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Abstract

Two proofs for the problem in the title have been published but both are incomplete. In this
note we observe the subtle errors in these proofs and give a new proof by a di6erent approach.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A linear consecutive-k-out-of-n:G system, abbreviated as conL(k; n:G), is a line of
n components which works if and only if some k consecutive components all work.
Similarly, we can de;ne a circular consecutive-k-out-of-n:G system, abbreviated as
conC(k; n:G). Suppose we have n components with reliabilities p[1]6p[2]6 · · ·6p[n].
For easier presentation, we assume that the inequalities are strict from now on. The
problem is to assign them to the n positions on the line or the cycle to maximize
the reliability of the system, i.e., the probability that the system works. An optimal
assignment is called invariant if it depends only on the ordering of the pi, but not
their actual values. For n¿ 2k in the linear case and n¿ 2k + 1 in the circular case,
Kuo et al. (1990) gave an invariant assignment for k= 2 and showed that no invariant
assignments exist for k¿ 3.
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For n6 2k, Kuo, Zhang and Zuo gave a proof that

�= (p[1]; p[3]; p[5]; : : : ; p[6]; p[4]; p[2])

is an invariant assignment for the line. For n6 2k + 1, Zuo and Kuo (1990) proved
that the cyclic version of � yields an invariant assignment for the cycle. Note that the
second result implies the ;rst result by setting p[1] = 0.

Unfortunately, both proofs are incomplete. The same kind of logical slip occurs in
both proofs. In each case a claim of necessary conditions for optimal assignment is
stated. To be speci;c, the claim for the linear case is that for the conL(k; 2k:G) system

(pi − pj)(pi−1 − pj+1)¿ 0;

(pi − pj)(pi − pj+1)¡ 0 for 1¡i6 k; j = n− i + 1:

The claim for the circular case is

(pi − pj)(pi−1 − pj+1)¿ 0 for all 1¡i¡j¡n:

For a given assignment L; Lij is de;ned as the assignment obtained from L by
interchanging two components i and j. The purported proof of the claim shows that
if an assignment satis;es the necessary conditions, then the system reliability cannot
be improved through the operation of interchanging any pair. However, such a proof
merely shows that � cannot be improved through the local operation of pairwise inter-
change but does not compare � with assignments which cannot be obtained from � in
this way.

In this note we give a proof for the linear case.

2. A proof for the linear system

Let pi denote the reliability of the ith component of the line and, as usual, let
qi = 1 − pi be the probability of failure. Consider the case n = 2k and let L∗ denote
an optimal linear consecutive-k-out-of-2k:G line. Tong (1985) proved

Lemma 1. p16p26 · · ·6pk ;pn6pn−16 · · ·6pk+1 in L∗.

Under the proposed conditions all these may be replaced by strict inequalities. Since
the reliability of a line remains unchanged if the line is reversed, we may assume
pk ¡pk+1 without loss of generality. Tong noted that, for n6 2k, the reliability of
the system L can be calculated from

R(L) =
k∏
i=1

pi +
n−k∑
j=1

qi

j+k∏
i=j+1

pi =
n−k+1∑
j=1

j+k−1∏
i=j

pi −
n−k∑
j=1

j+k∏
i=j

pi; (2.1)

because there can be at most one run of length at least k consecutive working com-
ponents, so the system will work if all of the ;rst k components work or the jth
component fails and the next k all work, for any j from 1 to n− k.

All of the following results can be obtained directly from (2.1). However, some
of the arguments are simpli;ed if, instead, we make use of the following Lemma 2.
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Let Lij denote the line obtained from L by interchanging the ith and jth components.
Let s be a complete speci;cation of the states of all components, where s is called a
working state if the system works given s. Let p(s) denote the probability of state
s. Note that the operation Lij would a6ect the system reliability only if the system
works under exactly one of the two assignments, which implies that exactly one of
the two components, i or j, works. Let Sij denote the set of working states (so that
the system works for all s∈ Sij) in which element i works element j fails and Lij is a
failed system.

Lemma 2. R(L) − R(Lij) = (pi − pj)
(∑

s∈Sij
p(s)
piqj

−∑s∈Sji
p(s)
pjqi

)
.

Proof. For any state s, de;ne a dual state s∗ that is the same as s except that the
status of components i and j have both altered. For example, if i works and j fails in
s then i fails and j works in s∗ while all other components behave the same way in
s∗ as they do in s. Now if s is in Sij the system L works but Lij fails while i works
and j fails. But this implies that, for the state s∗; L will fail and Lij will work. Thus

R(L) − R(Lij) =
∑
s∈Sij

(p(s) − p(s∗)) +
∑
s∈Sji

(p(s) − p(s∗))

=
∑
s∈Sij

p(s)
piqj

(piqj − qipj) +
∑
s∈Sji

p(s)
pjqi

(pjqi − qjpi)

= (piqj − qipj)

∑
s∈Sij

p(s)
piqj

−
∑
s∈Sji

p(s)
pjqi




= (pi − pj)

∑
s∈Sij

p(s)
piqj

−
∑
s∈Sji

p(s)
pjqi


 :

Lemma 3. p1 = p[1]; pk = p[n−1]; pk+1 = p[n] and pn = p[2] in L∗.

This means that the component with the lowest reliability should be placed ;rst and
the component with second lowest reliability last; the two most reliable components
should occupy the two middle positions, with the more reliable of the two in position
k + 1.

Proof of Lemma 3. By Lemma 1 and the assumption pk ¡pk+1 we obtain pk+1=p[n].
By Lemma 2, if we interchange the two middle components,

06R(L∗) − R(L∗
k;k+1) = (pk − pk+1)

(
k−1∏
i=1

pi −
n∏

i=k+2

pi

)
;

because Sk;k+1 consists of all states for which the ;rst k components work and the
(k+ 1)th fails while Sk+1; k consists of all states for which the last k components work
but the kth fails.
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Hence, because we assume pk ¡pk+1, we must have

k−1∏
i=1

pi6
n∏

i=k+2

pi: (2.2)

On the other hand, on interchanging the ;rst and last components, we have

06R(L∗) − R(L∗
1n) = (p1 − pn)

(
qk+1

k∏
i=2

pi − qk
n−1∏
i=k+1

pi

)
; (2.3)

because S1n consists of all states such that the ;rst k components work but the
(k + 1)th and the nth components fail, while Sn1 consists of all states such that the
last k components work and the ;rst and the kth components fail.

The rest of the proof contains some results obtained by contradiction. Suppose ;rst
that p1¿pn: then (2.3) implies that

qk+1

k∏
i=2

pi¿ qk
n−1∏
i=k+1

pi which implies;

k∏
i=2

pi ¿
n−1∏
i=k+1

pi which further implies;

k−1∏
i=1

pi ¿
n∏

i=k+2

pi;

since pk ¡pk+1. The last inequality contradicts (2.2) and so the assumption p1¿pn
is false. Thus p1¡pn and so Lemma 1 implies that p1 = p[1].

Now let L′ be obtained from L∗ by shifting the ;rst component to the end of the
line and shifting every other component one place to the left. Then, from (2.1),

06R(L∗) − R(L′) =

(
k∏
i=1

pi −
k+1∏
i=1

pi

)
−
(

n∏
i=k+2

pip1 −
n∏

i=k+1

pip1

)

= qk+1

k∏
i=1

pi − qk+1

n∏
i=k+2

pip1;

as the ;rst term in parentheses is the only term from (2.1) that occurs in R(L∗) but
not in R(L′) while the second term in parentheses is the only term that occurs in R(L′)
but not in R(L∗). It follows that

k∏
i=2

pi¿
n∏

i=k+2

pi: (2.4)
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Also, by interchanging the kth and (k + 2)nd components, Lemma 2 gives

06 R(L∗) − R(L∗
k;k+2)

= (pk − pk+2)

[(
k−1∏
i=2

pi

)
pk+1 +

(
k−1∏
i=1

pi

)
qk+1 −

(
n∏

i=k+3

pi

)
pk+1

]

= (pk − pk+2)

[(
k−1∏
i=1

pi

)
qk+1 + pk+1

( ∏k
i=2 pi
pk

−
∏n
i=k+2 pi
pk+2

)]
: (2.5)

This is because Sk;k+2 consists of states for which component k + 2 fails and either all
components from 2 to k + 1 are good or the (k + 1)th fails and the previous k are all
good. Sk+2; k consists of states for which the kth component fails and all k following
components are good.

Suppose now that pk ¡pk+2 : then (2.5) implies that
∏k
i=2 pi ¡

∏n
i=k+2 pi. This

contradicts (2.4) and so pk ¿pk+2.
Finally, interchange components 2 and n and Lemma 2 gives

06 R(L∗) − R(L∗
2; n)

= (p2 − pn)
[
p1

(
k∏
i=3

pi

)
qk+1 +

(
k+1∏
i=3

pi

)
qk+2 − qk

(
n−1∏
i=k+1

pi

)]

= (p2 − pn)
[
p1

(
k∏
i=3

pi

)
qk+1

+pk+1

(
qk+2

∏k
i=2 pi

p2
− qk

∏n
i=k+2 pi
pn

)]
; (2.6)

because S2n consists of states for which component n fails and either the ;rst k com-
ponents are all good and the (k+1)th fails or the (k+2)th fails and the previous k are
all good. Sn2 consists of states for which the kth component fails and all k following
components are good, while the second component fails.

Finally, suppose that p2¡pn: then (2.6) implies that
∏k
i=2 pi ¡

∏n
i=k+2 pi. This

contradicts (2.4) and so p2¿pn. Then it follows from Lemma 1 that pn =p[2].

Theorem. The unique (up to line reversing) invariant consecutive-k-out-of-n: G line
for n= 2k is �= ([1]; [3]; [5]; : : : ; [6]; [4]; [2]).

Proof. The theorem is trivially true for k = 1 and follows from Lemma 3 for k = 2.
We prove the general case by induction on k. We now consider k ¿ 2 and suppose
the theorem is true for all k ′¡k.

Suppose to the contrary that (p′
1; : : : ; p

′
n) = � �= � is an optimal line. By Lemma 3,

p′
1 =p[1]; p′

k =p[n−1]; p′
k+1 =p[n] and p′

n =p[2]. Let F�; S�; F�; S� denote the product
of reliabilities for the ;rst or second half of � or �, respectively. From the proof of
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Lemma 3, we have

Fx =

(
k−1∏
i=1

pi

)
pk ¡pk+1

(
n∏

i=k+2

pi

)
= Sx for x∈ {�; �}; while

F�S� = F�S� =
n∏
i=1

pi:

Let � be a sequence of components and let t(�) ≡ t� be the subsequence obtained
by removing the component with the smallest reliability and the one with the greatest
reliability. If � is optimal, then

0¿R(�) − R(�) = {qk+1F� + pk+1R(t�)} − {qk+1F� + pk+1R(t�)}
= qk+1(F� − F�) + pk+1[R(t�) − R(t�)]; (2.7)

since the smallest and greatest reliabilities occur in positions 1 and k + 1 for both
sequences. Moreover, either system will work if the (k + 1)th component fails and all
of the ;rst k work; the system will also work if the (k + 1)th component works and
there is a sequence of at least k− 1 working components in the subsequence t� (in the
case of system �) or in subsequence t� (in the case of system �). Note that in this
circumstance the behaviour of the ;rst component is irrelevant.

To clarify this by example, consider the case k = 3. If the fourth component is
working then any sequence of at least 2 consecutive working components in the sub-
sequence (2 3 5 6) will, together with the fourth component, form a sequence of at
least 3 working components in the sequence (2 3 4 5 6), the behaviour of component
1 being irrelevant. To be speci;c, the consecutive working sequences (2 3), (3 5),
(5 6), (2 3 5), (3 5 6) and (2 3 5 6) in the subsequence lead, respectively, to con-
secutive working sequences (2 3 4), (3 4 5), (4 5 6), (2 3 4 5), (3 4 5 6) and
(2 3 4 5 6) in the full sequence.

By the induction hypothesis, t� is the reverse of a uniquely optimal arrangement for
k − 1. It follows that the second term in (2.7) is strictly positive, so that the ;rst term
must be strictly negative, i.e. F� ¡F� and hence also S� ¿S�. Thus we have

0¡F�¡F�¡S� ¡S� ¡ 1:

Consequently,

S� − S� = S� − F�S�=F� = (F� − F�)S�=F� ¿F� − F�: (2.8)

We can expand R(t�) − R(t�) in (2.7) in a similar manner to the expansion of R(�) −
R(�), bearing in mind that t� is the reversal of the standard order. Thus

0¿R(�) − R(�) = qk+1(F� − F�) + pk+1

{
qk

(
n∏

i=k+2

pi −
n∏

i=k+2

p′
i

)

+pk [R(t(t�)) − R(t(t�))]

}

¿ qk+1(F� − F�) + qk(S� − S�):
since t(t�) is optimal for k − 2 by the inductive hypothesis.
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But qk+1¡qk , hence F� − F� ¿S� − S�. This contradicts (2.8) and so � is not
optimal. This is true for all � �= � so � must be optimal. The theorem is thus true by
induction, as we already know it is true for k = 1 and 2.

Corollary. For n6 2k, an invariant line is ([1]; [3]; [5]; : : : ; B; : : : ; [6]; [4]; [2]) where B
is a centre block of 2k − n largest reliabilities in any permutation.

Proof. Any working state must have every component in B working. Therefore B
should consist of the largest reliabilities. Furthermore, the system L works if and only
if all components in B work and some n−k components consecutive in L\B all work.

Therefore, the components not in B should be arranged according to the Theorem
with n′ = 2k ′ and k ′ = n− k.
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