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a b s t r a c t

This study integrates three data mining techniques, K-means clustering, decision trees, and neural
networks, to predict the travel time of freeway with non-recurrent congestion. By creating dummy
variables and identifying important variables, not only is the prediction performance increased without
increasing investment in equipment, but also important variables are obtained concerning the important
locations of equipment in order to effectively assist public transit agencies with system maintenance.
The experimental results for a segment of 36.1 km of National Freeway No. 1, Taiwan, with non-recurrent
congestion show that, whether or not the data generated by the Electronic Toll Collection (etc) system is
used as input variables, the travel time prediction method developed in this study is able to improve the
prediction performance. Meanwhile, the proposed approach also reduces the percentage of samples with
mean absolute percentage error (MAPE)420%. Furthermore, in this study, important variables are
extracted from the decision tree in order to predict the travel time. Finally, the prediction models
constructed in accordance with six scenarios are highly accurate due to the low MAPE values, which are
from 6% to 9%.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

According to a report by the International Energy Agency in 2011
[1], the transport industry made the second largest global contribu-
tion to CO2 emissions, accounting for 23%, following the electricity
generation industry, which accounted for 41%. Roads are the main
source of CO2 emissions in the transport industry. Joumard et al. [2]
found that CO2 emissions from vehicles traveling at low speed in
urban areas are higher than those from vehicles traveling at high
speed. Furthermore, cold engines consume more fuel and generate
more pollution than engines that are fully warmed up. Therefore,
increasing or maintaining smooth traffic flows for reducing the
conditions of stop and go while drivers travel on roads not only
reduces the social costs, but also makes an important contribution
to reduce greenhouse gas emissions. However, the speed of con-
struction of additional roads generally cannot match the increase
in the number of vehicles. Thus, construction of additional roads
may be difficult to efficiently ease traffic congestion. In view of
this, intelligent transportation systems (ITSs) provide a viable
solution that can improve the efficiency and service standard of
the existing transportation system and relieve or resolve the road
congestion problem. Therefore, in recent decades, ITS has become

a mainstream research area. Advanced traveler information systems
(ATIS) and advanced traffic management systems (ATMS) are
technologies that are often used in ITS to improve the efficiency
of the road system. Many studies (e.g., [3,4]) have also pointed out
that providing travel time information is an important factor in
encouraging the success of ATIS and ATMS. Therefore, in order to
relieve traffic congestion or reduce CO2 emissions, travel time
prediction is an important issue. According to the Oak Ridge
National Laboratory [5], 55% of the delays encountered by drivers
on American freeways are caused by non-recurrent events, of which
72% are freeway accidents [6]. Therefore, in recent years, in order to
improve the applicable timing of travel time prediction models,
related studies (e.g., [7,8]) have extended the research from explor-
ing general traffic flow conditions to how to improve the prediction
performance in the case of non-recurrent congestion.

From the study by Golob et al. [9], there exists a close relation-
ship between traffic flow conditions and traffic accidents (crashes),
by type of crash. For example, the congestion flow is apt to result in
more serious crashes. In recent years, ATIS and ATMS have been
widely utilized to ensure the efficiency of road system and to avoid
the congestion flow. From the study by Vanderschuren [10], intel-
ligent transport systems (ITS) can reduce (potential) crashes, and
this finding is also demonstrated in Mitretek Systems [11]. Mitretek
Systems reported that there are six major objectives/benefits of ITS
identified in the literature, which consist of safety, mobility, effi-
ciency, productivity, energy/environment and customer satisfaction.
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Therefore, forecasting travel time, particularly in the freeway with
non-recurrent congestion, with a high degree of accuracy, can
improve safety and efficiency.

Many studies related to prediction of freeway travel time have
shown concrete results. Kwon et al. [12] used a liner model to
collect loop detector data in order to predict travel time. Oda [13]
and Van Arem et al. [14] used autoregressive integrated moving
average (ARIMA) models to obtain appropriate results of travel
time prediction in general traffic conditions. Van Arem et al. [14]
found that the ARIMA model is applicable to normal traffic
congestion, but shows larger deviations in non-recurring conges-
tion. There are also many studies that predict travel time through
Kalman filtering [15–20]. Fei et al. [7] developed the Bayesian
inference-based dynamic linear model (DLM) and further con-
structed the adaptive dynamic linear model (ADLM) to predict the
travel time in two traffic conditions of recurrent and non-recurrent
congestion. Fei et al. [7] divided the data into two data sets,
morning and afternoon, and performed travel time prediction with
both data sets. The prediction performance of the proposed ADLM
is between highly accurate prediction and good prediction.

Moreover, in order to construct the prediction model of actual
travel time, previous studies mainly obtain the actual travel time
information through probe vehicles [21] and automatic vehicle
identification (AVI) [16,22–25]. Petty et al. [21] developed a speed
calibrated model through single-loop loop detectors, and then
estimated the travel time accordingly. The study by Petty et al. [21]
confirmed that the developed stochastic model is applicable in
congestion conditions, but not including non-recurrent congestion.
Meanwhile, Petty et al. [21] used the travel time data collected by four
probe vehicles as the model validation target. Chien and Kuchipudi
[16] found that the percentage of probe vehicles in the total traffic
flow is a critical factor, which affects the prediction accuracy when
using AVI data to predict the travel time. In recent years, neural
networks (NNs) [22,26–32] have been utilized to predict traffics with
various degrees of success due to their modeling flexibility, predictive
ability, and generalization potential [33]. The above-mentioned stu-
dies also confirmed that NNs have good prediction capability when
applied to the analysis of complex traffic characteristics.

Although previous studies have predicted the short-term travel
time with various degrees of success, scientific research with
regard to travel time reliability focuses on four fundamental issues
as follows:

1. Enhancing the prediction capability with existing equipment.
2. Identifying the important detectors and the critical variables in

order to enable the authority to obtain the target detectors and
develop the effective imputation methods for missing data.

3. Providing the robust and accurate prediction model which is
also applicable in the case of non-recurrent congestion.

4. Classifying different categories of traffic characteristics in order
to predict the travel time.

Previous studies (e.g., [16,17,24,25]) mainly focused on the first
issue mentioned above, but there are few studies on the third issue.
However, for the transportation management unit, there is a trade-off
between costs and output benefits. How to improve the prediction
performance and applicable timing under the premise of reducing the
system implementation cost and operational cost is an important goal
of travel time prediction. Therefore, the objective of this study is to
use a systematic structure to integrate a variety of data mining
methods in order to develop an effective solution to the first three
issues mentioned above. For the first issue, there is no doubt that
there is a significant positive relationship between improving the
explanatory power of traffic characteristics and enhancing the
performance of travel time prediction. The previous travel time
studies (e.g., [15–17,24,25]) were mainly focused on enhancing the

explanatory power of traffic characteristics irrespective of whether
the data were derived through model inference, system simulation,
parameter calibration, or nonlinear model construction. Therefore,
identifying the traffic characteristics at time t could help with
improving the accuracy of travel time prediction. Furthermore,
collecting more comprehensive traffic data could reflect the traffic
characteristics better. For example, stronger explanatory power of
traffic characteristics could be obtained when a vehicle detector is set
up every kilometer than when one is set up every 10 km. However,
more devices will result in higher equipment and maintenance costs.
Therefore, increasing devices and enhancing the explanatory power of
traffic characteristics have been a trade-off for long time. In order to
solve this problem, this study proposes a solution which attempts to
avoid the cost of increasing devices and improve the explanatory
power of traffic characteristics at the same time. Furthermore, the
performance of travel time prediction is expected to be enhanced. In
this study, to achieve the above goals, we use K-means to categorize
the traffic characteristics in every 5 min and create a dummy variable
to mark the cluster ID of each 5-min sample.

With regard to the second issue, when compared with collect-
ing data manually, there is no denying that collecting data through
a device is better for long-term data collection and makes it easier
to control the error. However, it cannot prevent the occurrence of
missing data. Therefore, researchers [34–38] have studied the
processing of missing data in order to understand the exact traffic
characteristics. However, in terms of freeway travel time predic-
tion, relatively few previous studies focused on identifying impor-
tant device locations and critical variables. For example, if rainfall
at detection point A, the spot speed at detection point B, heavy
vehicle volume at detection point C, etc. are identified as the
critical variables for analyzing traffic characteristics and predicting
travel time, managers not only can clearly understand the target
detectors but also can develop an imputation method for missing
data for a specific variable collected at a particular detection point.
In addition, this can also have the benefits of reducing investment
in equipment, decreasing maintenance cost and enhancing the
applications of model. In this regard, in this study, we use the
classification and regression tree (CART) to provide an effective
solution to identify important device locations and critical vari-
ables for travel time prediction.

For the third issue, in order to construct a robust model which is
able to predict freeway travel time in traffic with non-recurrent
congestion, a method integrating K-means, CART and NN is pro-
posed in this study. Furthermore, in this study, the raw data of the
ETC system (vehicle charging time and ID) are used to calculate the
actual travel time (ATT), which is used as a target in training
the prediction model. This study develops a robust model for
predicting the travel time in the case of non-recurrent congestion.
With this model, the prediction performance can be improved with
existing equipment, and critical variables at important locations
can be identified such that the management unit can have a clear
objective in operating and maintaining equipment.

The rest of this paper is organized as follows. Section 2 presents
the details of the freeway segment in this study and data collec-
tion. Section 3 describes the method of constructing the model of
travel time prediction. The experimental design and results are
presented in Section 4. Finally, conclusions and suggestions of this
study are made in Section 5.

2. Data

2.1. The freeway segment in this study

Two freeways, National Freeways No. 1 and No. 3, form the
main inter-city transportation corridor between the south and the
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north of Taiwan. According to the data reported by Taiwan Area
National Freeway Bureau (MOTC) in 2009, the total annual traffic
volume of these two freeways was 539,568,273 vehicles, while the
annual total traffic volume of National Freeway No. 1 was
329,743,228 vehicles, which accounts for approximately 61.11%.
Therefore, National Freeway No. 1 is the main freeway for inter-
city transportation in Taiwan. In this study, the data were collected
at 5-minute intervals between the Yangmei Toll Station and
Taishan Toll Station of the freeway in the northward direction
from 16 September to 16 October 2009. The studied segment is a
one-way three-lane freeway. From Fig. 1, there are eight inter-
changes including two system interchanges, the Pingzhen System
Interchange and the Airport System Interchange in this segment.
Its length is 36.1 km accounting for 9.7% of National Freeway No.
1 with a service population of 9,382,332 people accounting for
40.58% of the total population of Taiwan. Furthermore, according
to the statistics of September and October 2009 reported by
Taiwan Area National Freeway Bureau MOTC, the average daily
traffic volume in this freeway segment was 336,895 vehicles,
which is the sum of the daily traffic volumes at Yangmei Toll
Station and Taishan Toll Station. It accounts for 23.5% of the
average daily traffic volume of National Freeway No. 1. With the
above information, the segment in this study is the busiest and
most complicated segment in National Freeway No. 1.

2.2. Data collection

Considering the methodologies for short-term traffic predic-
tion, NNs are classified as nonparametric statistical methods [39].
Looking for critical variables through the process of establishing
the NN-based prediction model is the key to developing an
accurate prediction model. Therefore, according to the suggestions
of previous studies (cite references), we collected data of critical
variables of travel time prediction. Furthermore, the data relia-
bility of automated data collection is dependent on system
stability and calibration accuracy. Therefore, in order to enhance

the accuracy of travel time prediction in the areas with compli-
cated traffic characteristics, collecting data of critical variables for
effectively analyzing traffic characteristics and ensuring data
reliability have become the important issues.

According to previous travel time prediction studies [7,40–43],
spot speed, rainfall, historical travel time, and the day of the week
and time (AM or PM) are important variables for improving the
performance of travel time prediction. Therefore, in this study,
spot speeds were collected by 11 dual loop vehicle detectors every
5 min. The rainfall data of three areas were collected every 10 min
by rainfall detectors, and the data were transformed into those of
5-min intervals using the arithmetic mean method.

According to Petty et al. [21] and Chien and Kuchipudi [16], ATT
can be obtained through a probe vehicle or AVI system, and ATT
helps with establishing a robust prediction model. However, due to
the high system construction cost, the studied segment and samples
are limited. In Taiwan, the ETC system was established in 2006 and
covers the entire National Freeway No. 1. Up to the end of October
2009, the utilization rate reached 36.48%, and there were a total of
16,247,908 charging records in October 2009, with a charging success
rate of 99.9984%. Therefore, through the ETC system, the travel time
data can be collected on a long road segment and the sample size can
also be increased considerably to ensure sample representativeness.
Furthermore, in order to obtain the actual travel time (ATT) and the
historical travel time (HTT) respectively as the target and input
variable of the prediction model, the vehicle charging time and ID
were collected by ETC in this study. ATT and HTT were calculated by
the methods presented in Section 3. In addition, Li and Chen [8]
pointed out that encoding the days of the week as 1–7 and the time
attribute as AM (0:00–12:00) or PM (12:00–24:00) can improve the
performance of freeway travel time prediction in the case of non-
recurrent congestion. To sum up, in this study, the spot speed,
rainfall, day of the week, time (AM or PM), and HTT obtained from
ETC were collected and used as input variables of the travel time
prediction model.

In addition, to ensure data reliability, the raw data were
collected from the database of Taiwan Area National Freeway

Fig. 1. The freeway segment in this study.
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Bureau, MOTC, the database of the Central Weather Bureau, and
the accident database of the National Highway Police Bureau.
The rainfall data were collected from three rainfall detectors.
The above-mentioned three databases are established by Taiwan0s
governmental agencies to permanently collect the most complete
real-time data for information dissemination, management, and
research use. Because ATT was used as the target for the model
training and test, and HTT was used as the input variable, in order
to avoid inconsistency between the result of model training and
the actual condition as a result of data imputation error, the
sample at time t with missing values of ATT and HTT were
removed. Finally, 7908 samples were collected in this study.

2.3. Characteristics of non-recurrent congestion

It is undeniable that accidents and rainfall are the main causes
of non-recurrent congestion, and are difficult to predict accurately.
There were a total of 76 accidents with 176 vehicles damaged and
six people injured in the time span of this study (see Fig. 2).
In addition, 94.7% of accidents involved only vehicle damage
without injuries to people. It is noteworthy that although fewer
accidents occurred on the freeway section between Taoyuan
interchange and Linkou interchange than on the freeway section
between Jungli interchange and Neili interchange, more vehicles
were damaged in accidents occurring in the former section than in
the latter. Thus, the impact of accidents on traffic flow is greater in
the freeway section between Taoyuan interchange and Linkou
interchange.

The traffic flow of Tuesday can be taken as an example (see
Fig. 3) to explain the impact of accident and rainfall on traffic flow.
Observing the distribution of travel time of 13 October shown in
Fig. 3(a), the morning peak hour of the freeway segment in this
study occurred at about 7:00–8:20 AM, when there were no
accidents or rainfall, whereas the peak time was prolonged, when
there was rainfall. This can be approved in the cases of 29
September and 6 October. Due to the intermittent shower
occurring during the period 5:25–6:40 AM on 29 September (see
Fig. 3(b)), the morning peak hour of this day occurred at 7:20–
8:50 AM. Furthermore, the intermittent rainfall during the period
7:15–8:50 AM on 6 October resulted in a morning peak hour of
7:00–9:30 AM.

According to Fig. 3, in the freeway segment in this study, the
afternoon peak on Tuesdays was not obvious if there was no
accident. However, when there were accidents, the travel time of
this freeway segment increased significantly. Taking 29 September
as an example, accidents occurred consecutively between 15:10
and 18:45 (see Fig. 3(c)), and accordingly there was a peak hour
from 16:30 to 18:45 in this freeway segment (see Fig. 3(a)).
Furthermore, there was an accident involving three vehicles
between 10:40 and 11:27 AM in the morning of 22 September,
which resulted in a morning peak hour lasting from 7:15 to
11:25 AM. Hence, the accident and rainfall are critical factors

resulting in non-recurrent congestion. The occurrence of accident
has randomness as well as the important variables such as
accident occurrence time, number of closed lanes and accident
removal time used to estimate the impact of accident on traffic
flow cannot be acquired in real time due to the limitation of
notification scheme. Therefore, this study attempts to develop a
robust model of travel time prediction in the case of non-recurrent
congestion without the real time accident related information.

3. The proposed procedure of travel time prediction

In order to establish a robust travel time prediction model for
the freeway with non-recurrent congestion, and to obtain the
critical variables of important detector locations for the manage-
ment unit with existing equipment, this study tries to achieve the
research objectives based on the procedure as shown in Fig. 4.
Each step is described as follows.

3.1. Step 1: input data

In this study, raw data such as spot speed, rainfall, day of the
week, time (AM or PM), and vehicle charging time and ID of ETC
are collected from the databases established by Taiwan0s govern-
mental agencies. Furthermore, ATT, HTT, dummy variables, impor-
tant detectors, and critical variables are obtained through the
following steps.

3.2. Step 2: compute ATT and HTT

The Southwest Research Institute [44] developed two algo-
rithms, TransGuide and TranStar, by using the AVI system to
calculate the actual travel time. Both these algorithms use the
concept of rolling average to automatically calculate the travel
time which meets the threshold-based criterion. Furthermore,
TransGuide and TranStar both set 0.2 (20%) as the threshold value.
That is, if the travel time of vehicle i is 20% more or less than the
previous average travel time BttABt, it is regarded as an abnormal
trip, and this sample is removed. For the further details, readers
are referred to Dion and Rakha [24]. In addition, differing from the
rolling average algorithm, the Transmit algorithm constantly
makes the calculation with the travel times from those samples
within 15-min intervals. The travel time is the time difference
(tBi�tAi) between downstream point B, tBi, and the upstream point
A, tAi. Furthermore, the Transmit algorithm collects the travel
time samples of two AVI readers, N, in each constant time interval
t, with an upper limit of 200 samples, to calculate the average
travel time ρABt within the time interval by using the following
equation [45]:

ρABt ¼
∑N

i ¼ 1ðtBi�tAiÞ
N

ð1Þ

Fig. 2. Number of accidents, injuries, and car crashes in the studied segment.
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In this study, the charging times and ID of northbound vehicles
passing through Yangmei Toll Station and Linkou Toll Station were
collected through the ETC system. A total of 1,679,868 data points
were collected, and the Transmit algorithm was employed to
compute HTT and ATT at 5-min intervals without the restriction
of 200 samples. The computation of historical travel time (HTTABt)
is expressed by the following equation:

HTTABt ¼ tBi�tAijt�trrtBirt and BttABtð1�0:4Þ�

rtBi�tAirBttABtð1þ0:4Þ� ð2Þ

In Eq. (2), with the time of vehicle i passing through point B, tBi, as
the judgment basis, data of vehicles passing through point B
during an interval of five minutes are collected, and the completed
trips between upstream point A and downstream point B are
utilized as the samples to compute the average travel time as the
historical travel time (HTTABt). Although HTT does not represent
the ATT (ATTABt) of vehicle i traveling in the freeway section AB
from upstream point A, it may imply the historical traffic char-
acteristics of the freeway section AB. According to Fei et al. [7], HTT
can be used to effectively adjust the real time prediction model.

Thus, in this study, HTTABt is used as an input variable of the NN-
based prediction model.

The computation of actual travel time (ATTABt) is expressed by
the following equation:

ATTABt ¼ tBi�tAijt�trrtAirt and BttABtð1�0:4Þ�

rtBi�tAirBttABtð1þ0:4Þ� ð3Þ

In Eq. (3), with the time of vehicle i passing through point A, tAi, as
the judgment basis, data of vehicles passing through point A
during an interval of 5 min are collected, and the average travel
time of vehicles completing the freeway section AB is computed.
This travel time represents the ATT taken by vehicle i after passing
through point A to enter the freeway section AB. The actual travel
time (ATTABt) is taken as the target of prediction model. The
threshold value of checking whether it is a continuous trip is set to
0.4. For example, if the average travel time at time t–1 is 30 min
and the travel time of sample i at time t is more than or equal to
18 min or less than or equal to 42 min, it is regarded as a
continuous trip. This sample can be used to compute the travel
time. Furthermore, both HTTABt and ATTABt apply the same thresh-
old value, 0.4. For different areas, the threshold value may be

Fig. 3. Analysis of travel time, accident and rainfall on Tuesday. (a) Travel time, (b) rainfall and (c) distribution of number of vehicles involved in accidents and duration of
accidents.
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different. The threshold value of 0.4 is used by Taiwan Area
National Freeway Bureau, MOTC.

3.3. Step 3: partition data

After processing the data with Step 2, the processed data were
divided into the training data set and the test data set in the ratio
of 7:3 in order to build the travel time prediction model. However,
selecting 70% of the data randomly as the training data set and the
remaining 30% as the test data set is not applicable because non-
recurrent congestion is considered in this study. If the data are
directly divided in a random manner, the samples of non-
recurrent congestion may be grouped mainly into either the
training data set or the test data set. Such a situation may result
in over- or under-estimation in the prediction model. Thus, in this
study, all the samples were firstly clustered by using K-means.
Then, each cluster was randomly divided into the training data set
and test data set in the ratio of 7:3. The clustering is used to ensure
that the samples of various traffic characteristics are randomly
selected in the training data set and test data set for avoiding the
error in implementing the prediction model.

3.4. Step 4: create dummy variable by K-means

In this study, clustering is used to assign samples which have
the same traffic characteristics to the same group, and then
generate a dummy variable to the samples. The training data set
was clustered through K-means, and a dummy variable was added
to the input variables to represent the cluster ID in order to build
the travel time prediction model. Firstly, the samples of training
data set were used to construct the CART-based classification
model by utilizing the input variables obtained in the previous
steps as the attributes of classification, and the group ID as the
class label. Secondly, the cluster ID (e.g., group 1, group 2, etc.) of
each sample in the test data set was labeled through the con-
structed classification model. To summarize, the process of creat-
ing the dummy variable is illustrated in Fig. 5. The cluster ID was
taken as the dummy variable for building the model of travel time
prediction with the training data set, and the built model was used
to predict the travel time of the test data set.

3.5. Step 5: identify critical detectors and variables by CART

The CART-based classification model can be used not only to
predict the cluster ID of each sample in the test data set, but also to
identify the important variables, which appear in the decision tree.
The identified important variables can be used to construct the
NN-based model of travel time prediction. This prediction model
could be used in real-time data forecasting, information publish-
ing, or traffic management. The procedure described above is
illustrated in Fig. 6.

3.6. Step 6: build NN-based prediction model

After adding the dummy variable and identifying the important
variables, various NN-based models of travel time prediction with
different combinations of variables can be constructed to analyze
the prediction performance. In order to analyze the impact of HTT,
dummy variable and identified critical variables on the prediction
performance, six experimental combinations are designed, and the
three-layer NN is used to construct the prediction model. Further-
more, each experimental combination uses the training data set to
construct the best NN-based prediction model. Then, it is tested
with the test data set.

In this study, SAS Enterprise Miner 5.3 is used to construct the
back-propagation neural network (BPN) with three layers, input,
hidden and output layers, CART, and K-means. The detailed
algorithm of BPN can be found in [46], and the detailed algorithms
of K-means and CART can be found in [47].

4. Experimentation

4.1. Experimental design

This study focused on exploring how to establish a robust
model to predict the travel time of freeway with non-recurrent

Fig. 4. Procedure of travel time prediction.

Fig. 5. Process of creating the dummy variable.

C.-S. Li, M.-C. Chen / Neurocomputing 133 (2014) 74–83 79



congestion by using existing or even simplified equipment. Six
scenarios were designed for to investigate the performance of
proposed prediction approach in this study. Scenario 1 uses spot
speeds collected by 11 vehicle detectors, rainfalls collected by
detectors in three locations, day of the week, and time (AM or PM)
as input variables to build the NN-based model of travel time
prediction. Because the number of hidden nodes is an important
parameter for the BPN-based prediction model, various numbers
of hidden nodes were investigated to select the best model for
predicting the travel time. The experimental details of BPN can be
found in [8]. In contrast with Scenario 1, Scenario 2 adds HTT
calculated from ETC as the input variable. Scenario 3 adds the
dummy variable (i.e., cluster ID) generated by K-means clustering
with the input variables of Scenario 1. The input variables of
Scenario 4 include the variables in Scenario 2 and cluster ID.
Scenario 5 takes the cluster ID as the class label of the classifica-
tion in Scenario 3, and the CART is adopted to select the important
variables for predicting the travel time with NN. The prediction
procedure of Scenario is described in Step 5 in Section 3. The input
variables in Scenario 6 include the important variables identified
by using CART with the variables in Scenario 4. These six scenarios
are summarized in Table 1.

From the above discussion, the important variables in Scenarios
5 and 6 are all selected by using CART. Observing the decision trees
in Scenarios 5 and 6, the same important variables are identified,

which include time (AM or PM), the day of the week, and the spot
speed collected by the VD located at 51.6 km, which is denoted as
speed 5160.

4.2. Experimental results

The general traffic flow contains the morning peak and after-
noon peak, and a noon peak in the areas with the complicated or
special traffic flow. Moreover, the traffic management unit usually
distinguishes the midnight off-peak traffic characteristic from the

Fig. 6. The procedure of identifying important variables and constructing travel time prediction model.

Table 1
Summary of six scenarios.

Scenario Description of input variables

1 Spot speeds collected by 11 VDs, rainfalls from three detectors, the
day of the week, and time (AM or PM)

2 The input variables of S1, and HTT calculated from ETC
3 The input variables of S1, and the dummy variable (i.e., cluster ID)
4 The input variables of S2, and the dummy variable (i.e., cluster ID)
5 The important variables identified by CART with the variables

in Scenario 3
6 The important variables identified by CART with the variables

in Scenario 4
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general off-peak condition. Therefore, it is common to divide the
traffic characteristics into eight groups in the areas with compli-
cated traffic flow, and to develop corresponding management
strategies according to their traffic characteristics. In this study,
the data of traffic flow are also divided into eight groups.
Furthermore, before clustering and classification, the data are
standardized by using δij¼(εj�φij)/εj, where δij represents the
standardized value of ith sample0s variable j, φij represents
the original value of ith sample0s variable j, and εj represents the
maximum value of all samples of variable j plus 20%, that is
εj¼max{φi}�1.2. In the CART-based classification, the training
data set are randomly the ratio 7:3 divided into the training stage
and the validation stage with the ratio of 7:3. From the results of
decision trees, the classification accuracy rates of the training stage
and validation stage for Scenarios 3 and 4 are above 99.85% for
both S3 and S4. Therefore, the constructed CART-based models are
able to effectively differentiate the traffic characteristics of the
samples collected in this study.

In order to assess the performance of prediction models, the
mean absolute percentage error (MAPE) is adopted as the perfor-
mance metric, and it is expressed by the following equation [48]:

MAPE¼ 1
n

∑
n

i ¼ 1

ATTi�PTTi

ATTi

����

���� ð5Þ

where ATTi represents the actual travel time of ith sample, PTTi
represents the predicted travel time of ith sample, and n is the
number of samples. Therefore, the smaller MAPE is, the higher
prediction accuracy is. MAPE was proposed by Lewis [48] and has
been widely used as a performance metric of prediction. In the
case of MAPE r10%, the model has the “highly accurate prediction
capability”. In the case of 11%oMAPE r20%, the model has a
“good prediction capability”. In the case of 21%oMAPE r50%, the
model has a “reasonable prediction capability”. In the case of
MAPE451%, the model has an “inaccurate prediction capability”.
Therefore, if we can construct a model with a “highly accurate
prediction” capability and a smaller number of samples with
MAPE421%, the prediction model not only can help with satisfy-
ing the road users0 requirements regarding the travel time predic-
tion but also have a positive effect on ITS implementation.

According to the experimental results as shown in Table 2, the
MAPE values of the six scenarios are between 6% and 9%. Thus, the
prediction models of freeway travel time constructed in this study
all have “highly accurate prediction” capability. From Table 2, the
MAPE of Scenario 1 (6.68%) is higher than that of Scenario 3
(6.49%) as well as the MAPE of Scenario 2 (6.41%) is close to that of
Scenario 4 (6.47%), it is demonstrated that additionally including
the cluster ID as the input variable can enhance the model0s
prediction capability in the environment of having an ETC system
or in the environment of having traditional VD detectors.

Furthermore, from Table 2, the percentage of samples with
MAPE420% is lower in Scenario 3 (2.62%) compared to that
Scenario 1 (3.74%). The percentage of samples with MAPE420%

is lower in Scenario 4 (2.74%) compared to Scenario 2 (2.99%).
Therefore, additionally including the cluster ID as the input
variable can effectively lower the percentage of samples with
MAPE420%. No matter there is AVI or ETC, the dummy variable
(i.e., cluster ID) can improve the performance of travel time
prediction. In particular, in the case of collecting the traffic data
only with VDs, the dummy variable can more significantly improve
the performance of travel time prediction, and notably reduce the
percentage of samples with MAPE420%.

In addition, if the prediction models (Scenarios 5 and 6) are
constructed only with important variables, the percentage of
samples with MAPE420% increases two to four times compared
with other scenarios. The prediction model containing more
important variables increases the understanding of traffic char-
acteristics and enhances the prediction performance. Therefore,
the experimental results of Scenarios 5 and 6 are not unusual.
From the results of Scenarios 5 and 6, the day of the week, time
(AM or PM) and speed 5160 are extracted as the important
variables. Two of these three important variables, the day of the
week and time (AM or PM), can be collected by VDs. Therefore, for
effective management, speed 5160, i.e., the spot speed collected by
the VD at 51.6 km, is a critical element requiring careful main-
tenance. With the important variables extracted in Scenarios 5 and
6, only one out of 14 detectors (11 VDs and 3 rainfall detectors) is
identified as the important detector such that the operational cost
and maintenance cost can be significantly reduced. Furthermore,
the management unit can maintain and calibrate the data collec-
tion system, and develop the imputation method of missing data
based on the experimental results. Although the models of travel
time prediction constructed in Scenarios 5 and 6 perform worse
than the models of other scenarios, the models of Scenarios 5 and
6 have the “highly accurate prediction capability” according to the
classification defined by Lewis [46]. From the results of Scenarios
5 and 6, time (AM or PM) is also identified as an important
variable by CART, it is similar to the finding in Fei et al. [7]
confirming that the traffic characteristics with non-recurrent
congestion in the morning and afternoon are indeed different.
Therefore, taking time (AM or PM) as the input variable or
partitioning the data with respect to time (AM or PM) and
analyzing accordingly can improve the performance of travel time
prediction in the case of non-recurrent congestion.

5. Conclusions and suggestions

Predicting the travel time of freeway with non-recurrent
congestion is essential in the area of traffic and transportation,
but it is a challenge to achieve a high degree of prediction accuracy
with less data and lower cost. Furthermore, the ability to
(1) enhance the model prediction capability with existing equip-
ment and (2) obtain important variables in important locations in
order to reduce the equipment maintenance cost and retain the
prediction accuracy is an important issue that has been paid much
attention by management and research organizations. In this
study, about several million data collected by ETC have been used
to obtain the actual travel time for predicting the travel time.
In addition, following the empirical analysis of National Freeway
No. 1 between the Yangmei Toll Station and Taishan Toll Station in
the northward direction, we found that a robust travel time
prediction model with non-recurrent congestion could be con-
structed by integrating K-means, decision tree, and neural network.

From the experimental results of this study, the performance of
freeway travel time prediction with non-recurrent congestion
could be improved by the added dummy variables and the
proposed method of extracting important variables. According
to the results of this study, increasing the number of dummy

Table 2
The performance of six scenarios.

Scenario MAPE (%) The percentage of samples
with MAPE420%

1 6.68 3.74
2 6.41 2.99
3 6.49 2.62
4 6.47 2.74
5 8.94 10.22
6 8.94 10.22
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variables and using them as input variables could enhance the
prediction capability of model and lower the percentage of the
sample whose MAPE420% without increasing the amount of
equipment needed. This could enhance public acceptance of travel
time prediction. For example, in the six-lane two-way freeway, in a
specific direction (outbound or inbound), if the travel time
information is updated every 5 min, the travel time prediction
model runs continuously for 30 days, and there are 600 PCU (the
total in three lanes) passing each changeable message sign (CMS)
every 5 min and two passengers in each vehicle, then there will be
10,368,000 passengers in total receiving travel time information
from each CMS within a month. Even if we only eliminate 0.1% of
the sample whose MAPE420%, this could reduce negative per-
ception of the prediction model by 10,368 people every month.
If we set up a number of CMSs, n, along the freeway in two bounds
at the same time, it will influence 2n passengers (10,368�2n
people). Furthermore, it is confirmed by this study that the
important variable extraction method with decision tree can not
only maintain high prediction accuracy but also significantly
reduce the cost of equipment maintenance and operation to
comply with the demand of management organization.

Increasing the speed of shock wave and calculating the distance
of queue may improve the accuracy of travel time forecasting. The
future work can take them into consideration in forecasting travel
time. Reducing the percentage of samples whose MAPE420% has
a significant impact on the road users0 satisfaction. Although the
method proposed in this study can reduce the percentage of
samples whose MAPE420%, reducing the percentage of samples
whose MAPE420% is an issue which needs to be addressed
continuously, and it is worth to be further studied in the future.
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