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Abstract

We consider the behavior of solutions to the water wave interaction equations in the limit ¢ — 0.
To justify the semiclassical approximation, we reduce the water wave interaction equation into some
hyperbolic-dispersive system by using a modified Madelung transform. The reduced system causes loss
of derivatives which prevents us to apply the classical energy method to prove the existence of solution. To
overcome this difficulty we introduce a modified energy method and construct the solution to the reduced
system.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to study the zero dispersion limit or WKB approximation of
solutions to the water wave interaction equations
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2
ieduf + %Bfue =oau®v® + /3|u€|2u8, (t,x) eRT xR,

o + 030 + 0, ()2 =y, (|uf[),  (,x) eRY xR, (1)

u®(0,x) = Aj(x) exp(éSS(x)), v?(0,x) =v5(x), xeR,

where uf : RT x R — C and v? : RT x R — R are unknown functions, Af) :R — C and Sy, vg :
R — R are given functions, and «, B, y are real constants. Throughout this paper we always
assume that g > 0, which corresponds to the defocusing nonlinear Schrédinger equation when
the coupling coefficient « vanishes, i.e., « = 0. The parameter ¢ is analogous to Planck’s constant
in the quantum mechanics.

It is well known that a nonlinear interaction between long and short waves can occur strongly
if the phase velocity of the long wave coincides with the group velocity of the short wave. Un-
der the assumption of long wave short wave resonance, Benny [3] proposed several systems of
dispersive equations. One of the systems is given by (1) which describes an interaction phe-
nomenon between the long and short waves arising in various physical situations such as an
electron-plasma, ion field interaction and the water wave theory. In (1), the short wave is de-
scribed by the Schrodinger type equation and the long wave is described by KdV type equation.
The reader is referred to Kawahara—Sugimoto—Kakutani [ 13] for the physical background of (1)
in the theory of capillary-gravity waves.

Concerning the mathematical issues for (1), the time local well-posedness for (1) has been
studied by many authors where the time interval of solution depends on the parameter ¢, see
[2,8,17]. Recently, Wang—Cui [18] proved the local well-posedness for (1) in L? x H™!. Their
proofs heavily depend on the dispersive properties of the Schrodinger equation. Therefore the
time interval of solution to (1) depends on ¢. In this paper we consider the semiclassical limit as
& — 0 to solution to (1). To this end, we have to prove the existence of solution to (1) in some
time interval independent of & € (0, 1]. Therefore our first task is to derive this existence result.

There are two approaches to justify the semiclassical approximation. Concerning the more
detail for the semiclassical or WKB approximation, the reader is referred to the books [5,19] and
references therein. The first approach is to use Madelung’s transform defined by

u(t,x) =+/p(t, x) exp(éSg(t, x)),

where p® = [u®|?> and $¢ are real-valued functions. According to this design, the first equation
in (1) is rewritten as

(—20°9,5° — p (8, 5°)” — 2ap"v® —28(p°)’)
1(3:p9* 1
+ 8(1’8;,0"3 +i0,p%0,8% + ip£8§58) Ty <_Z% + 58’%'08> =0.
0

We split the above equation into the following two equations:
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0,p° + i (p°0:8°) =0,

1 2 82 82~/p€
€ &€ & & X
;S +—2(8x5) +av® 4 Bp° = —2 —\/_8 .

Let w® = 9, S¢ and apply 9, to the second equation, then we have

3 p° + 0x(p°w®) =0,

&2 (8)%\/;7)

B,wg—}—wsast—i-ax(avg—i—ﬁpg): Eax N
which have the form of a perturbation of the compressible Euler equation with v® satisfying
d v + 93" + 8x(v5)2 =y, p0°.

Although this representation suggests the limiting equations as ¢ — 0, but the above equations
do not have a meaning in the point where p° = 0 and the phase function S¢ may be undefined.
As suggested by Grenier [11], the modified Madelung’s transform can be utilized in the study of
the semiclassical or zero dispersion limit. In fact, we have

uf(t,x) =A%, x) eXp(éSa(I, x)),

where A® and S¢ are complex and real valued functions. It will reduce the first equation in (1)
into

1
(—AEB,SS — A (38%) — A ,8|A£]2AS>
i 2 &2 2
+£<iB,A8 +i0,A%0,S® + §A83x58> + ?BxAg =0.
We decompose the above equation as follows:
: & €2 4 : £ & i £q2 qe
i0;A +§8XA +i0yA%0xS ~|—§A 9;8° =0,
1
0° + 5 (0:5°) + B|A°]” = —an”.

Furthermore, putting A® = a® + ib°, w® = 0,5, we have

1
da’ + %afbf +wfda’ + Sat Bt =0,
s_f 2 ¢ € 3 l 3 & _
o:b 28Xa + w® 0y, b +2b o,w® =0,

9w’ +wfo w® +2Bafdra’® + adv® + 2860, b° =0.



3820 C.-K. Lin, J.-i. Segata / J. Differential Equations 256 (2014) 3817-3834

This approach is used by Grenier [ 1 1] to justify the semiclassical approximation in Sobolev space
for the Schrodinger equation with power type nonlinearity, see also [10] and [12] for analytic
initial data. Some extensions of [11] were given by several authors, see for instance Alazard—
Carles [1] and Chiron—-Rousset [7] for nonlinear Schrodinger equation and Carles—Masaki [6]
for Hartree equation.

For the convenience, let us put

[ a® 0 9> 0
U =|bv |, L=|-3 0 0]/,
w? 0 0 0
[ w? 0 af/2 0
NUusH = 0o w 2|, Vi=| 0
2Ba® 2Bb*  w? 0, v°

Then (U¢, v®) satisfies

DU + = LU + N (U)UF = —aVF,
: )
3 v + 930" + 0, (v‘?)2 = y&x(|ag|2 + |b8|2),

where ¢ € [0, 1]. We first prove the existence of local smooth solution to (2) with the initial
condition

U0, x) =Ug (x), Ve (0, x) = v (x). 3)

Theorem 1.1. Let m > 3 be an integer. Assume that there is a constant C1 > 0 such that
UGNz + gl -1 < C1 for all e € [0, 1]. Then there exists a time T > 0 independent of
the parameter € and a unique solution (U, v¢) € C([0, T), H™"(R) x H™ 1 (R)) to the initial
value problem (2)—(3). Furthermore, there exits a constant Co > 0 such that

sup ([ ] yu + [V O i) < €2
te[0,T)

forany ¢ € [0, 1].

Remark. The order pair (¢, v®) is served as a column vector and the same for the rest of this
paper. We point out that we may well be able to extend Theorem 1.1 to the case when m is not
an integer combining our proof with the estimates for the fractional derivatives. In this paper we
do not touch on this issue.

Remark. It is natural to raise the following question: Can we extend the local smooth solution
of (1) to the global one? Although some conservation laws for (1) are derived in [15], so far, we
do not know whether the local smooth solution of (1) can be extended to infinite time interval or
not.
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In (2), taking ¢ — 0, we obtain the following system

Uy + N Up)d Uy = —aVy

“4)
3vo + 37 v0 + 3 (v5) = v dx (laol” + Ibol*),
where
ap wo 0 ao/2 0
U= bo |, NUy) = 0 wo  bo/2 |, Vo= 0
wo 2Bap  2Bbo  wo dx vo

The main purpose of this paper is to show that the solution to (2) converges to the solution to (4)
as ¢ — 0. The following theorem justifies the WKB approximation for (1).

Theorem 1.2. Let m > 3 be an integer. Assume that there exists a constant C > 0 such that
Ul m =+ gl gm—1 < C for any e € [0,1]. Let U*,v®) € C([0,T), H™(R) x H™"L(R))
be the solution to (2) with the initial data (U3, v;) € H™(R) x H"™ Y(R). Let Uy, vp) €
C([0, T), H™(R) x H™~1(R)) be the solution to (4) with the initial data (U0, v0,0) € H™(R) x
H™ Y(R). Then we have

sup (U (1) = Uo @) s + V5 @) = 00 ()| 1y 3)
tel0,7)

C(|thg — to.o|| -2 + |06 — vo.0| ms +€).
where the constant C > 0 depends on T but independent of € € [0, 1].

As a corollary of Theorem 1.2, we obtain the semiclassical expansion of (1).

Corollary 1.1. Let m > 3 be an integer. Assume that (U0, v0,0), (U, vy) € H™ x H" L and
U I m =+ |G |l gm—1 < C for some positive constant C independent of €. Assume further that

26—ty 1% vl ) =0.
Then the unique solution (U, v¢) € C([0, T), H™(R) x H™ " (R)) to (2)-(3) satisfies

lim sup ([U°(1) —Uo(@) | s + |v° (@) — v0(@) | yu-3) =0,
£=0re(0,7)

where (Up, vo) € C([0, T), H™(R) x H™ 1 (R)) is the unique solution to (4) with the initial data
(Uo.0, v0,0)-

Corollary 1.1 gives the zeroth order approximation of (¢, v®) as ¢ — 0. In Section 5, we
shall consider the first order approximation of (£¢, v?).

We give an outline of proofs for Theorems 1.1 and 1.2. They follow from the combination of
parabolic regularization and a priori estimates for the approximate solutions. In proving a priori
estimates for approximate solutions, we meet so called “loss of derivatives”. More precisely, if
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we apply the classical energy method (see [ 16] for instance) to the first equation of (2), then we
have

ld m _¢& mie 1 .
s (1@l Jory ol + gglorw o)

=—a / 3" w® 8" v dx + lower order terms

R

Therefore, to obtain the H™ estimate for /¢, we have to evaluate the H™ 1! norm of v®. For this
purpose, we also apply the classical energy method to the second equation of (2). Indeed, we
have

%%“8)’?+ll)g(t)||iz:y/8;n+2(|a8|2)8¥1+11)€dx+)//3;n+2(|b€|2)3;"+1v8dx
R R

+ lower order terms

Thus to close the H"t1-estimate for v¢, we need the H"12-bound of (a?, b¢). However those
terms can not be controlled in terms of the H™-norm of (a®, b®). To overcome this difficulty we
take the idea from Kwon [14] and introduce a modified energy given by

1
En(U° . 0°)(0) = |a* () |3y + [6°) |3 + 25l 13 + Cas |05 @) | 3

—2u / M wt " v dx,
R

where the positive constant Cy g is chosen sufficiently large so that E,, is equivalent to the
H™ x H™~!-norm. Thanks to the modification of energy, we can obtain a priori estimates for
solution to (2). Since it does not depend on the dispersive effect of £ in (2), we can show that the
time interval of existence of solution does not depend on ¢ € [0, 1] which is the crucial part of
the proof.

To obtain Theorem 1.2, we need to evaluate the difference U/ — Uy and v® — vy. In this step,
loss of derivatives also prevents us to apply the classical energy method. So we again employ the
modified energy E,, (¢, v®)(t) and justify the WKB approximation.

We introduce several notation and function spaces used in this paper. We denote the Fourier
and its inverse transforms by F and F ! respectively:

FL1E) = T fydy,  FUf00) = TS E) de.

el ol
— | e — | e
2 2

R R
Let (X, [l-llx;) (j =1,..., N) be Banach spaces. For the vector valued function (f1, ..., fx) €
X1 x -+ x Xy, we define its norm by [[(f1,.... 'K lx;xxxy = 1 fillx, + -+ 1 fnllxy. I
X1 =--=Xy=X,wewrite [|[(f1,..., fW)x,x-xxy = II(f1,..., fn)llx. For the notational
convenience, we introduce
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2 2 2 1 2
1N gm = llalgm + 101 gm + Ellwllym

ford = (a, b, w).

The plan of this paper is as follows. Section 2 is devoted to the parabolic regularization as-
sociated to (2). In Section 3, we introduce the modified energy and give an a-priori estimate for
the solution to (2). Then we prove the existence and uniqueness of solution to (2). Section 4 is
devoted to proving that the solution to (2) converges to the solution to (4) as € — 0. Finally, in
Section 5, we consider the first order semiclassical approximation of (1).

2. Parabolic regularization

To prove Theorem 1.1, we consider the regularized problem. To this end, we introduce the
regularizing sequence used in Bona—Smith [4]. Let ¢ € C°°(IR) be such that 0 < ¢(§) < 1 for
Ee€R, p0)=1, o®©0)=0fork=1,2,..., and ¢(¢) tends to 0 exponentially as [§| — oo.
We define for § € (0, 1],

1

e (88)p(E) dt.
V2r J

¢’ (x) =

Then, {¢*}s-0 C H®(R) and ||¢ — ¢°||ym — 0 as § — 0. Furthermore, for any / > 0, we have
the following inequalities

|6% ]| e < C87 N1l m,
|6 =8| yu < Cllllam,
|6 — & || s < C8' 1Pl .

Let us consider the regularized problem associated to (2):
OU™ + SLU + S LU + N(U)o,U™ = —a V™!

8tve,5 + 58;11)6,3 + a):;;vs,a + 0, (vs,5)2 _ yax(|a8>3|2 + |b£,8|2)’ 5)
USB0,0) =U(x),  v50(0,x) = v5°(x),

where ¢ € [0, 1], 6 € (0, 1], and

a®® ~[af 0o o 0
U=\ b |, L=|0 3 o, V=
w®S o o0 a 3y v®d

Lemma 2.1. Let m > 2 be an integer and let ¢ € [0, 1] and § € (0, 1]. Assume that there is a
constant C > 0 such that ||Ug || gm + ||vgll ym—1 < C for any € € [0, 1]. Then, there exists a time

T® > 0 independent of ¢ > 0 and a unique solution (U*°, v®-®) of (5) satisfying

@, vy e ([0, T%), H"(R) x H™ ' (R)).
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Proof. Since the system (5) is a semi-linear parabolic system of the standard type, the proof of
Lemma 2.1 follows from the Banach fixed point theorem via the integral equation, see [9] for
instance. Hence we omit the detail. O

3. Modified energy — existence and uniqueness

In this section, we give a priori estimate for the solutions to the regularized system (5). Let us
evaluate the H™ x H™ !_norm of (Z/{jf, vg ). As explained in the introduction, Eq. (5) causes the
loss of derivatives. To overcome this difficulty, we introduce the modified energy given by

1
En@.,v)(®) = llallFm + 15170 + @nwu%{m + Cagllvll3ms

—2a / M wd" v dx,
R

for U = (a,b,w) € H™ and v € H™~!, where the positive constant Cq,p is chosen so that
E,,(U,v)(t) > 0forall 0 <t < T. This is possible since by the Gagliardo—Nirenberg inequality
we have

—2afa;g’wa;"—2u dx > —#Hwni,m — D glIv]I3,
R
for some positive constant Dy g which depends only on & and B. So it suffices to choose Cy g =
Dy g+ 1.
We note that there exists a constant C~'a, g > 0 such that for any (U/,v) € H" x H m=1 the
following inequality holds,

~ 2 ~ 2
Cop | WU 0) [ pym1 < Em @, 0)(0) < Corp | U, 0) || gy -
Lemma 3.1. Let m > 3 be an integer and let ¢ € [0,1] and & € (0, 1]. Let (L{E"S, vg*’s) €

C([0, T%), H™(R)) x C([0, T?%), H""(R)) be a solution to (5) obtained by Lemma 2.1. Then
there exist positive constants C and T independent of € € [0, 1] and 6 € (0, 1] such that

[ @@ v @) ey < EO U 05) | g g
foranyte[0,T).
Proof. Applying the operator

32 0 0
0 2 0
0 0 @“p'a}

to the both sides of the first equation in (5) and taking the inner product of the resultant equations
with 374%%, we obtain
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1d

m _¢& mipé 1 m &
o (lora s + oo o [+ oot ol

1
wa(Jar a0+ [ 0+ a0 )

= _a/a;"w&‘;ag’“veﬁdx +Ri(1),
R

where R (t) satisfies

T 1B 3+ (w2 O 30) [0 ]

< CE U v0) (1)

[Ri)| < C([a* @)

S CEy (U, v50) (1) + CEL (U, v) (1),

for any ¢ € [0, T®) with constant C independent of & and §.

3825

(6)

)

Applying (m — 1)-derivatives with respect to x on both sides of the second equation in (5)

and taking the inner product of the resultant equations with 8;”_11)8*5, we obtain

d
yrl AR O] AR LSOl 7

| =

< (a2 @3 + [ @3 + [0 |3 ) [0 O -

where constant C is again independent of ¢ and §.
On the other hand

d _
—aafa)’c"ws"sa;" 2p88 dx
R

(®)

= / A (807w’ + ad v + w9, w" +2Ba%0 a0 + 2850 9,b50) 3N v™0 dx

R

+a/8fw8’58;"_2(88fv8’5 + 83058 420989, 050 — yax(‘a£’5|2 + ]b8'8|2))dx

R

= / M wE Pyt yEd dx 4 2a8 / M 2w vEd dx + Ra(t),
R R

where R, (t) satisfies

o [0 O g + [0 O 1)

[0 @)

[Rato)] < C(Ja @)y + 550
< (w0

Hm—])

S CE* (U, v"%) (1) < CEn (U, ) (1) + CE (U5, v*°) (1)

9)
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with constant C independent of ¢ and §. Hence

d _
‘—a . oy w€~53;1 2088 dx — oy wsﬁa;"“ v&0 dx
R R

1
< 5(@ o 2we @7 + o™ v“g(t)lliz) + Can [V O] 2+ Ra). (10)

The L? estimates for (U*?, v®?) can be obtained by using the standard energy method. There-
fore, from (6), (7), (8), (9) and (10), we obtain

i e,8 &0
En (U, 07%) @)

1
wa(2lar a0+ 2ar 260 + g ot wl + a0 )
< Cam En (U, 052 (1) + Eq (U, v) (1),

We note that the constant C,_,,, is independent of € € [0, 1] and 6 € (0, 1]. Therefore the Gronwall
inequality yields

888\ Comt
EnUS°, vE%)eCam
m 0 <2E, (L{g’s, vé’s)ec"*’”[

Ep (U, 0%°) (1) < <
m( ) 1— CozrlnEm(u&S’ US,S)(EC%”’[ -1

for
0<r <min{T? C Mog(1+1/(2En (U5’ v5*)))}-
Let T = C ' log(L E, U, v5®) + 1). Combining above inequality with
En (U5 v5°) < CNS g + 16 7m1).
we obtain
B (U, 053)(0) < C(IS [+ 05 1)

for any 0 <7 < min{T®, T}. If T® < T, we can apply Lemma 2.1 to extend the solution in the
same class to the interval [0, T). Therefore we obtain the desired result. O

Using Lemma 3.1 we obtain the existence of the solution to (2):
Lemma 3.2. Let m > 3 be an integer. Assume that there exists a constant C > 0 such that

UGN Em + lvgll gm-1 < C for any e € [0, 1]. Then there exists a time T > 0 independent of
e €10, 1] and a solutions (U?, v®) of (2) satisfying
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Ut e C([0,7), L2(R)) N L™ ([0, T), H™(R)),
v¥ € C([0,T), LAR)) N L®([0, T), H™ ' (R)).

Furthermore, there exits a constant C > 0 such that

sup (U@ yu + [0° O] ) <€
te[0,T)

forany ¢ € [0, 1].

Proof. Since the proof of Lemma 3.2 follows from the standard compactness argument, we
give the outline of the proof. Let 45, vi) € H™ x H™! and let (Us°, v(g)’s)}g Cc H®R) x
H*(R) be a Bona—Smith approximation of ({4, vy). Then Lemma 2.1 leads that there exists
a unique solution U, v®%) e C([0, T.), H™(R) x H™ ' (R)) to (5). Lemma 3.1 yields that
there exists 7 > 0 which is independent of € € [0, 1] and § € (0, 1] such that {(UE"S, va"s)}g is
uniformly bounded in L*°(0, T, H™(R) x H™ 1(R)) with respect to € € [0, 1] and § € (O, 1].
By the classical compactness argument and diagonalization process, there exists a subsequence,
still denoted by {(U®?, v5%)}5 and U, v®) € L0, T, H™(R) x H"~(R)), a solution of (2),
such that (%%, v&%) converges in L>®(0, T, H™(R) x H™ '(R)) weak* to (U4, v®). We can
also show that (¢, v®) € C([0,T) x R)? by Sobolev imbedding theorem. This completes the
proof of Lemma 3.2. O

Next, we give the proof of Theorem 1.1 by showing uniqueness of the solution. Let (U4}, v{)
and (U5, v5) be two solutions to (2) with the same initial data in H” x H m=1 satisfying

Us e C(10,7), L*(R)) N L([0, T), H™(R)),

J
vi e C([0,T), LA®R)) N L*®([0, T), H" ' (R)),

J =1,2. We shall prove that (U, v{) = (U3, v5) for t € [0, T). To prove this, it suffices to show
that U® =US — U} and v® = v] — v] satisfy U] 1 = [v®|| 2 =0 forany ¢ € [0, T).

Define a® = af — a5, b* = b — b5, w* = w] —wj and v* = v{ —v5. Then we see that (®, v*)
satisfies

U + %Uf + N (UEYOU + N (U, = —aV*
1D
Jv® + 33v° + 20500 + 205905 = y iy (af@ + adl + bib + bbS).

The classical energy estimate leads to

1d
‘EEHUS(I)H?I‘ +a/a§v88xw8dx
R

(et O + s O] ) e 31 + €t ] o ] 2

< C{ sup
1€[0,T)

<c(|ur o3 + v ®]72). (12)
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2dt ||U (t) ”L2

<cf s (RGO + s+ 15O+ 150 )|
te
x (Jus 3 + v ©|72)
<C(Jur o + v o] 12) (13)

after employing the fact that there exists C > 0 such that
sup (U5 @) || e + [V | 1) <C e€l0, 1, j=1,2
1€[0,T)

for some C > 0. On the other hand

d
aafvgwgdx—a/@%vgaxwgdx

R R

<cf sup (Ui O i + 1B O + [05O ] + [50] 1)}
t€[0,1)
< (|ur o5 + [ 072)
<C(|ur o5 + [ ©]72)- (14)

Here we introduce the modified energy:

XU 0)0) = laly + 1612 + == 1wl + 10/al8 vl +2afwvdx.

R

48
We note that there exists a constant Cy g > 0 such that for any U/, v) € H L2,

Cap | U@ 0®) 1,12 < E{U 0@ < Ca | D, 00) 12
for all t € [0, T). Then, from (12), (13) and (14), we obtain

d

& g
T EU L)) < CE 10}

where C is independent of & € [0, 1]. Hence Gronwall’s lemma and (U4, v) = (0, 0) yields
0< EL (U, v°) (1) < CEL (U, vE)eC =0,

for any ¢ € [0, T). Therefore E ?(Z/{s , v¥) = 0 and hence (U/¢, v®) = 0. This completes the proof
of uniqueness.
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Remark. We can construct S¢ from w® defined in Theorem 1.1. Indeed, let us define S¢ as
t 1
S(t, x) = S§(x) — /<§w§ +BlA°] +av€>(z,x)dr.
0

Since 9; (9, S¢ — w®) = 0,9, 5S¢ — 9;w® = 0 we have w® = 9, S°.
4. Semiclassical limit
In this section we will devoted to the proof of Theorem 1.2. To his end, we have to evaluate

the difference U° — Uy and v® — vy, where (U*, v®) and Uy, vo) are solutions to (2) and (4),
respectively. We only give the proof of Theorem 1.2 with m = 3 since the case m > 4 being

similar.
a a® —agp 0
U=| b |=]| b =by |, V=| 0 |, v=v"—y
w w® — wy Oxv

Putting
we see that (U4, v) satisfies

OU + S LU + N (U)0U + N U)oLy = V., .
(15)
v+ 8311 + 00, v + v vg =Yy (a&g + aap + bb® + Ebo).
As in the previous section, the classical energy method yields
1d
‘mnmniﬂ +a [
R
<c| sw (Jur ] + v Ol ) JIUO 5+ [vo)]72)
te[0,T)
+CeUr O s U 1 (16)
1d
55”1’(’)“;2
<cf sup (|t @] o + o | s + [0 O 1+ [r0®) ] 1) |
te[0,T)
< (Ju® 3+ Clo@]2). (17
a%/wvdx—afafvaxwdx
R R

<l sw (IU O] g1+ o] 1+ 1 O 1 + [0 1)
te[0,T)

< (@[3 +Cloo]7). (18)
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We introduce the modified energy

EXU, (@) = |[U® |51 + Ca|v®)] 3 +2cx/wvdx,
R

where we chose the positive constant C,, so that E ? is equivalent to H 1'% L2 norm. From (16),
(17) and (18), we obtain

d
EE?(L{, ) (1) < C(E)U, v)@) +£2),
where C > 0 is independent of ¢ € [0, 1]. By Gronwall’s lemma, we have
E| U, v)(1) < CE|U, v)(0)eS" + Ce2(eC" - 1),

for any r € [0, T'). Therefore we have

sup ([|e6* @) =Uo )] 1 + [[v° @) = vo®)]] .2)
1€[0,T)
< (g = ool g + w6 = vool 2) + Ce.
where the constant C > 0 is independent of ¢ € [0, 1]. This completes the proof of Theorem 1.2.

5. The first order approximation

In this section, we consider the first order approximation of a solution to (1). We give some
formal calculation. Let

U = (Ag+eA) + 62 Ay + - )er SoteSITE St (19)
Ve =g+ ev) +&2vg + - (20)

Substituting above two equations into the first equation in (1), we have
Fo+eFy+ & Fy+--- =0,

where

1
Fo= —Ao[azso + E(E’XSO)2 +avg + ﬂlelz}

1
Fi=—A [a,so + E(axsof +avg + ﬁlelz}
— Ao[0:S1 + 9S00 S1 + vy + B(AgA| + AgA))]
1
+i (atAo + 05 Agdy So + EAOB)%SO)

=R+ Fi2+ Fi3,
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1
P = —Az[azSo + 5(3x50)2 +avo +/3|A0|2}
—2A1[9;S1 + 9xS00xS1 + Vi + B(ApA1 + ApAy)]
— Ao[0:S2 + (3 S1)% + xS0 S2 + vy + 28| A1 > + B(Ap Az + AgA2)]
1 1 1
+i<a,A1 - iiaon + 0, A18, S0 + 9 Agdy St + EAla)%so + §A08f51>

=hi+hr+khi3+ 3,

Substituting (19) and (20) into the second equation in (1), we obtain

Go+¢Gyr+e°Gy+---=0,
where
Go = dvo + 33 v0 + 2009 vo — ¥ 3 (|A0l?),
G1 = 0,1 + 2v1 + 2000, v1 + 201,00 — ¥ x (AgA1 + AgA1),

Gy =0;vp + 8?1)2 + 2000y V2 + 4v19,v] + 2v205 V9
— ydc(AoAz +2|1A1 1> + ApAy),

We split above equations so that F; ; = G; = 0. Then we see that (Ao, So, vo) satisfies

1
0 Ao + 0 AgDxSo + 5 409 S0 =0,

1
3 So + E(axso)z +avg + BlAgl* =0,
3o + 850 + 2009, vo = ¥ 3y (| A0l?),

and (Ay, S1, vp) satisfies

1 1 1
B AL+ 0 A10:So + 0 AodeS1 + 5 A107S0 + 5 AgdS1 =i 57 Ao,

3;S1 + 0 S00x S1 + avi + B(AgA1 + ApA;) =0,
dv1 + 0201 + 2008, v1 + 201,00 = ¥ (AgA| + AgA}).

3831

21

(22)

Next, we justify the semiclassical approximation of solution to (1) up to the first order. To
this end, putting Uy = (Re Ag, Im A, 9, Sp)" and U; = (Re A;,Im Ay, 0, S1)!, we rewrite (21)

and (22) as follow
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0Uo + N Up)d Uy = —aVy

(23)
3vo + 7 v0 + 9x (v5) = ¥ dx (laol® + 1bol?),
and
1 -~
;U + N Uy Uy + N U)o Uy = = LU — aVy
2 (24)
v + 831 + dx (vov1) = y dx (@oar + boby),
where
[z 0 0 0
L= 0 0 0], V= 0
0 0 0 0x V1
From Theorem 1.1, if m > 3 is integer and ||[Upollg» + |lvo.ollym-1 < C, then there exists

a time 7 > 0 and a unique solution (U, vg) € C([0,T), H™(R) x H™ L(R)) to (23) with
(Uo(0), v9(0)) = (Uo,0, v0,0). Furthermore, if m > 5 is integer and [|U1 ol gm—2 + lv1,0ll gm—3 <
C, then there exists a time 7 > 0 and a unique solution (U1, v1) € C([0,T), H™2(R)) N
C ([0, T), H"3(R)) to (24) with (U4 (0), v1(0)) = (U0, v1,0)- Then next theorem gives the first
order approximation of solution to (1).

Theorem 5.1. Let m > 5 be an integer and let (Up0, vo,0), U1,0,v1,0) € H™ % HmL If
U, vy) € H™ x H™ ! satisfies

1
m — (||U§ — Uo,o — ety |

li
e—>0¢&

Hm + H US - UO,O - SUI’()” Hm—l) = O

Then the unique solution (U¢, v°) to (2) satisfies

1
lim — sup (||U° () —Uo(t) — el (1) || yp—a + [° (1) — v0(2) — £01() | fyu—s) =0,
e=0€ t¢[0,7)

where Uy, vo) and (U1, v1) are solutions to (23) and (24), respectively.
By a similar way, we formally obtain some hyperbolic-dispersive system for (U}, v;), j = 2.
Since the higher order approximation of the (U/?, v®) is obtained by the similar argument as the

proof of Theorem 5.1, we do not give the proof of the higher order approximation of the (U/¢, v?).

Proof of Theorem 5.1. We only give the proof for Theorem 5.1 with m = 5. We put U =U°® —
Uy — eld] and v = v® — vy — gv; withUf = (a, b, w). Then (U, v) satisfies

U + gﬁw - %L’Uo + N U)dU + N Uo)dU

1 -~
+ eN U IU + >N U)o Uy = 5,cu —aV,
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v+ 8)311 + 2(v8xv8 4+ V90,V + gv10,v + szvlaxvl)
-2y (aaxa8 +apdya + eajdca + 2a; 3xa1)
— 2y (bdxb® + bodcb + £b1dxb + eb1dxby) =0,

where V = (0, 0, d,v). By using the energy method, we obtain

1d
‘55"“”311 +a/a§vaxwdx
R

<C((JU ] o + Nedoll g2 ) I + 1 g N0l 2)
+ Ce(|Uf —Uo | s llh | g + 1L g2 U150 ) + Ce2 UL U g

<C(IUN3, + Iv1172) + Celld |7, + Ce U]

< CE U, v) + Ce*.

By a similar way

d
Envniz <CE U, v) + Ce*,

d 2
a wvdx —a | 0 voywdx

R R

< CE U, v) + Ce?,

where C is independent of ¢ € [0, 1]. Collecting above three inequalities, we have

d
EE*’(u, v) <CE U, v) + Ce*.

Hence the Gronwall lemma leads the inequality

sup (Hug — U — el ”H] + ””8 — Vo — €V ||L2)
te[0,T)

< C([Us —Uoo — el o] ;1 + [0 = vo.0 = evio] o) +&° = o(e).
This completes the proof of Theorem 5.1. O
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