect of time cell

sizes, we compare the hit rate and coverage of our proposal

with varying size of time cells. Figure 7(a) shows that our

proposed scheme achieves the best prediction accuracy (HR)

when the size of time cell is three hours long. Intuitively, time

cells of greater size can accumulate more moving behaviors

and should be useful for distant-time location prediction as

shown in Figure 7(a) with cell size no greater than three hours.

Also, greater sizes of time cells facilitate effective retrieval

for more queries and thus achieve higher coverage as shown

in Figure 7(b). However, time cells of coarse granularity can

only improve limited prediction accuracy because distant-time

location queries are highly time-dependent and thus moving

behaviors accumulated far away from an investigation time

point become less useful.

2) Evaluation of prediction efficiency: We compare the

query processing cost between static and dynamic approaches.

Static approach refers to construct time-constrained mobility

graph from scratch which requires a complete scan of trajecto-

ries to extract supporting trajectories for each query. Dynamic

approach refers to processing queries using our index structure,

which is constructed off-line.

The impact of index structure: Dynamic query processions

costs less response time to build a time-constrained mobility

graph compared to static approach because only a limited

number of lookups are required. Figure 8 shows the amount of

lookups required to build a time-constrained mobility graph.

Clearly, the number of lookups are significantly reduced with

the help of SOIT. For example, the number of lookups in static

and dynamic approach is 506 and 18 respectively at prediction

length being three (hr).

Evaluation of prediction scalability: To study scalability,

we generate five trajectory datasets with different data sizes

based on the original dataset. Each original trajectory trj

is re-generated by slightly adjusting time-stamps of location

records in trj. Under these settings, we obtain the largest
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TABLE I

TRAJECTORY DATASETS DESCRIPTION

Dataset name D1 D2 D3 D4 D5

Trajectories 12,680 18,467 27,519 38,508 50,546

Total points 38,694 46,367 61,758 84,953 115,924

Time interval(hr) 10.6 17.6 19.9 19.3 17.7

dataset D5 that consists of 50,546 trajectories with average

time interval 17.7 hours between consecutive location records.

Table I summarizes the details.

Figure 9(a) shows the the response time to construct TG

graph with (Dynamic) and without (Static) SOIT over dif-

ferent sizes of dataset. As shown in 9(a), dynamic approach

promises linear complexity on different dataset compared to

static approach. For instance, the response time to construct

TG by static approach is 4,247 (ms) and that by dynamic

approach with index structure only takes 749 (ms) on dataset

D5, which suggests that dynamic approach is several orders of

magnitude faster on large dataset. Figure 9(b) plots the query

response time in constructing SOIT and building TG graph

with SOIT respectively. Clearly, the overhead to construct

SOIT for a given trajectory is extremely small compared

to total cost to construct TG graph for query processing.

Therefore, it is reasonable to say that our index structure SOIT

can efficiently speedup RTMG by reducing the time required

in TG construction.

VI. RELATED WORK

A. Index Structure for Moving Objects

Most existing solutions for moving object indexing assume a

linear movement model given details of past moving informa-

tion (e.g., near-past position and velocity). They can be further

divided into object partitioning [9][11] and space partitioning

solutions [17][7]. The indexing techniques share the same

goal of maintaining spatial proximity for moving objects

such that they can support efficient queries and updates. For

example, the authors in [17] proposed a Bx-tree-based index

structure to organize uncertain moving objects to support k-

nearest neighbor query or range queries. The authors in [7]

proposed the PEB-tree to integrates location proximity and

policy compatibility by encoding both the location privacy

compatibility and the spatial proximity among users in a one-

dimensional value that is amenable to B+-tree indexing.

B. Location Prediction

A considerable effort has been devoted to designing location

prediction models in high-sampling-rate trajectory databases.

Most of them mainly focused on predicting locations in near

future [5][8][6]. For example, Monreale et al. [8] proposed

a location prediction model, which answers next location of
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Fig. 9. Scalability and index construction cost

a user relying on frequent patterns discovered from previous

trajectories of a group of people. Jeung et al. [6] proposed a

path prediction model to predict the travel path of an object up

to a time duration in the future. They proposed the maximum

likelihood algorithm to return paths that maximize the travel

probability among all possible paths. Jeung et al. [5] proposed

a hybrid prediction model (HPM) to manage relatively distant-

time future locations. HPM relies on frequent patterns dis-

covered from previous trajectories as well as existing motion

functions using the object’s recent movements to support

future location queries. As low-sampling-rate trajectories can

be easily accumulated from location-based services and so-

cial services, studying low-sampling-rate trajectories becomes

important [14][15][13][18]. To the best of our knowledge, no

attention has been paid to answer distant-time location queries

in low-sampling-rate trajectory databases.

VII. CONCLUSION

To address the sparsity in low-sampling-rate trajectories,

we develop a Reachability-based prediction model on Time-

constrained Mobility Graph (RTMG) to predict locations

for distant-time queries. Specifically, we design an adaptive

temporal exploration approach to extract effective supporting

trajectories that are temporally close to the query time. Based

on the supporting trajectories, a Time-constrained mobility

Graph (TG) is constructed to capture mobility information

at the given query time. In light of TG, we further derive

the reachability probabilities among locations in TG. Thus, a

location with maximum reachability from the current location

among all possible locations in supporting trajectories is con-

sidered as the prediction result. To efficiently process queries,

we proposed the index structure SOIT to organize location

records. Extensive experiments with real data demonstrated

the effectiveness and efficiency of RTMG. First, RTMG with

adaptive temporal exploration significantly outperforms the

existing pattern-based prediction model HPM [5] over varying

data sparsity in terms of higher accuracy and higher cover-

age. Also, the proposed index structure SOIT can efficiently

speedup RTMG in large-scale trajectory dataset. In the future,

we could extend RTMG by considering more factors (e.g.,

staying durations in locations, application usages in smart

phones) to further improve the prediction accuracy.
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