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Data Envelopment Analysis (DEA) is a mathematical programming method to evaluate relative performance. Typical DEA studies
consider a production process transforming inputs to outputs. In some cases, however, some factors can be both inputs and outputs
simultaneously and are termed dual-role factors. For example, research funding can be an input that strengthens a university’s
academic performance and the actual funds can be an output. This article investigates the problem of how to incorporate dual-role
factors in DEA. Rather than proposing an ad hoc evaluation model directly, this article considers the concept of “joint technology,”
two individual production processes acting in common by summarizing the intuitive thinking. The efficiency evaluation models, based
on variant assumptions, thus can be axiomatically derived, validated, and extended. How to determine the input/output tendency of
a dual-role factor based on the evaluating results is shown and explained from different aspects. It is concluded that the tendency is a

property on the projected boundary, not the data point itself.

Keywords: Data envelopment analysis, dual-role factor, efficiency

1. Introduction

Data Envelopment Analysis (DEA), coined and pop-
ularized by Charnes et al. (1978), is a mathematical
programming method to evaluate relative performance
by peer comparison. DEA considers multiple aspects of
the performance simultaneously and aggregates different
criteria values as a ratio of weighted output to weighted in-
put without a priori weight assignments. At this analytical
stage, DEA is an aggregating mechanism to aggregate mul-
tiple criteria into a single score. On the other hand, DEA is
a stream of nonparametric production analysis, originated
by Farrell (1957), to measure the technical efficiency of pro-
duction units. The efficiency of a unit is measured relative to
the production frontier, which is estimated by a set of data.

Typical DEA studies consider a production process of
transforming multiple inputs to various outputs. In addi-
tion to those having a clear input/output role, however,
some factors may play roles as both inputs and outputs
simultaneously; these factors are referred to as dual-role
factors. Beasley (1990, 1995) is the first to note dual-role
factors in his study evaluating research productivity at a
university. He finds that research funding is an important
performance criterion (output) and a resource (input) that
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strengthens the institution’s academic performance. Cook
et al. (2006) looked at graduate students in higher educa-
tion organizations and nurse trainees on staff in hospitals
and found that the graduate student and nurse trainee are
dual-role factors. In other words, they are the maximizing-
oriented performance criteria (outputs) themselves and the
resources (inputs) to provide publications and care for more
patients.

A literature survey reveals different models for DEA eval-
uation studies with dual-role factors. Following the idea by
Charnes et al. (1978), the models specify different output-
to-input ratio forms while retaining the core spirit of DEA
with minimum assumptions about weights determination.
In Beasley (1990, 1995), a dual-role factor is in both the de-
nominator (as a part of the weighted input) and the numer-
ator (as a part of the weighted output). Cook et al. (2006)
suggest moving the input role from the denominator to the
numerator, the output side, but with the opposite sign in
its weight. Specifically, they consider the dual-role factor as
an exogenously fixed or non-discretionary variable (Banker
and Morey, 1986), which is not controlled but can affect the
DEA evaluation. In addition, Bi et al. (2009) attempt to
address this issue from the angle of a production process,
not multi-criteria performance aggregation. Rather than
considering these factors as inputs and outputs simultane-
ously, Cook and Zhu (2007) suggest a method to classify
them in DEA. To the best of our knowledge, the avail-
able literature does not discuss the validity of any proposed
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model or the axiomatic arguments. Although Cook et al.
(2006) show that Beasley’s treatment of dual-role factors is
inappropriate, they do not provide any validation for their
modified model.

Therefore, this article investigates how to handle dual-
role factors in DEA. Rather than proposing an ad hoc
evaluating model directly, we develop a concept of “joint
technology,” two individual production processes acting in
common, by summarizing the intuitive thinking. Evaluat-
ing models based on different assumptions can be derived,
validated, and extended axiomatically using the “joint tech-
nology.” Thus, the proposed model is theoretically well de-
fined and intuitively obvious.

The benefits of the proposed approach are at least three-
fold. First, the approach provides a clear framework for
analyzing how to incorporate dual-role factors in DEA.
In particular, we approach the problem from production
process axioms but not the weighting viewpoints. Multiple
dual-role factors can also be analyzed. Second, by focus-
ing on the basic framework and not a solution to a spe-
cific problem, the approach provides a way to validate the
proposed models in the extant literature, including Cook
et al. (2006). It clearly shows the flawed logic in Beasley
(1990, 1995) beyond taking a counterexample. Third, the
proposed approach is easy to extend and integrate with
variant DEA models with detailed specific requirements,
such as Free Disposal Hull (FDH; Deprins ef al. (1984)),
non-discretionary variables, etc.

Based on the proposed “joint technology” framework,
this article makes the following contributions to the lit-
erature. We develop a simple three-dimensional case for
visualization, and we also generalize to multi-dimensional
cases for considering the multiple factors. Furthermore,
we determine the input/output behavior (tendency) of a
dual-role factor based on the analysis results and explain
it from multi-criteria performance aggregation, geometry,
and economics perspectives. Importantly, we conclude that
the tendency is a property on the projected boundary,
not the data point itself. This conclusion sheds light for
centralized/decentralized dual-role factor allocation
problems.

The remainder of this article is organized as follows.
Section 2 introduces DEA as a performance evaluation
method. Section 3 proposes the axiomatic framework and
derives the efficiency evaluation considering dual-role fac-
tors, including Cook et al. (2006). Section 4 provides a
visualization example and motivates the geometric inter-
pretations. Section 5 generalizes the findings to multiple
dimensions, gives economic interpretations, and discusses
some possible variant models, and Section 6 concludes.

2. Technology and radial efficiency

Consider a production process transforming various inputs
into different outputs. Denote an input set / and an output
set 0, and let x € %' and y € %'?' be the value vectors for
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inputs and outputs, respectively. A production technology,
represented by a set 7', describes the possible input—output
transformation as

T = {(x,y) : x can producey}.

Given a set of records R with data (x,,y,) € E)t'i'“ 0‘, r € R
we can approximate the underlying but unknown 7" based
on the following assumptions:

1. Strong disposability: (x,y) € T,x' > xandy < yimply
x,y)eT.

2. Convexity: (x,y) € T and (X,y’) € T imply A(x,y) +
(1—-A)x',y) e Tforare]0,1].

3. Constant Returns to Scale (CRS): (x,y) € T implies
a(x,y) € T fora € [0, 00).

One approximation is

T= {(x, Vi) Xk XY Nk Z¥ih 20,7 € R}-

reRr reR

T imposes assumptions 1 to 3 and is referred to as the CRS
technology. The CRS assumption can be relaxed by adding
the convexity constraint ) _,_p A, = 1 and thusis termed the
Variable Returns to Scale (VRS) technology. An important
use of 7T is the Farrell input efficiency measure (Farrell,
1957). To measure input efficiency of (xx, yx), kK € R, we
solve the following problem:

min 6, (1
s.t. Zxrkr < O0xy,

reR

Zyr)"r > Y«

rer

A >0,r € R

The optimal value 6* of Model (1) is the input efficiency of
k associated with the CRS technology 7. Assuming CRS
technology, it suggests that k can reduce its inputs x; to
(100 x 6*)% while maintaining the same level of outputs y.
There are variant models according to different technology
assumptions and objectives, such as the orientations. Com-
prehensive explanations and variant models can be found
in Fare et al. (1994a) and Cooper et al. (2007).

Model (1) can be transformed to the equivalent problem
as follows (Charnes et al., 1978). For notational simplicity,
the vector multiplication in this paper represents the dot
product of two vectors.

YiV

max —, (2
Xu
-V
st Y <1,r € R,
pel|
u>0,v>0.

We can see Model (2) as a weight aggregation scheme for

record k€ R ue R and ve R’ are weights assigned
for inputs and outputs, respectively, and all records’ overall
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performance scores are calculated as ratios of weighted out-
put to weighted input. Model (2) allows k to select weights
favoring its performance score y;v/x,u, as long as all per-
formance scores are normalized within one.

3. Modeling dual-role factors

Dual-role factors can play roles as both inputs and out-
puts simultaneously. When dual-role factors play roles as
outputs, we term them dual-role outputs in contrast with
the regular outputs y, and when dual-role factors play roles
as inputs, we term them dual-role inputs in contrast to the
regular inputs x. Consider the cases with dual-role factors
in addition to inputs and outputs. Denote the dual-role
factor set D and the value vector w € )t”'. Collect the data

I1+|D
(X)‘v wi’v yl) € SR‘-}-H»' ‘+|0|; re R

3.1. A4 joint technology

The following two statements are apparently true and gen-
erally intuitive for production processes having dual-role
factors in addition to regular inputs and outputs:

Regular inputs generate regular outputs and
dual-role outputs, 3)

and

Regular inputs and dual-role inputs generate
regular outputs. 4)

Dual-role factors can be considered as part of the outputs,
which count for performance to be maximized. However,
there is a cost, since dual-role outputs and regular outputs
consume the same resources. On the other hand, when dual-
role factors are also considered as part of inputs, together
with regular inputs, they can contribute to provide more
regular outputs. In the study by Cook et al. (2006, pp. 105)
on the role of graduate students in evaluating researchers’
performance, the authors make two important arguments
and observations:

while published research (articles in referred journals, etc.)
is likely the predominant output for evaluating the re-
searcher, the extent to which the research contributes to
the training of highly qualified personnel is also an impor-
tant component in the evaluation.

and

at least two inputs contribute to the generation of research
publications: (i) research dollars available to support pub-
lication; and (ii) the number of graduate assistants. . ..

Note that their first statement coincides with Observation
(3) and that (4) generalizes the second argument.

Next, consider the example of nurse trainees in a hospital.
Part of the responsibilities and performance of certified
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nursing staff is to guide and educate more trainees, which,
of course, consumes more of the hospital’s resources, such
as the certified nurses’ time and labor. However, the trainees
help the nurses with several routine tasks requiring the least
skill and experience.

Observations (3) and (4) describe two individual produc-
tion processes. Observation (3) is formalized by 7] as

Ti = {(x, w,y) : x can produce (w, y)}.
Observation (4) is represented by 7; as
T = {(x, w,y) : (x, w) can produce y}.

Observations (3) and (4) are observed simultaneously. In
other words, we can formalize the process as a joint tech-
nology based on both Observations (3) and (4). The overall
underlying technology with dual-role factors is the inter-
section of technologies 71 and 75 as

TiNTD.

It is important to bear in mind that dual-role factors
play two roles, inputs and outputs, simultaneously. They
are neutral in terms of their input/output roles. We do not
treat a dual-role factor as either an input or an output ex
ante. We only ex post conclude that a particular record
prefers the dual-role factor to be an input or output by
comparing what it gains from both roles as discussed later.

Without loss of generality, denote ¥ (y)=
{(x,w) : (x,w,y) € T} N T3} as the feasible set of (x, w) for
a given y. The following proposition shows that ¥ (y) is
nested in y due to the strong disposability of y.

Proposition 1. v/(y) € y(v) if y <.

Proof. y exhibits strong disposability for 7; and 75, and we
have

Ify <y, then (x,w,y) € T} = (x,w,y) € T,.

Ify <y, then (x,w,y) € [ = (x, w, y’) e .
Therefore, fory’ <y, (x,w,y) € T N T; implies (x, w,y') €

Ti N T;. According to the definition of ¥ (y), we can also
rewrite the statement as (x,w) € ¥ (y) = (x,w) € ¥(y);

Le, ¥(y) S ¥(y), fory <y. u

Following the idea of approximating technology based
on collected data set R, a possible approximation of 7{ N 15
is

m ={(xwy): Zxr)\r =X; Zyr)\r =Yy

reR reR
E Wik > W, E Xp Ay < X5 E Yidr 2Y;
reR reR rerR

Zw,)»,, <w,A>0,r € Rg.
reR
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The approximation imposes assumptions 1 to 3 as does 7.
The first three constraints associate with 77, and the next
three associate with 73. Any (X, w, y) (as seen on the right-
hand side of the inequalities) that satisfies all constraints are
in Tl/m\Tz Note that Tl/ﬂ\Tz approximates 7; N 75 directly
and are joint by applying the same A, values corresponding
to two technologies.

3.2. Radial efficiency

The classic Farrell input efficiency is a radial efficiency
measure relative to the boundaries of the technology by
proportionately reducing all “inputs,” including any fac-
tor that could provide function as inputs. We thus reduce
dual-role factors together with regular inputs since dual-
role factors are part of inputs. As an analog to Model
(1), solving the following problem evaluates (X, Wi, Yx),
ke R

ordial — min 9, (P1)
s.t. Zxrkr < 0xy,

> vk = Vi
Zwr)\, > Owy,
> Xk <0x,
> ¥k = Y

rer

Z wr}"r =< ewka

reRr
A >0,r € R

Constraints represent a joint technology of m, where
the top three constraints associate with 7; and the next
three constraints associate with 75. The optimal value of
(P1), 654l g the efficiency of k in a process with dual-
role factors; i.e., (P1) proportionately reduces all “inputs”
to 6 times of its current level, including x; and wy. Re-
ducing wy together with x; is clear with respect to 15, in
which dual-role factors play roles of inputs, and this reduc-
tion result is denoted as (6x, 0wy, yi). A feasible 6 means
that (6xx, 0w, yi) € YTH\TZ, and (6xg, 0wy, yx) should sat-
isfy the constraints associated with both 7} and 7. Thus,
we have 0wy, not wy, in the right-hand side of the third
constraint. Rather than interpreting it as simply minimiz-
ing (dual-role) outputs, this setting truthfully and passively
reflects the results of reducing both regular and dual-role
inputs x; and wg, which define the radial efficiency mea-
sure here. Note that reducing w; implies that the dual-role
factors are adjustable (other efficiency measures with addi-
tional assumptions are discussed in Sections 3.3 and 5.3).

Chen

(P1) is simplified by removing identical constraints as

G,Zad‘al =min 6,

s.t. Zxrkr < 0xy,
rer

Z yr)tr = Yk,

reR

Z wr)"r > 9wk7

reR

Z WA, < 9Wk,

reR
A >0,r € R

The dual problem follows as

max YV, )
st.  —xu+yv+wy —wy <0,7r € R,
Xpu — wiy’ + WkYi =1,
u>0,v>0,v">0,vy >0,
1]

where u € !, v e % vy e ®t!” and y' € %" are dual
variables corresponding to the constraints from the top
to the bottom. The equivalent linear fractional program-
ming problem (Charnes and Cooper, 1962; Charnes et al.,
1978) is

Yiv
max -
XU — WiY0 + wiy!
st. —xu+y.v+wy —wyY <0,reR

u=0,v>0,v>07v >0.

It can be rearranged as

YV
max - PIR
X u + wi (Y = v°) (PIR)
s.t. yrv <1,r e R

xu+w (Y —v°)
u>0,v>0,v" >0,y >0.

(P1R) is a standard ratio form of DEA (Charnes et al.,
1978) and has properties similar to Model (2). u and v
are the weight vectors for regular inputs and outputs, re-
spectively. y° is the weight vector for dual-role outputs,
and y' is for the w, serving as inputs. Y’ —y° can be
either positive or negative, although y° and y’ are both
non-negative.

We give the implication on the sign of y)* — y%* d € D
in a more intuitive and straightforward manner. Similar
to Model (2), Problem (P1R) allows k to select weights
to favor its performance (efficiency). In (P1R), y}* < y¢*
d € D implies that k prefers factor d as an output rather
than being an input and weights factor d more on its
output role. As a result, y;* — y9* < 0 provides a smaller
denominator value and results in a better performance.
yi* < y9* suggests that factor d benefits k from an output
role and has an overall negative impact on d as an input. In
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contrast, y/* > y5* means that k prefers factor d as an in-
put. yJ* = y9* suggests indifference to d being an output
or an input.

3.3. Being exogenously fixed

Instead of minimizing both x; and w; proportionately as
shown in (P1), we may want to treat dual-role factors as ex-
ogenously fixed or non-discretionary (Banker and Morey,
1986). The concept is adopted by Cook et al. (2006). Here,
we adopt this assumption and derive the formulation using
joint technology. Solving the following problem evaluates
k, but we assume that the dual-role factors are exogenously
fixed:

6% = min 0, (P2)

s.t. ZX,A,. < 60Xy,
reR
Z yr)hr = Yk
reR
sz‘)\r = W,
reR
Zxr)‘«r = HXk,
reR
Z yr)"r = Yk
reR
Zwr}\r = Wg,
reR
A >0,r € R

The interpretation of (P2) is similar to (P1). However, unlike
(P1), (P2) minimizes only the regular inputs. ) . _p W,A, >
wy specifies exogenously fixed dual-role outputs associated
with Ti, and ), _p W, A, < W associates non-discretionary
dual-role inputs associated with 7.

Following the same procedure deriving (P1R) from (P1),
the dual of the equivalence of (P2) is

max  yev + wey’ — wiy', (6)
st.  —xu+yv+wy —wyY <0,7r € R,
xu=1,

u>0,v>0,v">0,v >0.
The equivalent DEA ratio form is

Vv + wie(y? — vY)
X u ’
yv+w ' —v) _
XU -
u>0,v>0,v">0,v >0.

(P2R)

1,r € R,

The interpretations of decision variables are identical to
(P1R), but the dual-role factors are now in the numerator
with weight vector y° — ¥, not in the denominator with
Y —v? asin (PIR).
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Indeed, (P2R) derived from (P2) is identical to the for-
mulation in Cook et al. (2006); more precisely, (P2R) is a
general model considering multiple dual-role factors. Ar-
guing that y¢*y* = 0, Cook er al. (1986) propose the im-
plication of sign by comparing (P2R) to the VRS ratio form
(Banker et al., 1984) without dual-role factors. The differ-
ence between Model (2) and (P2R) is the second term of the
numerator, as is the difference between Model (2) and the
VRS ratio form. Their reasoning is based on the Returns
To Scale (RTS) characteristics drawn from the VRS ratio
form. y9* — y}* < 0is similar to the decreasing RTS cases,
and thus the dual-role factor d acts like an input. Simi-
larly, y7* — yi* > 0 indicates that d behaves like an output,
and y* — y/* = 0 suggests that d is at an equilibrium or
optimal level.

Cook et al. (2006) are correct in judging a dual-role fac-
tor’s input/output behavior based on the sign of y7* — y.*,
but it is not necessary to have y¢*y}* = 0. Without loss of
generality, if y¢* = 0 and y/* > 0, y* + § and y;* + § for
8 > 0 give the same optimal value, then y¢* + § and y* + 8
for § > 0 are also optimal solutions to (P2R). Although the
mathematical formulation structure of Cook et al. (2006)
gives a nice comparison to judge the importance, or ten-
dency, of the role of dual factors, the managerial interpre-
tations are not yet clear. Thus, we suggest using the same
arguments for (P1R): k prefers d as an output if and only
if y/* < y9* gives a positive weighted value of d in the nu-
merator and d contributes positively as an output.

Comparing (P1R) and (P2R) shows that (P1R) has dual-
role factors in the denominators with weight vector y’ — y°
while (P2R) has them in the numerators with Y’ — y’. Our
proposed judging rules and interpretations yield a con-
sistent result in both cases. In contrast, relying on RTS
characteristics may limit to (P2R). Moreover, to derive
the problem in a ratio form, note that both w;y’ and
w,Y? should always be in either the unity constraint as
in Model (5) or the objective function as in Model (6).
Otherwise, since the objective function and unity con-
straint correspond to the decision whether to reduce dual-

role factors in YTH\TZ, w; will be minimized by 6 for
its input role as ), _p W:A, < 0w, and also being exoge-
nously fixed for its output role as ) °,_p W, A, > Wy (or, simi-
larly, > ,cgWrA, = OWiand ), p WA, < Wy); thus 0% = 1.
Therefore, we can conclude that the model proposed by
Beasley (1990, 1995) is problematic and does not align with
the general intuitive understanding of the dual-role factors.

4. Visualization and geometric implications

Here, we visualize the joint technology using a simple,
three-dimensional case with one regular input, one regu-
lar output, and one dual-role factor, based on a portion
of the real-world data collected by Beasley (1990) in his
study evaluating research productivity at a university. The
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purpose of the visualization is to understand the gener-
alized DEA models with dual-role factors, the difference
between (P1) and (P2), and the possible extensions.

4.1. Data set

First, we recall that (P1) and (P1R) are equivalent, as are
(P2) and (P2R). For the purpose of visualization, from
Beasley (1990), we arbitrarily use equipment expenditure
as the only input (x), PG research as the only output (p),
and research income as the only dual-role factor (w). We
exclude Universities 7 and 49 due to zero or extremely
little equipment expenditure; however, this exclusion does
not affect our visualization. We approximate and visualize

YTH\E, in which w is dual-role, and also T} , w asan output,
and 7,, w as an input, for comparison. All technology
approximations employ the CRS.

Table 1 shows the data and the analysis results for
our simple visualization. Columns 5 and 6 are the input-
oriented efficiency measures associated with 77 agd T>.
For 62, w is minimized together with x regarding 7%, but
w is not minimized together with x regarding 7' to ob-
tain 6. Universities 24 and 36 have 6 = 1 and are effi-
cient with respect to 71. Universities 9, 19, and 36 have
67 = 1 and are efficient with respect to T5. Column 7 is the

radial efficiency measures G,Eadial for m, which is ob-
tained by (P1), and followed by the associated weight for w,
Y3 — y$* computed by (P1R). 9,{‘" is the efficiency measure
for k considering w as non-discretionary computed by (P2).
Column 10 is the weight of w under this assumption. As
expected, the efficiency measures, weights of the dual-role
factors, and signs of the weights are different for the two
models.

Fig. 1. A partial three-dimensional visualization of 7.

Chen

Fig. 2. A partial three-dimensional visualization of 7%.

Figures 1 to 3 visualize Ty, T», and m One block
represents 20 in x, 500 in w, and 10 in y. All figures are
bounded at x = 120 and Fig. 3 is also bounded at w =
3000. Doing so produces a more focused illustration of the
technology boundaries. Figure 1 represents 7', in which
research income w is an output. Universities 24 and 36 form
the boundaries of T (also see Table 1). Figure 2 represents
T, where research income is an input. Universities 9, 19,
and 36 form the boundaries of 7 (also see Table 1). Figure 3
shows the joint technology Tl/ﬂ\Tz Comparing three figures
show the differences of treating a dual-role factor in three
different settings.

Fig. 3. A partial three-dimensional visualization of Tl/ﬂ\E
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Table 1. Data set and analysis results
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(P1) & (PIR)

(P2) & (P2R)

%

0%

fix
9k

%

0%

Univ. X w y o} 67 9,2"‘”“1 pr—y yr—y

1 64 254 26 0.59 0.68 0.68 0.000 654 0.61 0.000 784
2 301 1485 54 0.31 0.29 0.29 0.000 134 0.31 —0.000 063
3 23 45 3 0.19 0.24 0.24 0.001 986 0.19 —0.000 826
4 485 940 48 0.15 0.18 0.18 0.000 094 0.15 —0.000 039
5 90 106 22 0.35 0.48 0.48 0.009 434 0.43 0.000 557
6 767 2967 166 0.33 0.36 0.36 0.000 055 0.33 —0.000 025
8 126 776 32 0.42 0.39 0.39 0.000 304 0.42 —0.000 151
9 32 39 17 0.77 1.00 1.00 0.001 477 1.00 0.001 568
10 87 353 27 0.45 0.52 0.52 0.000 479 0.45 0.000 071
11 161 293 20 0.18 0.23 0.23 0.000 286 0.18 —0.000 118
12 91 781 37 0.65 0.59 0.59 0.000 065 0.65 —0.000 209
13 109 215 19 0.25 0.32 0.32 0.000 419 0.25 0.000 057
14 77 269 24 0.45 0.53 0.53 0.000 554 0.45 0.000 081
15 121 392 31 0.37 0.44 0.44 0.000 357 0.37 0.000 051
16 128 546 31 0.37 0.40 0.40 0.000 323 0.37 —0.000 148
17 116 925 24 0.40 0.30 0.30 0.000 051 0.40 —0.000 164
18 571 764 27 0.08 0.09 0.09 0.000 082 0.08 —0.000 033
19 83 615 57 0.99 1.00 1.00 0.000 441 1.00 0.000 075
20 267 3182 153 0.91 0.83 0.88 —0.000 092 0.91 —0.000 071
21 226 791 53 0.35 0.40 0.40 0.000 189 0.35 —0.000 084
22 81 741 29 0.60 0.52 0.52 —0.000 284 0.60 —0.000 234
23 450 347 32 0.10 0.21 0.21 0.002 882 0.10 0.000 014
24 112 2945 47 1.00 0.61 1.00 —0.000 339 1.00 —0.000 170
25 74 453 9 0.26 0.19 0.19 0.000 519 0.26 —0.000 257
26 841 2331 65 0.14 0.14 0.14 0.000 052 0.14 —0.000 023
27 81 695 37 0.71 0.66 0.66 0.000 073 0.71 —0.000 234
28 50 98 23 0.66 0.84 0.84 0.000 914 0.82 0.001 003
29 170 879 38 0.36 0.35 0.35 0.000 234 0.36 —0.000 112
30 628 4838 217 0.56 0.50 0.50 0.000 009 0.56 —0.000 030
31 77 490 26 0.52 0.51 0.51 0.000 494 0.52 —0.000 247
32 61 291 25 0.59 0.66 0.66 0.000 664 0.59 0.000 102
33 39 327 18 0.71 0.67 0.67 0.000 151 0.71 —0.000 487
34 131 956 50 0.59 0.56 0.56 0.000 280 0.59 —0.000 145
35 119 512 48 0.58 0.66 0.66 0.000 347 0.59 0.000 422
36 62 563 43 1.00 1.00 1.00 0.000 095 1.00 0.000 100
37 235 714 36 0.24 0.27 0.27 0.000 185 0.24 —0.000 081
38 94 297 23 0.35 0.42 0.42 0.000 461 0.35 0.000 066
39 46 277 19 0.61 0.63 0.63 0.000 838 0.61 —0.000 413
40 28 154 7 0.40 0.39 0.39 0.001 404 0.40 —0.000 678
41 40 531 23 0.94 0.83 0.92 —0.000 635 0.94 —0.000 475
42 68 305 23 0.49 0.55 0.55 0.000 602 0.49 —0.000 279
43 82 85 9 0.16 0.24 0.24 0.011 765 0.17 0.000 612
44 26 130 11 0.61 0.68 0.68 0.001 543 0.61 0.000 238
45 123 1043 39 0.54 0.46 0.46 0.000 048 0.54 —0.000 154
46 149 1523 51 0.60 0.49 0.51 —0.000 158 0.60 —0.000 127
47 89 743 30 0.56 0.49 0.49 0.000 066 0.56 —0.000 213
48 82 513 47 0.83 0.87 0.87 0.000 466 0.83 0.000 076
50 95 485 32 0.50 0.54 0.54 0.000 420 0.50 —0.000 200
4.2.9(23) Proposition 1. The x-axis is the value of x and the y-axis is

Figure 4, the x-w cutting plane of m at y =23, can
represent the feasible collection of (x, w) associated with
y = 23—i.e., ¥(23)—because () is nested as shown in

the value of w. The east region, bounded by aABCDd,
represents part of the feasible region of (x, w) when
y = 23. In particular, (x4, w4) = (43.29, 52.8), (xg, wp) =
(33.49,248.1), (x¢, we) = (33.16, 301.2), and (xp, wp) =
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Fig. 4. A partial x—w cutting plane at y = 23.

(54.81, 1441.2). The lower boundary Aa is parallel to the x-
axis, not the extension of OA4 (the dashed line in Fig. 4); the
lower boundary indicates the strong disposability of regu-
lar input x. Segments 4B and BC are downward sloping;
a reduction of one dimension requires the other dimension
to increase for any points on AB and BC. Segments CD
and Dd are upward sloping, meaning that for points on
these boundaries, increasing w while keeping x the same
will result in a smaller y, since the point is outside ¥(23)
and ¥ (y) is nested. To increase w for points on the upward
sloping boundaries also requires an increase in x, but the
opposite is not true.

Furthermore, in Fig. 4, the upward sloping boundary
segments occur only when w is larger than 301.2 at C. We
also note that the normal vector values for 4B and BC have
the same sign for x and w. In contrast, segments CD and
Dd have opposite signs on the normal vector values for x
and w.

4.3. Projection

In Fig. 4, Uss, Uss, Usy, and Uy, are x-w values for Univer-
sities 28, 38, 41, and 42, for which y = 23; Table 1 shows
the detailed values. We can compute the efficiency measure
based on (P2), where w is non-discretionary and is fixed at
its current level, by reducing only x horizontally. Therefore,
(P2) suggests U,g and Usg project onto segments AB and
BC, respectively, and both Uy and Uy, project onto CD,
which is upward sloping.

On the other hand, we apply (P1) if adjustment on w is
permitted. (P1) considers and measures the proportionate
reduction on both x and w. As a result, all records evaluated
try to move toward the origin, and we can observe different
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projected points on the boundaries by comparing with (P2).
For example, Uy, projects onto AB, which is downward
sloping, instead of CD.

Interestingly, regardless of the model, a projection on up-
ward sloping boundaries has a negative weight y’* — y %%,
such as Uy; and Uy, in (P2) and Uy, in (P1) (Table 1). Pro-
jecting onto downward-sloping boundaries coincides with
positive y™* — y?*, such as U, Usg, and Uy, in (P1) and
U,g and Usg in (P2). Uy, has opposite signs in the two mod-
els; one projects onto downward-sloping 4B, leading to
y* — y°* > 0, and the other projects onto upward-sloping
CD, leading to y'* — y°* < 0. In summary, the sign of
y'* — y°* only depends on the projected point, not the
data point itself. A model determines the improvement
(projection) path. Different improvement paths, due to dif-
ferent objectives and assumptions, lead to different pro-
jected points on the boundary. Two different points and
two different models may project onto the same point on
the boundary, leading to the same sign of y* — y°*. This
explains why, in Table 1, (P2R) gives more universities with
negative y™* — y°* than does (P1R). It is simply because
(P1R) proportionately reduces x and w, for which the pro-
jection moves toward the southwest and, thus, the project-
ing points will more likely be on the downward-sloping
boundaries.

y* —y°* is a boundary property, not the property of
the point before a projection, and it associates the ideal
benchmark without inefficiency. We thus suggest interpret-
ing the sign of y'* — y°* as preferring dual-role factor w
for its input (output) role, without further interpretation
for any improvement direction. As addressed in Section 3,
y'* — y?* > 0 indicates that dual-role factor w benefits k
from being an input; however, this does not lead to the
conclusion of reducing w for improvement. Since the pro-
jected point is on the downward-sloping boundary, any
reduction on w results in infeasible or less y. In contrast,
when y’* — y°* < 0, the projecting boundary is upward
sloping, and any increase on w results in infeasible or less
y. Now, factor w does not contribute as do the regular
inputs.

The reallocation of w, such that the efficiency of (P2) is
maximized, or other objectives can give multiple solutions.
Taking Uy as an example, both increasing and reducing
w will yield identity efficiency in (P2), although the corre-
sponding weight y'* — y°* indicates that Uy, prefers w as
an output.

5. Generalization and extensions

Now, we generalize the observations in Section 4 and in-
vestigate y™* — y°* from the viewpoints of geometry and
economics in addition to the weights in the performance
aggregation scheme (see Section 3). We also discuss some
possible extensions.
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5.1. Supporting hyperplanes

Note that the first type of constraints in Models (5) and (6)
are identical. This formulation takes the joint technology
composed by the two technologies as one technology.
In DEA, these constraints associate with a hyperplane,
—xu* 4+ yv* — w(y’™* — y?*) =0, of the joint technology
m (also termed the supporting hyperplane; see e.g.,
Banker et al. (1984)). All (x,, w,,y,)r € Rare either on this
hyperplane (if = holds) or beneath it (<). (Xg, Wi, Yx) satis-
fying the equation is on the supporting hyperplane (bound-
ary, frontier), and k is efficient. “<” indicates (xx, Wg, Yx) 1S

beneath the hyperplane and within Tl/m\Tz, and there must
exist (x,, W, y,) r € R\{k} on the plane. In this case, this
hyperplane is the one on which k should project.

(—u*, v*, —(y™* — y°*)) is the normal vector for the hy-
perplane —xu* + yv* — w(y™* —y°*) = 0, and u* > 0 and
v* > Oinstandard DEA. Comparing the normal vector val-
ues, —(y,* — yJ*) < 0d € Dindicates that the hyperplane’s
orientation on d is like the orientation of the inputs, since it
has the same sign with —u*. In contrast, —(y,* — %) > 0
d € D suggests that the hyperplane’s orientation on d is like
an output. This observation gives geometric implication on
the sign of y* — y¢*, and the input/output behavior judg-
ing result is consistent with the results discussed in Sections
3.2 and 3.3.

5.2. Economic implications

u and v are dual variables corresponding to the input and
output constraints, and u* and v* specify the shadow prices
for the inputs and outputs. Y’ and ¥’ are dual variables
associated with constraints of dual-role factors in their out-
put and input roles, respectively, and y°* and y’* are the
shadow prices for their output and input roles. y** — y** (or
v* — y°*) is thus the (additive) composited shadow prices
for dual-role factors. y$* — yi* can be deemed as the “net
value” per unit of d. y* — y/* > 0 suggests an additional
unit of d gives a net benefit. * — y;* < 0 indicates the
input tendency of d since it shows a net cost. Regardless of
the setting of evaluation models—e.g., (P1) and (P2)—the
shadow price gives a simple and consistent interpretation.

Without loss of generality, consider the boundary (hyper-
planes, isoquant) of ¥(y) as defined in Section 3.1. Every
point on the boundary has a corresponding normal vector
(—u*, —(Y™* — v°*)). A positive vector entry value, say en-
try i, indicates that the boundary at this point is backward
bending in the dimension i and a negative marginal pro-
ductivity of the corresponding factor i. Namely, increasing
factor i at this point causes a decline in level of y.

If —(y)* — y9*) > 0d € D, d has negative marginal pro-
ductivity on y, and an increase in d will not be in ¥ (y)
but in a ¥(y’) such that y’ <y, since ¥(y) is nested in y. It
also suggests that the composted shadow price y* — y7*
is negative. Bear in mind that the discussion here concerns
the projected boundary corresponding to (Xg, Wi, Yx), not
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(Xk, Wi, i) itself; the projecting hyperplane depends on the
projection paths, such as radial or non-discretionary.

The change along the boundaries of a dual-role factor
d’s orientation and composted shadow price y* — y7* re-
flect the tendency and importance of its input/output role.
The input-output tendency is for factor d but not for any
particular point under evaluation. That is, we consider cases
without inefficiency and show the interactions among  and
other factors. Starting from a small value for d, the major
role of d is to support regular inputs to produce regular out-
puts at this stage. It should be noted that a reduction in d
leads to less regular outputs. The composted shadow prices
are relative prices among ¢ and other inputs and relate to
the marginal rates of substitution in consumption. The law
of diminishing marginal rates of substitution, which results
in ¥ (y) being convex, can be observed in this region (e.g.,
Fig. 4).

Unlike regular inputs, increasing d comes with the cost
of consuming regular inputs. As mentioned, nurse trainees
who need guidance from certified staff consume the hospi-
tal’s resources of staff time and labor. This phenomenon is
significant when the value of dual-role factor d is large; a
further increasing d has a negative impact on regular out-
puts. Thus, we will observe a backward bending hyperplane
and the negative composted shadow price y}* — y9*.

Increasing d with negative impact on y does not neces-
sarily imply that an increasing d is “bad.” In contrast, d
contributes to overall output directly, because d itself is an
important component of outputs, yet it does not contribute
indirectly as an input to generate regular outputs. There-
fore, the net benefit derives more from the output side than
the input side. The corresponding hyperplane orientation
and shadow price behave like an output. Increasing d at this
stage yields a reduction of y, which is the tradeoff between
d and y or, in the real world, the possible transformation in
production between d and regular output.

5.3. Extensions

It is easy and straightforward to extend our proposed mod-
els and to interpret the results. Assumptions of variant
DEA models can be classified (Cherchye and Post, 2003)
as (i) production technology, the underlying characteris-
tics of the input/output transformation processes, such as
assumptions 1 to 3 listed in Section 2; (ii) the data gen-
erating process, the sample data used to estimate 7'; and
(iii) the objective function, the uses of T or its estimation;
e.g., (P1) and (P2). Any DEA model is a combination of
these three components. Discussions of the variant tech-
nologies can be found in Kuosmanen (2003) and Briec et al.
(2004).

Based on the three classifications and given a sample data
set, it is simple to model different combinations of pro-
duction technologies and objective functions. For example,
both (P1) and (P2) are based on the technologies assuming
CRS and convexity, which may be strong in some cases.
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When we adopt VRS together with assumptions 1 and 2,
the joint technology is

(x,w,y): Zx,.kr <x; Zy")" >y; Zw,,)w > w;

reR rerR reR
Y oxh XY VA Vi) WA SwW
reR rerR reR
> h =1 >0reRp. (7)

rerR

Furthermore, if we relax the convexity, the FDH technol-
ogy is applied as

(x,w,y): Zx,)»,‘ <Xx; Zy,)\,, >y; ZW")‘V > w;

reR reR rerR
DX XY YA Y Y Wk S W
rerR reR rerR
Zx,:l;x,,z{o,l},reR}. ®)
reR

Given any technology approximations such as Models
(7) and (8), we can apply different objectives with differ-
ent interpretations. For example, if the dual-role factors
are fixed, we can apply the objective similar to (P2) to
Model (7) or (8). Note that deriving the performance eval-
uation model is more flexible and easier to interpret than
using the ratio form proposed by (P1R) and (P2R). For ex-
ample, there is no ratio form if FDH is applied, and the ratio
will not be similar to standard VRS or CRS DEA models
if we use other objective functions, such as additive models,
cost minimization, or profit maximization. Moreover, it is
simple to measure the distance function (Shephard, 1970)
for any given (x, w, y) using the joint technology proposed.
Thus, we can measure the Malmquist productivity index
and its decomposition (Fare et al., 1994b) for cases with
dual-role factors.

6. Conclusions

Typical DEA studies consider processes transforming in-
puts to outputs. In some cases, however, some factors can
be both inputs and outputs simultaneously. Such factors
are termed dual-role factors and their ambiguous role def-
initions make performance evaluation challenging. Rather
than proposing an ad hoc model directly, this article pro-
posed an axiomatic framework using joint technology,
which is developed based on intuitive thinking. Under
the proposed joint technology, evaluation models can be
mathematically derived and/or axiomatically validated. We
noted that variant models based on different assumptions
and needs can be easily but rigorously extended. We showed
that the input/output behavior of dual factors can be ex-
plained from different perspectives such as multi-criteria
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performance aggregation, geometry, and economics. We
developed a simple three-dimensional case that we also
generalized to multi-dimensional cases for considering the
multiple dual-role factors. We found that the input/output
tendency of a dual-role factor is a property on the projected
boundary, not the data point itself. Different projecting
paths associated with different objectives produced differ-
ent weights and different implications. We concluded that
the weights relate to the ideal performance improvement
target. In other words, the benchmark on the boundary is
the status after the improvement and does not imply the
future improvement.

The finding of negative weights for dual-role factors in
¥ (y) suggests that increasing dual-role factors comes with
a cost. We can simplify two types of constraints associated
with dual-role factors as equality constraints when com-
puting efficiency scores, but the corresponding dual vari-
ables should be interpreted with care. The literature imposes
weak disposability to model the cases where increasing a
factor comes with a cost (e.g., Fare et al. (1994a)). Noting
that the real connection to weak disposability is beyond
the scope of this article, we propose it as a topic for fu-
ture research. In addition, more research is needed on RTS
and the rate of technical substitutability for the production
process with dual-role factors.
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