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Abstract

A Wald test-based approach for power and sample size calculations has been presented re-
cently for logistic and Poisson regression models using the asymptotic normal distribution of
the maximum likelihood estimator, which is applicable to tests of a single parameter. Unlike the
previous procedures involving the use of score and likelihood ratio statistics, there is no simple
and direct extension of this approach for tests of more than a single parameter. In this article,
we present a method for computing sample size and statistical power employing the discrepancy
between the noncentral and central chi-square approximations to the distribution of the Wald
statistic with unrestricted and restricted parameter estimates, respectively. The distinguishing fea-
tures of the proposed approach are the accommodation of tests about multiple parameters, the
9exibility of covariate con:gurations and the generality of overall response levels within the
framework of generalized linear models. The general procedure is illustrated with some special
situations that have motivated this research. Monte Carlo simulation studies are conducted to
assess and compare its accuracy with existing approaches under several model speci:cations and
covariate distributions.
c© 2003 Elsevier B.V. All rights reserved.
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regression; Score test

1. Introduction

Generalized linear models were :rst introduced by Nelder and Wedderburn (1972)
and are broadly applicable in almost all scienti:c :elds. A thorough development can
be found in McCullagh and Nelder (1989). The class of generalized linear models is
speci:ed by assuming that independent scalar response variables Yi, i=1; : : : ; N , follow
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a probability distribution belonging to the exponential family of probability distributions
with probability function of the form

exp[{Y� − b(�)}=a(
) + c(Y; 
)]: (1)

The expected value E(Y ) = 
 is related to the canonical parameter � by the function

 = b′(�), where b′ denotes the :rst derivative of b. The link function g relates the
linear predictors � to the mean response �= g(
). The linear predictors can be written
as

�= XT�;
where X=(X1; : : : ; Xk)T is a k×1 vector of covariates, and �=(�1; : : : ; �k)T represents
the corresponding k×1 vector of unknown regression coeIcients. The scale parameter

 is assumed to be known. Assume (yi; xi) is a random sample from the joint distri-
bution of (Y;X) with probability function f(Y;X) = f(Y |X)f(X), where f(Y |X) has
the form de:ned in (1) and f(X) is the probability function for X. The form of f(X)
is assumed to depend on none of the unknown parameters �. The likelihood function
associated with the data is

L(�) =
N∏
i=1

f(yi; xi) =
N∏
i=1

f(yi|xi)f(xi):

Let �1 = (�1; : : : ; �q)T and �2 = (�q+1; : : : ; �k)T represent the :rst q and the last p
unknown regression coeIcients of �, respectively (k=q+p, q¿ 1, p¿ 1). We wish to
test the composite null hypothesis H0: �2=0 against the alternative hypothesis H1: �2 �=
0, while treating �1 as nuisance parameters. It follows from the standard asymptotic
theory that the maximum likelihood estimator �̂=(�̂T1 ; �̂T2 )T is asymptotically normally
distributed with mean �= (�T1 ; �

T
2 )

T and with variance–covariance matrix given by the
inverse of the k × k Fisher information matrix I(�1; �2), where the (i; j)th element of
I is

Iij = −E
(
@2 log L
@�i@�j

)
; i; j = 1; : : : ; k

and E[ · ] denotes the expectation taken with respect to the joint distribution of
(Y1; : : : ; YN , X1; : : : ; XN ). The Wald test statistic of the hypothesis is

W = �̂T2 V̂−1�̂2; (2)

where V̂ is the lower-right p×p sub-matrix of I−1(�̂1; �̂2). The actual test is performed
by referring the statistic to its asymptotic distribution under the null hypothesis, which
is a chi-square distribution with p degrees of freedom. In general, there is no simple
closed-form expression for Fisher’s information matrix except in some special cases.
For the purpose of power and sample size calculations, an approximate expression for

Fisher’s information matrix was provided in Whittemore (1981) for logistic regression
model. The approximation employs the moment generating function of the covariates
and is valid when the overall response probability is small. A formula for determining
the sample size is developed from the resulting asymptotic variance of the maximum
likelihood estimator of the parameters. Later, the technique was extended to the Poisson
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regression model in Signorini (1991). However, in this case, the expression of Fisher’s
information matrix is exact and there is no restriction of use in terms of the overall
response level. Shieh (2001) has recently presented a direct modi:cation of the sample
size formulas in Whittemore (1981) and Signorini (1991). The major consideration of
Shieh (2001) is that the value of the nuisance parameter under the restriction speci:ed
in the null model is diMerent from that for the alternative model. In contrast, Whittemore
(1981) and Signorini (1991) set the identical values for nuisance parameter under both
the null and alternative models. According to the pedagogical arguments to be discussed
in Section 2 and simulation results in Shieh (2001), the method of Shieh (2001) is
more accurate than the approaches of Whittemore (1981) and Signorini (1991) for
logistic and Poisson regression models, respectively. Therefore we will not discuss the
latter two approaches further in this article. However, it is important to note that these
Wald-type or Z test-based approaches are applicable only for tests of a single parameter
(p= 1).
The basic idea of Shieh (2001) can be easily demonstrated by considering the de-

termination of sample sizes needed to detect a diMerence between two proportions p1

and p2. Assume an asymptotic normality of the transformed binomial proportions, the
widely used formula for calculating the required sample sizes for the equal group size
designs is

N = 2{Z�=2[2 Np(1 − Np)]1=2 + Z�[p1(1 − p1) + p2(1 − p2)]1=2}2=(p1 − p2)2;

where Np = (p1 + p2)=2 and Z� represents the 100(1 − �)th percentile of a standard
normal distribution. Similar formula was given by Fleiss (1981, Eq. (3.14)) and Sahai
and Khurshid (1996, Eq. (7)). More importantly, the formula can be derived from the
general result in Shieh (2001) under the formulation of simple logistic regression. Note
that this formula takes into account the diMerent variance structures associated with the
null hypothesis H0:p1 = p2 and alternative hypothesis H1:p1 �= p2. In contrast, an
alternative simple approximation to the formula is obtained by replacing 2 Np(1 − Np)
with p1(1 − p1) + p2(1 − p2):

N = 2[p1(1 − p1) + p2(1 − p2)](Z�=2 + Z�)2=(p1 − p2)2;

see Sahai and Khurshid (1996, Eq. (13)). Although these two formulas give simi-
lar results for balanced designs, they are fundamentally diMerent with respect to the
speci:cation of variance under the null hypothesis. Unfortunately, this notion is over-
looked and is rarely addressed for analogous adaptation under unbalanced designs and
other more complex models. The discrepancy between these two approaches could be
substantial for unequal allocation as shown later in the simulation study.
Along the same line of power and sample size calculations within the generalized

linear models framework, two other major formulas have been proposed. They are the
score and likelihood ratio test approaches developed by Self and Mauritsen (1988)
and Self et al. (1992), respectively. The likelihood ratio test approach of Self et al.
(1992) is easier to implement and more accurate over a much wider range of model
speci:cations than the score test method of Self and Mauritsen (1988). Nevertheless
these two approaches are limited to the cases that the number of covariate con:gurations
is :nite. This assumption was relaxed for the likelihood ratio test approach in Shieh
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(2000) to accommodate covariate with an in:nite number of con:gurations. Note that
the probability function f(X) for covariate X de:ned above covers implicitly discrete
and/or continuous cases.
Unlike the score and likelihood ratio test procedures mentioned above, there is no

simple and direct extension of the Wald test approach of Shieh (2001) for testing more
than a single parameter (p¿ 1). Although there is some undesired property with the
Wald test reported in Hauck and Donner (1977), this statistic is calculated routinely by
standard statistical packages and continues to be an important alternative in the context
of statistical hypotheses testing for a wide range of complicated situations. Furthermore,
the Wald test is quite appealing for constructing the con:dence intervals and regions of
parameters without much extra eMort. Hence, it should be extremely useful to generalize
the approach of Shieh (2001) such that one can compute the power and sample size
for tests involving arbitrary number of parameters (p¿ 1). In that case, the Wald test
can be employed for the whole line of analyses throughout the study, including the
accurate sample size calculations at the planning stage of research, without resorting
to other test procedures. This article aims to provide power and sample size formula
for the Wald test within the framework of generalized linear models de:ned in (1).
The distinguishing features of the proposed approach are the accommodation of tests
about multiple parameters, the 9exibility of covariate con:gurations and the generality
of overall response levels.
In Section 2, the proposed methodology is described. In Section 3, the procedures are

illustrated with examples. Simulation studies are performed and results are presented
in Section 4. Section 5 contains some concluding remarks.

2. The proposed method

In order to perform power analyses and sample size calculations, we need to examine
the asymptotic mean and variance of �̂2 under both the alternative and null hypotheses.
It can be shown that I(�1; �2) = N · � under the alternative model with unrestricted
parameter estimators, where

�= EX

[
a−1(
)b′′(�)

(
@�
@�

)2
XXT

]
:

EX[·] denotes the expectation taken with respect to the distribution of X and b′′ denotes
the second derivative of b. Therefore, the asymptotic distribution of �̂2 is normal with
mean �2 and variance V=�=N , where � is the lower-right p×p sub-matrix of �−1.
Furthermore, we approximate the distribution of the Wald statistic W de:ned in (2)
by a noncentral chi-square distribution with p degrees of freedom and noncentrality
parameter N with

 = �T2�
−1�2 (3)

denoted by !2p(N ).

For the distribution of �̂2 under the restriction �2 = 0 of the null model, our formu-
lation is analogous to that of Shieh (2001). Let �∗

1 = (�∗
1 ; : : : ; �

∗
q ) denote the solution
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of the equation limN→∞ N−1E[SN (�1; 0)] = 0, where SN represents derivatives of the
log-likelihood function with respect to �1 = (�1; �2; : : : ; �q) by setting �2 = 0, and the
expectation is taken with respect to the true value of � = (�1; �2). With the restricted
parameter estimates �∗

1 , we approximate the distribution of �̂2 by a normal distribu-
tion with mean 0 and variance–covariance matrix V∗ = �∗=N , where �∗ is the proper
component of �∗−1 as that of � to �−1 mentioned above, and

�∗ = EX


a−1(
)b′′(�)

(
@�
@�

)2
XXT

∣∣∣∣∣
(�∗

1 ;0)




= EX

[
a−1(
)b′′(� ∗)

(
@� ∗

@�∗

)2
XXT

]
:

� ∗ and �∗ denote the canonical parameter � and linear predictor � evaluated at � =
(�∗

1 ; 0), respectively. In general, � and �∗ are not equivalent and neither are V and
V∗. This distinction of variance–covariance matrix under null and alternative models
plays an important role in sample size determination shown next.
Let !2p;� denote the 100(1 − �)th percentile of a central chi-square distribution with

p degrees of freedom, and !2p;1−�(#
∗), represent the 100 · �th percentile of a noncentral

chi-square distribution with p degrees of freedom and noncentrality parameter #∗. Also,
let random variable Z have a p-dimensional normal density with mean 0 and variance–
covariance matrix �, denoted by Np(0;�). For a generalized linear model with speci:ed
parameter values �= (�1; �2) and chosen covariate distribution f(X), the sample size
needed to test hypothesis H0: �2 =0 with speci:ed signi:cance level � and power 1−�
against the alternative hypothesis H1: �2 �= 0 is computed as follows. First, compute
the adjusted signi:cance level

�∗ = P(ZT�∗−1Z¿!2p;�): (4)

Next, :nd the noncentrality parameter #∗ of a noncentral chi-square distribution with
p degrees of freedom such that !2p;1−�(#

∗) = !2p;�∗ . Then the sample size estimate is
computed as

NP = #∗= ; (5)

where  is de:ned in (3). Note that this procedure can be reversed to calculate the
statistical power. Given parameter values � = (�1; �2), chosen covariate distribution
f(X), and sample size N , the statistical power achieved for testing hypothesis H0: �2=0
with speci:ed signi:cance level � against the alternative H1: �2 �= 0 is the probability

P{!2p(N )¿!2p;�∗}:
The notion of adjusted signi:cance level �∗ de:ned by (4) is motivated by knowl-

edge that, when p= 1, similar adjustment is naturally incorporated in the sample size
determination. It follows immediately from (4) with p=1 that NP in (5) is the required
sample size such that

P{!21(NP )¿!21; �∗} = 1 − �; where  = �2k =%; (6)
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where % is the univariate form of �. With the relationship between the square of a
standard normal variable and a chi-square variable of 1 degree of freedom, it can be
demonstrated that !21; �∗ = !21; �∗(%∗=%), where %∗ is the univariate version of �∗. Such
simpli:cation leads essentially to the formula proposed in Shieh (2001)

NP = [Z�=2·(%∗)1=2 + Z�·(%)1=2]2=�2
k : (7)

Hence, the proposed approach subsumes the method of Shieh (2001) as a special case.
Furthermore, the restriction of small response rate for logistic regressions in Shieh

(2001) is relaxed here. It appears, however, that there is no analytic form for the
adjusted signi:cance level except in the special case of p = 1 presented above. A
useful and analogous expression for the adjusted signi:cance level in (4) is

�∗ = P(Q¿!2p;�);

where Q =
∑p

l=1 #lWl with #l, l= 1; : : : ; p, are the eigenvalues of �1=2�∗−1�1=2 and
Wl, l = 1; : : : ; p, are independent central chi-square !21 random variables. Note that
both � and �∗ are positive de:nite, therefore, #l ¿ 0, l = 1; : : : ; p. Consequently, Q
is a positive linear combination of central chi-square random variables of 1 degree
of freedom. It was shown in Wood (1989) that the distribution of Q can be ade-
quately approximated by a three-parameter F distribution. Accordingly, we propose to
approximate the adjusted signi:cance level by

�∗ ∼= P
(
F ¿

a2t2
a1t1

!2p;�

)
;

where F has an F distribution with degrees of freedom 2a1 and 2a2, a1 = 2k1(k3k1 +
k21k2 − k22 )=t1, a2 = 3 + 2k2(k2 + k21 )=t2, t1 = 4k22k1 + k3(k2 − k21 ), t2 = k3k1 − 2k22 ,
and

kr = 2r−1(r − 1)!
p∑
l=1

#rl for r = 1; 2 and 3:

This approach is implemented in the numerical assessments shown later. While more
involved iterative computing algorithms can be employed to provide exact calculations
of �∗, it is still of great interest to have good and simple approximation. With respect
to the trade-oM between numerical accuracy and computation-wise complexity, the ad-
vantage of simplicity becomes more prominent as p grows larger. More importantly,
according to our :nding, the non-iterative three-parameter F approximation appears to
provide satisfactory results. For the general developments regarding the derivation of
distributions of linear combinations of independent chi-square variables, see Johnson
et al. (1994, Section 18.8) for a comprehensive discussion.
Instead of considering the adjustment of signi:cance level, an alternative direct

method of obtaining sample size, with the same general setup and de:nition of  
just presented, is given by

ND = #= ; (8)

where # is the noncentrality parameter of a noncentral chi-square distribution with
p degrees of freedom such that !2p;1−�(#) = !2p;�. Actually, this formula has been
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implemented in the commercial software POWER AND PRECISION (Biostat, 2000).
At the :rst sight, this seems to be a questionable approach because the distribution
property of �̂2 under the restriction prescribed in the null hypothesis is not addressed.
Furthermore, a close examination of this procedure, as in the previous discussion of
the proposed approach for tests of a single parameter, shows that this formula sets the
variance of �̂k under the restriction of null model exactly the same as that under the
unrestricted alternative model as follows:

ND = [Z�=2 + Z�]2%=�2
k : (9)

However, since the Fisher information matrix is a function of the parameters �, accord-
ingly the variance–covariance matrices given by the inverse of the Fisher information
matrix generally disagree for diMerent parameter settings. Therefore, formula (8) and
the proposed approach (5) are fundamentally diMerent with respect to the speci:cation
of variance–covariance approximation of �̂2 under the composite null hypothesis. This
phenomenon is illustrated in the following examples.

3. Examples

Due to the complex nature of the proposed approach, it is useful to examine the
general formula described above in important special situations. We now consider the
two-sample problem in terms of simple linear predictor of the form � = �1 + X�2,
where X is a Bernoulli random variable with P(X = 1) = + and P(X = 0) = 1 − +.
For canonical link � = �, it can be shown that the asymptotic variance approximate
of �̂2 is V = %=N , where % = 1=[(1 − +)b′′(�0)] + 1=[+ · b′′(�1)], �0 = �0 = �1 and
�1 = �1 = �1 + �2. For a hypothesis testing of group diMerence with H0: �2 = 0 versus
H1: �2 �= 0, the restricted estimate is �∗

1 = g(
∗), where 
∗ = (1− +)b′(�0) + + · b′(�1).
Thus, the proposed variance of �̂2, under the parameter restriction �2=0, is V ∗=%∗=N ,
where %∗ = 1=[+(1 − +)b′′(� ∗)], and � ∗ = �∗ = �∗

1 . In the following, we restrict our
attention to the logistic and Poisson regression models.
Example 1: simple logistic regression.
For binary outcomes, the probability of response is given by 
= b′(�)= e�=(1+ e�)

and the variance function .2 = b′′(�) = e�=(1+ e�)2. In this case, a(
) = 1 and g(
) =
log{
=(1 − 
)}. Straightforward substitution into the general formula above gives

%=
1

(1 − +) · 
1(1 − 
1)
+

1
+ · 
2(1 − 
2)

and

%∗ =
1

+(1 − +)
∗(1 − 
∗)
;

where 
1 = exp(�1)=[1 + exp(�1)], 
2 = exp(�1 + �2)=[1 + exp(�1 + �2)] and 
∗ =
(1 − +)
1 + + · 
2.
Essentially, the test of log odds ratio or covariate coeIcient H0: �2 = 0 versus

H1: �2 �= 0 is equivalent to the test of attributable risk or equivalence of two bi-
nomial proportions H0: 
1 = 
2 versus H1: 
1 �= 
2. It follows from the delta method
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that the proposed large-sample distributions for �̂2 conform to the usual asymptotic
normal approximations for the diMerence of two independent sample proportions, un-
der both the respective alternative and null hypotheses. For sample size determinations,
the proposed formula (6) or more exactly the simpli:ed version (7) is in line with
the asymptotic normal method of Sahai and Khurshid (1996, Eq. (20)) in testing the
equality of two binomial proportions. In our notation, it gives

N =


Z�=2

[

∗(1 − 
∗)
+(1 − +)

]1=2
+ Z�

[

1(1 − 
1)

1 − +
+


2(1 − 
2)
+

]1=2}2/
(
1 − 
2)2:

This method is also given in Fleiss (1981), Machin and Campbell (1987), and Rosner
(1994). In a similar fashion as the proposed procedure, expression (9) corresponds
to the simple normal method assuming heterogeneity proposed in Sahai and Khurshid
(1996, Eq. 26) as follows:

N = [Z�=2 + Z�]2
[

1(1 − 
1)

1 − +
+


2(1 − 
2)
+

]/
(
1 − 
2)2:

From the summary of Sahai and Khurshid (1996), it appears that this procedure for
unequal group numbers has never been closely examined. However, the special case of
equal group numbers (+=0:5) in their Eq. (13) was also documented in Pocock (1982),
Machin and Campbell (1987), and Snedecor and Cochran (1989). Note that all earlier
results on sample size and power calculations for covariate X with discrete probability
function of :nite support are still applicable even though X is nonrandom with a
:nite number of con:gurations. The major modi:cation occurs in the interpretation
of sample allocation. For the current two-sample example, therefore, the actual sample
size is being :xed as N (1−+) and N ·+ for groups 1 and 2, respectively, in the setting
of Sahai and Khurshid (1996). In our formulation, however (1 − +) and + represent
the expected weights of samples in each group.
Example 2: simple Poisson regression.
The Poisson regression models outcomes that are counts, with the variance function

.2 = b′′(�) is the same as the mean response 
= b′(�) = e�. Moreover, a(
) = 1 and
g(
) = log(
). In this particular case,

%=
1

(1 − +)
1
+

1
+ · 
2

and

%∗ =
1

+(1 − +)
∗ ;

where 
1 = exp(�1), 
2 = exp(�1 + �2) and 
∗ = (1 − +)
1 + + · 
2. With % and %∗,
the proposed sample size is given by (7), whereas the direct method yields the sample
size in (9). Likewise, the connection between the test of group diMerence in terms of
H0: �2 = 0 and H0: 
1 = 
2 can be carried out in a similar fashion as the simple logis-
tic regression described above. With the simpli:ed asymptotic normal approximations
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without or with the heterogeneity assumption, the resulting formulas are

N =


Z�=2

[

∗

+(1 − +)

]1=2
+ Z�

[

1

1 − +
+


2
+

]1=2}2/
(
1 − 
2)2

and

N = [Z�=2 + Z�]2
[


1
1 − +

+

2
+

]/
(
1 − 
2)2;

respectively.
With all the sample size formulas in both Examples 1 and 2, it is obvious that the

expressions depend explicitly on the two design components: parameter con:gurations
and covariate distributions. Consequently, the adequacy of these approaches is aMected
by these two factors and more exactly by their interrelationship. For the simple logistic
and Poisson regressions, the proposed approach and the direct method with respect to
their fundamental discrepancy in conjunction with covariate distributions will be further
investigated in the following simulation study.

4. Simulation studies

The :nite-sample adequacy of our formula was assessed through simulations, in
which we also compared the proposed method with the direct method and the likelihood
ratio test-based approach of Shieh (2000). For illustrative purposes, we concentrate on
the two most prominent models in the class of generalized linear models: logistic and
Poisson regressions. For both regression models, two linear predictors are examined.
First, we investigated the simple linear predictor described in the previous section,
namely �= �1 + X�2, where X is a Bernoulli random variable with P(X = 1) = + and
P(X = 0) = 1 − +. The parameter of interest �2 is taken to be log(2). The intercept
parameter �1 is chosen to satisfy the overall response 
∗ = 0:2 with respect to the
Bernoulli distribution of X with += 0:1, 0.3, 0.5, 0.7 and 0.9, where 
∗ is de:ned in
Examples 1 and 2 for logistic and Poisson regression models, respectively.
The second predictor is of the form �=X1�1 +X2�2 +X3�3 +X4�4 with X1 ≡ 1. The

joint distribution of (X2, X3) is assumed to be multinomial with probabilities +1, +2, +3
and +4, corresponding to (x2, x3) values of (0; 0), (0; 1), (1; 0) and (1; 1), respectively.
Three sets of (+1, +2, +3, +4) are studied to represent diMerent distributional shapes,
namely (0.76, 0.19, 0.01, 0.04), (0.4, 0.1, 0.1, 0.4), and (0.04, 0.01, 0.19, 0.76). The
covariate X4 has a standard normal distribution and is independent of (X2; X3). The
parameters (�2, �3, �4) are set as (log(1:5), log(2), 0.1). The intercept parameter �1
is chosen to satisfy the overall response N
 = 0:1, where N
 = EX[exp(�)={1 + exp(�)}]
and N
 = EX{exp(�)} for the logistic and Poisson regression models, respectively, and
EX[ · ] denotes the expectation taken with respect to the joint distribution of (X2, X3,
X4). This model mimics a design with two dichotomous main eMects and a continuous
confounder. We are interested in the tests of H0: �2=�3=0 for treatment eMects (p=2)
and H0: �2 = �3 = �4 = 0 for overall eMects (p= 3).
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For a given model, covariate distribution, parameter values, and overall response
level, the estimates of sample sizes required for testing the speci:ed hypothesis with
signi:cance level 0.05 and power (0.90, 0.95) are calculated. The resulting sample
sizes correspond to the direct method (8), the proposed approach (5), and Shieh
(2000) are denoted by ND, NP, and NS, respectively. These estimates of sample size
allow comparison of relative eIciencies of the approaches. However, the magni-
tude of the sample size aMects the accuracy of the asymptotic distribution and the
resulting formula, a fair comparison among these approaches must adjust for this
factor. Hence, we unify the sample sizes in the simulations by choosing the sam-
ple size ND as the benchmark to recalculate the nominal powers for all competing
approaches.
Estimates of the true power associated with given sample size and model con:gu-

ration are then computed through Monte Carlo simulation of 10,000 independent data
sets. For each replicate, ND covariate values are generated from the selected distribu-
tion. These covariate values determine the incidence rates for generating ND Bernoulli
or Poisson outcomes. Then the test statistic is computed and the estimated power is
the proportion of the 10,000 replicates whose test statistic values exceed the critical
value !2p;�. Note that both the Wald statistic and the likelihood ratio test have the iden-
tical asymptotic chi-square distribution under the null hypothesis. The adequacy of the
sample size formula is determined by the diMerence between the estimated power and
nominal power speci:ed above. All calculations are performed using programs written
with SAS/IML (SAS Institute, 1989).
The results of the simulation studies are presented in Tables 1–4. Tables 1 and 2

contain results for the simple linear predictor, while Tables 3 and 4 contain results
for the multiple linear predictor. The adjusted signi:cance levels described in (4) for
the proposed method are presented in the footnote of the tables in accordance to
the sequence of listed models. For a concise visualization of the results, the errors
associated with larger sample size (which gives power very close to 0.95 for the direct
method) are plotted with diMerent covariate distributions for the three procedures in
Figs. 1–4 corresponding to the four models in Tables 1–4, respectively.
In general, the errors are larger for power 0.90 than power 0.95 for all compet-

ing methods. Furthermore, the skewed covariate distribution appears to degrade the
accuracy of sample size calculations. The results suggest that the direct method is
extremely vulnerable to the unbalanced allocation of samples and gives mostly the
largest errors among the three formulas for both logistic and Poisson regression mod-
els. However, the proposed method and the approach of Shieh (2000) generally main-
tain a close agreement between the estimated power and nominal power. The only
exceptions are with the extremely unbalanced Bernoulli covariate of + = 0:1 for the
simple regressions and with the exceedingly skewed multinomial covariate distribution
(0:72; 0:18; 0:02; 0:08) for the multiple regressions. Obviously, in these cases, there is
essentially limited or inadequate information for discriminating the alternative hypoth-
esis against the null hypothesis because these designs are composed of a compara-
tively small treatment group and a large control group. For the rest of model con-
:gurations, the proposed method performs well and is comparable to Shieh’s (2000)
approach.
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Table 1
Calculated sample sizes and estimates of actual power at speci:ed sample size for simple logistic regression
with Bernoulli covariate

The direct method The proposed methoda Shieh (2000)

Power 0.90 0.95 0.90 0.95 0.90 0.95

Bernoulli (0.1)
Sample sizeb (ND, NP, NS) 1173 1451 1377 1677 1261 1559
Nominal powerc at ND 0.9001 0.9501 0.8441 0.9155 0.8785 0.9355
Estimated power 0.8762 0.9294 0.8762 0.9294 0.8635 0.9214
Error −0.0239 −0.0207 0.0321 0.0139 −0.0150 −0.0141

Bernoulli (0.3)
Sample sizeb (ND, NP, NS) 587 726 626 769 602 744
Nominal powerc at ND 0.9001 0.9501 0.8806 0.9384 0.8931 0.9455
Estimated power 0.8924 0.9431 0.8924 0.9431 0.8887 0.9403
Error −0.0077 −0.0070 0.0118 0.0047 −0.0044 −0.0052

Bernoulli (0.5)
Sample sizeb (ND, NP, NS) 583 720 561 696 565 698
Nominal powerc at ND 0.9004 0.9500 0.9106 0.9560 0.9092 0.9557
Estimated power 0.9097 0.9560 0.9097 0.9560 0.9106 0.9572
Error 0.0093 0.0060 −0.0009 0.0000 0.0014 0.0015

Bernoulli (0.7)
Sample sizeb (ND, NP, NS) 822 1016 716 899 751 928
Nominal powerc at ND 0.9003 0.9501 0.9330 0.9686 0.9241 0.9650
Estimated power 0.9274 0.9673 0.9274 0.9673 0.9323 0.9699
Error 0.0271 0.0172 −0.0056 −0.0013 0.0082 0.0049

Bernoulli (0.9)
Sample sizeb (ND, NP, NS) 2267 2803 1797 2278 1953 2415
Nominal powerc at ND 0.9001 0.9500 0.9492 0.9773 0.9374 0.9728
Estimated power 0.9442 0.9777 0.9442 0.9777 0.9505 0.9802
Error 0.0441 0.0277 −0.0050 0.0004 0.0131 0.0074

aThe adjusted signi:cance levels are 0.0257, 0.0390, 0.0575, 0.0810 and 0.1086.
bSample sizes needed to achieve power 0.9 and 0.95, respectively.
cNominal powers at calculated sample sizes of the direct method inb.

5. Concluding remarks

In this article we have extended the sample size and power methodology for Wald
statistics in generalized linear models to handle test of hypothesis with any number
of parameters. Unlike other approaches, the proposed method is applicable under gen-
eral conditions that there are no particular limitations in the overall response rate and
covariate distribution. According to the general formulation, the proposed approach
naturally encompasses both :xed and random covariate con:gurations.
The notion of adjusted signi:cance level is introduced to improve the determina-

tions of power and sample size by taking into account the discrepancy between the
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Table 2
Calculated sample sizes and estimates of actual power at speci:ed sample size for simple Poisson regression
with Bernoulli covariate

The direct method The proposed methoda Shieh (2000)

Power 0.90 0.95 0.90 0.95 0.90 0.95

Bernoulli (0.1)
Sample sizeb (ND, NP, NS) 736 910 1011 1214 856 1058
Nominal powerc at ND 0.9004 0.9502 0.7654 0.8614 0.8525 0.9168
Estimated power 0.8449 0.9051 0.8449 0.9051 0.8169 0.8890
Error −0.0555 −0.0451 0.0795 0.0437 −0.0356 −0.0278

Bernoulli (0.3)
Sample sizeb (ND, NP, NS) 440 545 488 598 457 565
Nominal powerc at ND 0.9000 0.9503 0.8664 0.9300 0.8893 0.9432
Estimated power 0.8797 0.9378 0.8797 0.9378 0.8728 0.9322
Error −0.0203 −0.0125 0.0133 0.0078 −0.0165 −0.0110

Bernoulli (0.5)
Sample sizeb (ND, NP, NS) 493 609 459 572 464 574
Nominal powerc at ND 0.9005 0.9501 0.9187 0.9606 0.9165 0.9603
Estimated power 0.9124 0.9611 0.9124 0.9611 0.9153 0.9623
Error 0.0119 0.0110 −0.0063 0.0005 −0.0012 0.0020

Bernoulli (0.7)
Sample sizeb (ND, NP, NS) 753 931 608 769 654 809
Nominal powerc at ND 0.9002 0.9501 0.9465 0.9759 0.9357 0.9719
Estimated power 0.9380 0.9752 0.9380 0.9752 0.9455 0.9781
Error 0.0378 0.0251 −0.0085 −0.0007 0.0098 0.0062

Bernoulli (0.9)
Sample sizeb (ND, NP, NS) 2194 2713 1568 2011 1774 2194
Nominal powerc at ND 0.9001 0.9501 0.9627 0.9841 0.9501 0.9798
Estimated power 0.9540 0.9840 0.9540 0.9840 0.9629 0.9874
Error 0.0539 0.0339 −0.0087 −0.0001 0.0128 0.0076

aThe adjusted signi:cance levels are 0.0117, 0.0330, 0.0646, 0.1030 and 0.1446.
bSample sizes needed to achieve power 0.9 and 0.95, respectively.
cNominal powers at calculated sample sizes of the direct method inb.

asymptotic distribution approximations of maximum likelihood estimators in both mean
and variance–covariance under the alternative and null hypotheses. Using heuristic ar-
guments and computer simulations, it is shown that the proposed approach performed
well over most of the range of conditions we considered here. The exceptions oc-
curred only when the model especially consists of an asymmetric allocation scheme
that is disproportionate for the purpose of addressing speci:c scienti:c hypotheses and
con:rming credible treatment eMects. Nevertheless, neither the naive Wald test-based
direct method nor the likelihood ratio test-based method of Shieh (2000) is immune
to unbalanced designs. It appears that the direct method tends to provide inappropriate
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Table 3
Calculated sample sizes and estimates of actual power at speci:ed sample size for multiple logistic regression
with multinomial and standard normal covariates

The direct method The proposed methoda Shieh (2000)

Power 0.90 0.95 0.90 0.95 0.90 0.95

Test 1: treatment eMects (p = 2)
1. Multinomial (0:72; 0:18; 0:02; 0:08)
Sample sizeb (ND, NP, NS) 913 1115 1107 1326 1014 1237
Nominal powerc at ND 0.9000 0.9501 0.8241 0.9026 0.8656 0.9266
Estimated power 0.8691 0.9256 0.8691 0.9256 0.8447 0.9096
Error −0.0309 −0.0245 0.0450 0.0230 −0.0209 −0.0170

2. Multinomial (0.40, 0.10, 0.10, 0.40)
Sample sizeb (ND, NP, NS) 676 824 619 763 622 759
Nominal powerc at ND 0.9004 0.9500 0.9237 0.9634 0.9236 0.9646
Estimated power 0.9240 0.9688 0.9240 0.9688 0.9306 0.9720
Error 0.0236 0.0188 0.0003 0.0054 0.0070 0.0074

3. Multinomial (0.08, 0.02, 0.18, 0.72)
Sample sizeb (ND, NP, NS) 2323 2835 1653 2095 1899 2318
Nominal powerc at ND 0.9000 0.9500 0.9655 0.9854 0.9505 0.9799
Estimated power 0.9509 0.9834 0.9509 0.9834 0.9671 0.9898
Error 0.0509 0.0334 −0.0146 −0.0020 0.0166 0.0099

Test 2: overall eMects (p = 3)
1. Multinomial (0.72, 0.18, 0.02, 0.08)
Sample sizeb (ND, NP, NS) 966 1170 1094 1309 1061 1286
Nominal powerc at ND 0.9003 0.9501 0.8534 0.9214 0.8680 0.9282
Estimated power 0.8753 0.9296 0.8753 0.9296 0.8544 0.9149
Error −0.0250 −0.0205 0.0219 0.0082 −0.0136 −0.0133

2. Multinomial (0.40, 0.10, 0.10, 0.40)
Sample sizeb (ND, NP, NS) 725 878 674 822 668 810
Nominal powerc at ND 0.9002 0.9500 0.9210 0.9620 0.9240 0.9649
Estimated power 0.9179 0.9612 0.9179 0.9612 0.9260 0.9646
Error 0.0177 0.0112 −0.0031 −0.0008 0.0020 −0.0003

3. Multinomial (0.08, 0.02, 0.18, 0.72)
Sample sizeb (ND, NP, NS) 2241 2715 1685 2106 1877 2274
Nominal powerc at ND 0.9000 0.9500 0.9604 0.9828 0.9470 0.9781
Estimated power 0.9395 0.9770 0.9395 0.9770 0.9597 0.9847
Error 0.0395 0.0270 −0.0209 −0.0058 0.0127 0.0066

aThe adjusted signi:cance levels are 0.0206, 0.0700, 0.1547, 0.0280, 0.0673 and 0.1372.
bSample sizes needed to achieve power 0.9 and 0.95, respectively.
cNominal powers at calculated sample sizes of the direct method inb.

sample sizes and is not recommended. In fact, the :ndings in the sensitivity to the
distribution of the covariates are consistent with those of Self and Mauritsen (1988),
Self et al. (1992) and Shieh (2001) which are obtained from the score, likelihood



56 G. Shieh / Journal of Statistical Planning and Inference 128 (2005) 43–59

Table 4
Calculated sample sizes and estimates of actual power at speci:ed sample size for multiple Poisson regression
with multinomial and standard normal covariates

The direct method The proposed methoda Shieh (2000)

Power 0.90 0.95 0.90 0.95 0.90 0.95

Test 1: treatment eMects (p = 2)
1. Multinomial (0.72, 0.18, 0.02, 0.08)
Sample sizeb (ND, NP, NS) 709 865 900 1074 826 1008
Nominal powerc at ND 0.9001 0.9500 0.8003 0.8862 0.8480 0.9136
Estimated power 0.8507 0.9083 0.8507 0.9083 0.8121 0.8866
Error −0.0494 −0.0417 0.0504 0.0221 −0.0359 −0.0270

2. Multinomial (0.40, 0.10, 0.10, 0.40)
Sample sizeb (ND, NP, NS) 637 777 567 700 573 699
Nominal powerc at ND 0.9003 0.9501 0.9304 0.9672 0.9294 0.9682
Estimated power 0.9238 0.9666 0.9238 0.9666 0.9307 0.9699
Error 0.0235 0.0165 −0.0066 −0.0006 0.0013 0.0017

3. Multinomial (0.08, 0.02, 0.18, 0.72)
Sample sizeb (ND, NP, NS) 2288 2792 1529 1953 1818 2219
Nominal powerc at ND 0.9001 0.9500 0.9717 0.9883 0.9558 0.9827
Estimated power 0.9537 0.9843 0.9537 0.9843 0.9723 0.9893
Error 0.0536 0.0343 −0.0180 −0.0040 0.0165 0.0066

Test 2: overall eMects (p = 3)
1. Multinomial (0.72, 0.18, 0.02, 0.08)
Sample sizeb (ND, NP, NS) 752 911 882 1052 869 1052
Nominal powerc at ND 0.9001 0.9501 0.8370 0.9109 0.8492 0.9146
Estimated power 0.8566 0.9083 0.8566 0.9083 0.8205 0.8841
Error −0.0435 −0.0418 0.0196 −0.0026 −0.0287 −0.0305

2. Multinomial (0.40, 0.10, 0.10, 0.40)
Sample sizeb (ND, NP, NS) 679 823 620 758 614 744
Nominal powerc at ND 0.9002 0.9502 0.9254 0.9645 0.9291 0.9681
Estimated power 0.9193 0.9672 0.9193 0.9672 0.9286 0.9711
Error 0.0191 0.0170 −0.0061 0.0027 −0.0005 0.0030

3. Multinomial (0.08, 0.02, 0.18, 0.72)
Sample sizeb (ND, NP, NS) 2170 2629 1544 1943 1781 2157
Nominal powerc at ND 0.9001 0.9500 0.9669 0.9860 0.9512 0.9803
Estimated power 0.9467 0.9821 0.9467 0.9821 0.9653 0.9885
Error 0.0466 0.0321 −0.0202 −0.0039 0.0141 0.0082

aThe adjusted signi:cance levels are 0.0161, 0.0780, 0.1813, 0.0234, 0.0721, and 0.1598.
bSample sizes needed to achieve power 0.9 and 0.95, respectively.
cNominal powers at calculated sample sizes of the direct method inb.

ratio and Wald tests, respectively. Conceivably, the allocation schemes or the covariate
distributions play an important role in the accuracy of the existing power and sample
size methodology within the framework generalized linear models.



G. Shieh / Journal of Statistical Planning and Inference 128 (2005) 43–59 57

-0.05

-0.04

-0.03

-0.02

-0.01

0.0

0.01

0.02

0.03

0.04

0.05

0.1 0.3 0.5 0.7 0.9

P

P
P P P

S

S

S
S

S

D

D

D

D

D

D: The direct method

P: The proposed method

S: Shieh (2000)

Parameter π for Bernoulli Covariate

E
st

im
at

ed
 P

ow
er

 −
N

om
in

al
 P

ow
er

Fig. 1. The estimated errors for simple logistic regression.
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Fig. 2. The estimated errors for simple Poisson regression.



58 G. Shieh / Journal of Statistical Planning and Inference 128 (2005) 43–59

-0.04

-0.02

0.0

0.02

0.04

Test 1: 1 2 3 Test 2: 1 2 3

P

P

P

S

S
S

D

D

D

P

P
P

S

S

S

D

D

D
E

st
im

at
ed

 P
ow

er
 −

N
om

in
al

 P
ow

er

D: The direct method

P: The proposed method

S: Shieh (2000)

Multinomial Covariate

Fig. 3. The estimated errors for multiple logistic regression.
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Fig. 4. The estimated errors for multiple Poisson regression.
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Finally, we note that the generalized estimating equations approach was introduced
by Liang and Zeger (1986) as a way of handling correlated data that, except for the
correlation between responses, can be modeled with generalized linear models. The
proposed approach could be extended for use in the context of generalized estimating
equations. We are currently developing this extension and the results will be reported
elsewhere.

Acknowledgements

This work was partially supported by the National Science Council. The author is
grateful to the referee for helpful comments that have improved the exposition.

References

Biostat, Inc., 2000. Power and Precision, Version 2, Englewood,NJ.
Fleiss, J.L., 1981. Statistical Methods for Rates and Proportions, 2nd Edition. Wiley, New York.
Hauck, W.H., Donner, A., 1977. Wald’s test as applied to hypotheses in logit analysis. J. Amer. Statist.

Assoc. 72, 851–853.
Johnson, N.L., Kotz, S., Balakrishnan, N., 1994. Continuous Univariate Distributions, 2nd Edition. Wiley,

New York.
Liang, K.-Y., Zeger, S.L., 1986. Longitudinal data analysis using generalized linear models. Biometrika 73,

13–22.
Machin, D., Campbell, M.J., 1987. Statistical Tables for the Design of Clinical Trials. Blackwell, Oxford.
McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models, 2nd Edition. Chapman & Hall, London.
Nelder, J.A., Wedderburn, R.W.M., 1972. Generalized linear models. J. Roy. Statist. Soc. Ser. A 135,

370–384.
Pocock, S.J., 1982. Statistical aspects of clinical trials design. The Statistician 31, 1–18.
Rosner, B., 1994. Fundamentals of Biostatistics, 4th Edition. Duxbury, Belmont, CA.
Sahai, H., Khurshid, A., 1996. Formulae and tables for the determination of sample sizes and power in

clinical trials for testing diMerences in proportions for the two-sample design: a review. Statist. Med. 15,
1–21.

SAS Institute, 1989. SAS/IML Software: Usage and Reference, Version 6. SAS Institute, Carey, NC.
Self, S.G., Mauritsen, R.H., 1988. Power/sample size calculations for generalized linear models. Biometrics

44, 79–86.
Self, S.G., Mauritsen, R.H., Ohara, J., 1992. Power calculations for likelihood ratio tests in generalized linear

models. Biometrics 48, 31–39.
Shieh, G., 2000. On power and sample size calculations for likelihood ratio tests in generalized linear models.

Biometrics 56, 1192–1196.
Shieh, G., 2001. Sample size calculations for logistic and Poisson regression models. Biometrika 88,

1193–1199.
Signorini, D.F., 1991. Sample size for Poisson regression. Biometrika 78, 446–450.
Snedecor, G.W., Cochran, W.G., 1989. Statistical Methods, 8th Edition. Iowa State University Press, Ames,

IA.
Whittemore, A.S., 1981. Sample size for logistic regression with small response probability. J. Amer. Statist.

Assoc. 76, 27–32.
Wood, T.A., 1989. An F approximation to the distribution of a linear combination of Chi-squared variables.

Comm. Statist. Simulation Comput. 18, 1439–1456.


	On power and sample size calculations for Wald tests in generalized linear models
	Introduction
	The proposed method
	Examples
	Simulation studies
	Concluding remarks
	Acknowledgements
	References


