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Previous fuzzy data envelopment analysis (FDEA) models separately solving for the lower-
and upper-bound efficiency frontiers under a specific α-cut level may lead to inconsistent
efficiency rankings, unreasonable efficiency scores, and cumbersome slack computations. To
rectify such shortcomings, this paper proposes two novel integrated fuzzy data envelopment
analysis (IFDEA) models wherein both efficiency frontiers are incorporated into a single mod-
elling formulation in ways that the slack values for lower- and upper-bound input/output
variables are determined simultaneously.A numerical example shows that the proposed IFDEA
models are more generalised and with greater simplicity than an existent FDEA model. A case
study further demonstrates that the proposed IFDEA models can satisfactorily assess the rela-
tive efficiency for bus transport companies provided that a portion of the variables are measured
qualitatively with vagueness (passenger satisfaction in this study).

Keywords: fuzzy data envelopment analysis; integrated fuzzy data envelopment analysis; bus
transport

1. Introduction

A comprehensive performance assessment for transport services must consider both ‘crisp’ quan-
titative measures (e.g. labour, fleet, fuel consumption, service frequency, vehicle-kilometres,
ton-kilometres, passenger-kilometres, revenues) and ‘fuzzy’qualitative measures (e.g. crew mem-
ber’s attitude, vehicle’s quality, customer’s satisfaction). However, the qualitative measures have
been ignored in most conventional data envelopment analysis (DEA) applications in transport
systems (Lan and Lin 2005; Chiou and Chen 2006; Chiou, Lan, and Yen 2010; Lin, Lan, and
Chiu 2010) because it is hard to precisely measure the qualitative variables, which are often in
linguistic forms, e.g. ‘old’ vehicle, ‘good’ service, or ‘comfortable’ environment (Lertworasirikul
et al. 2003). To be more comprehensive while assessing the transport services, it is believed that
the qualitative measures are as important as the quantitative ones, at least from the users’ perspec-
tives. Here arises a challenging issue as to how to logically incorporate the qualitative measures
into the quantitative measures while using the DEA-based modelling to carry out the performance
evaluation of transport services.

In literature, DEA is a useful technique to measure the relative efficiency or effectiveness of
decision-making units (DMUs) that produce similar (homogeneous) products or services. DEA
has some good merits in benchmarking the efficient DMUs that can reveal the improvement
directions/magnitudes for the inefficient units without the needs of pre-specifying the functional

*Corresponding author. Email: ycchiou@mail.nctu.edu.tw

© 2013 Hong Kong Society for Transportation Studies Limited

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

7:
46

 2
4 

D
ec

em
be

r 
20

14
 



402 L.W. Lan et al.

Table 1. Input and output data provided by León et al. (2003).

DMU X Y

A 3̃ = (3, 2) 3̃ = (3, 1)

B 4̃ = (4, 0.5) 2.5̃ = (2.5, 1)

C 4.5̃ = (4.5, 1.5) 6̃ = (6, 1)

D 6.5̃ = (6.5, 0.5) 4̃ = (4, 1.25)

E 7̃ = (7, 2) 5̃ = (5, 0.5)

F 8̃ = (8, 0.5) 3.5̃ = (3.5, 0.5)

G 10̃ = (10, 1) 6̃ = (6, 0.5)

H 6̃ = (6, 0.5) 2̃ = (2, 1.5)

forms or assigning subjective weights to inputs and outputs; therefore, various DEA-based formu-
lations have been proposed and applied in different industries (André, Herrero, and Riesgo 2010;
Chiou, Lan, and Yen 2010; Siriopoulos and Tziogkidis 2010; Simon, Simon, and Arias 2011;
Chiou, Lan, andYen 2012). Conventional DEA models are in nature formulated with quantitative
variables, which are measured in a ‘crisp’ manner – hereinafter termed as crisp data envelopment
analysis (CDEA). If one also wishes to measure the qualitative variables expressed in linguistic
terms, one may formulate the DEA models with partial variables measured in a ‘fuzzy’ manner –
hereinafter termed as fuzzy data envelopment analysis (FDEA). In this sense, FDEA models can
be regarded as a generalisation of CDEA models.

Recently, several FDEA models have been proposed, most of which adopted two CDEA models
by separately determining the evaluation results corresponding to lower- and upper-bound under
a specific α-cut level. Kao and Liu (2000, 2005), for instance, transformed a fuzzy DEA model
into a group of CDEA models by applying the α-cut method and Zadeh’s extension principle
to determine the imprecise efficiency values. Based on the α-cut transformation, Liu (2008) and
Liu and Chuang (2009) further introduced the concept of assurance region (AR) and proposed
a fuzzy DEA/AR model to calculate the lower- and upper-bound efficiency scores. Azadeh and
Alem (2010) converted fuzzy input and output data into interval numbers by using the α-cut
method and determined the interval efficiency scores of DMUs. These studies used the α-cut
method to separately determine the efficiency interval scores and then reformulated the fuzzy
numbers accordingly. The main problems encountered by these FDEA models include inconsistent
efficiency rankings and unreasonable efficiency scores because the reformulated fuzzy numbers
can be distorted by lacking integration among various α-cut levels with their associated upper- and
lower-bounds. For instance, the numerical data (Table 1) provided by León et al. (2003) have been
used to generate the lower- and upper-bound frontiers with two separated CDEA models proposed
by Kao and Liu (2000). Figure 1 shows the lower-bound efficiency scores greater than the upper-
bound efficiency scores for DMUs 4, 5, 6 and 7 under α = 0, which are apparently unreasonable.
This example clearly depicts the inconsistent efficiency frontiers encountered by previous FDEA
models. In light of this, the present study aims to rectify such problems by proposing two novel
models – termed as integrated fuzzy data envelopment analysis (IFDEA) models.

Moreover, the scale and slack analyses are difficult to obtain from previous FDEA models
because the computation process of fuzzy efficiency scores is repeatedly determined from the
interval values (lower- and upper-bound) under various α-cut levels, which is rather cumber-
some. The proposed IFDEA models also attempt to improve this drawback with the underlying
logic to simultaneously optimise the lower- and upper-bound values under a specific α-level and
then to derive a crisp efficient frontier without the needs of additional fuzzy rankings. Specif-
ically, the proposed IFDEA models will incorporate both lower- and upper-bound values into
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Transportmetrica A: Transport Science 403

Figure 1. Efficiency frontiers determined by separate CDEA models under α = 0.

objective functions and constraints, coupled with self-determined weights; as such, the rela-
tive efficiency of DMUs can be obtained without the needs of employing any fuzzy ranking
methods.

The rest of this paper is organised as follows. Section 2 derives the mathematical formulation of
the proposed IFDEA models under constant-returns-to-scale (CRS) and variable-returns-to-scale
(VRS) technologies, respectively. Section 3 presents the efficiency (technical and scale) and slack
analyses associated with the proposed IFDEA models. Section 4 demonstrates the superiority
of the proposed IFDEA model over an existent FDEA model (León et al. 2003) using the same
numerical dataset. Section 5 applies the proposed IFDEA models to evaluate the performance of
35 intercity bus companies in Taiwan. Section 6 further discusses the advantages of the proposed
model by comparing with the FDEA models proposed by Kao and Liu (2000). Finally, conclusions
with suggestions for future studies are addressed.

2. Models formulation

Following the conventional CCR model (Charnes, Cooper, and Rhodes 1978) for CRS technology
and BCC model (Banker, Charnes, and Cooper 1984) for VRS technology, two basic IFDEA
formulations are developed in this study – hereinafter termed as integrated fuzzy CCR (IFCCR)
model and integrated fuzzy BCC (IFBCC) model.

2.1. IFCCR model

Consider n DMUs to be evaluated. Each DMU utilises m inputs to produce s outputs, and some
of the inputs and/or outputs are measured qualitatively with fuzziness. To develop the IFCCR
model, we first look into a fuzzy CCR (FCCR) model, which can be formulated as follows:

(FCCR) Max
ur ,vi

h̃k =
s∑

r=1

urỹrk (1)

s.t.
m∑

i=1

vix̃ik = 1̃, (2)
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Figure 2. Projection of membership function of DMU B.

s∑
r=1

urỹrj −
m∑

i=1

vix̃ij ≤ 0̃, j = 1, . . . , n, (3)

ur , vi ≥ ε > 0, r = 1, . . . , s, i = 1, . . . , m; (4)

where h̃k is the fuzzy efficiency score of DMU k, x̃ik is the fuzzy input i of DMU k, ỹrk is the fuzzy
output r of DMU k, ur and vi are the multipliers corresponding to output r and input i, respectively.
To solve FCCR, the α-cut technique proposed by Dubois and Prade (1980) is employed to convert
the associated fuzzy numbers into crisp formulation. The α-cut of x̃ij and ỹrj are defined as follows:

x̃ijα = {xij ∈ S(x̃ij)|ux̃ij (xij) ≥ α}, ∀i, j, (5)

ỹrjα = {yrj ∈ S(ỹrj)|uỹrj (yrj) ≥ α}, ∀r, j; (6)

where ux̃ij and uỹrj are the membership functions of x̃ij and ỹrj, S(x̃ij) and S(ỹrj) are the support
of x̃ij and ỹrj. The α-cut of a fuzzy number is an interval number defined by lower- and upper-
bound. That is, x̃ijα = [xL

ijα , xU
ijα] and ỹrjα = [yL

rjα , yU
rjα] under α-cut level, where xL

ijα , xU
ijαand yL

rjα ,yU
rjα

respectively denote the lower- and upper-bound of x̃ijα and ỹrjα .
Without loss of generality, the values of all inputs and outputs can be regarded as fuzzy numbers

because any crisp value can be represented by a degenerated membership function having only
one value in its domain. Hence, previous relevant works formulating the FCCR model in two
separated ‘crisp’CCR models can be associated with lower-bound and upper-bound, respectively.
However, as demonstrated by the above example, this can lead to inconsistent evaluation results.
The proposed IFDEA model, therefore, combines both lower- and upper-bounds into a single
model. The concept can be depicted in Figures 2 and 3, wherein five DMUs (A, B, C, D and E)

are considered. For simplicity, each DMU is assumed using two inputs to produce one output.
Figure 2 demonstrates the projection of membership function for DMU B, provided that the
efficiency frontier is formed by DMUs A, C, D and E. Under a specific α-cut level, the lower-,
centre-, and upper-bound efficiency frontiers are respectively denoted as FL

α , FC
α , and FU

α as shown
in Figure 3. The range between FL

α and FU
α represents the bandwidth of the efficiency frontiers.

In order to integrate the lower- and upper-bound efficiency frontiers, a preference weight is
further introduced to generate a weighted efficiency frontier; the crisp efficiency can therefore be
determined by the IFCCR model, explained as follows.
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B
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LFα
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CFα

μ
2x

1x

α

Figure 3. Efficiency frontier formed by DMUs A, C, D, E.

Equivalently, to maximise Equation (1) is to simultaneously maximise the summed lower-bound
(
∑s

r=1 uryL
rkα) and the summed upper-bound (

∑s
r=1 uryU

rkα), depicted in Figure 4 and expressed
below:

Max
ur ,vi

(h̃k)α = Max
ur ,vi

s∑
r=1

ur[yL
rkα , yU

rkα] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Max
ur ,vi

s∑
r=1

uryL
rkα

Max
ur ,vi

s∑
r=1

uryU
rkα

. (7)

In order to integrate these two objection functions, a preference weight β is introduced. The
preference weights β is the weight of lower-bound under certain α-cut of ỹrk . Let β = 1 denote
a pessimistic opinion in maximising ỹrk because the worst situation (lower-bound) is considered;
in contrast, β = 0 should be regarded as an optimistic opinion. Furthermore, to ensure the convex
combination of lower- and upper-bound, a constraint 0 ≤ β ≤ 1 should be added. Therefore,

∑
=

s

r
rkr yu

1

~ '~
1

∑
=

s

r
rkr yu

∑
=

s

r

L
rkr yu

1
α

α

1

∑
=

s

r

L
rkr yu

1

'α ∑
=

s

r

U
rkr yu

1
α ∑

=

s

r

U
rkr yu

1

'α

Figure 4. The summed fuzzy output of DMU k towards maximisation.
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406 L.W. Lan et al.

Equation (7) can be converted into a single objective function as shown in Equation (8):

Max
ur ,vi

{
s∑

r=1

urβyL
rkα +

s∑
r=1

ur(1 − β)yU
rkα

}
= Max

ur1,ur2,vi

{
s∑

r=1

ur1yL
rkα +

s∑
r=1

ur2yU
rkα

}
, (8)

where ur1 = urβ and ur2 = ur(1 − β). Since 0 ≤ β ≤ 1 and ur ≥ 0, both ur1 and ur2 are non-
negative.

Similarly, by substituting the α-cut interval number into Equation (2), we obtain an equivalent
crisp constraint as:

m∑
i=1

vix̃ik =
m∑

i=1

vi
[
xL

ikα , xU
ikα

] = 1̃, (9)

where 1̃ represents a fuzzy number distributed within proximity of 1. The constraint of
∑m

i=1 vix̃ik

equal to 1̃ indicates that the range between the summed lower-bound (
∑m

i=1 vixL
ikα) and the summed

upper-bound (
∑m

i=1 vixU
ikα) should contain the value of 1. Hence, Equation (9) can be expressed

by the following two inequalities:

m∑
i=1

vix
L
ikα ≤ 1, (10)

m∑
i=1

vix
U
ikα ≥ 1. (11)

Following the same vein in converting the objective function, a preference weight variable
γ (0 ≤ γ ≤ 1) is introduced to integrate both Equations (10) and (11) into one equation as below:

m∑
i=1

viγ xL
ikα +

m∑
i=1

vi(1 − γ )xU
ikα = 1. (12)

Let vi1 = viγ and vi2 = vi(1 − γ ), Equation (12) can be rewritten as:

m∑
i=1

vi1xL
ikα +

m∑
i=1

vi2xU
ikα = 1. (13)

Both vi1 and vi2 are non-negative because vi ≥ 0 and 0 ≤ γ ≤ 1.
By substituting α-cut interval numbers of inputs and outputs into Equation (3), the constraint

Equation (3) can be expressed as:

s∑
r=1

ur
[
yL

rjα , yU
rjα

] −
m∑

i=1

vi
[
xL

ijα , xU
ijα

] ≤ 0̃. (14)

Using the addition operation of interval numbers, Equation (14) can further be expressed as:[
s∑

r=1

uryL
rjα ,

s∑
r=1

uryU
rjα

]
−

[
m∑

i=1

vix
L
ijα ,

m∑
i=1

vix
U
ijα

]
≤ 0̃. (15)

Note that the left-hand side of Equation (15) is a minus of two interval numbers. To satisfy an
interval number always smaller than the other, we let any arbitrary value in the former interval
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Transportmetrica A: Transport Science 407

number be smaller than that in the latter one. That is:(
β

s∑
r=1

uryL
rjα + (1 − β)

s∑
r=1

uryU
rjα

)
≤

(
γ

m∑
i=1

vix
L
ijα + (1 − γ )

m∑
i=1

vix
U
ijα

)
. (16)

Equation (16) can therefore be expressed as:(
s∑

r=1

ur1yL
rjα +

s∑
r=1

ur2yU
rjα

)
≤

(
m∑

i=1

vi1xL
ijα +

m∑
i=1

vi2xU
ijα

)
. (17)

With Equations (8), (13), and (17), the above FCCR model can be easily transformed into our
proposed IFCCR model as follows:

(IFCCR) Max
ur1,ur2,vi1,vi2

hkα = Max
ur1,ur2,vi1,vi2

{
s∑

r=1

ur1yL
rkα +

s∑
r=1

ur2yU
rkα

}
(18)

s.t.
m∑

i=1

vi1xL
ikα +

m∑
i=1

vi2xU
ikα = 1, (19)

(
s∑

r=1

ur1yL
rjα +

s∑
r=1

ur2yU
rjα

)
≤

(
m∑

i=1

vi1xL
ijα +

m∑
i=1

vi2xU
ijα

)
, (20)

ur1, ur2, vi1, vi2 ≥ 0, j = 1, . . . , n; i = 1, . . . , m; r = 1, . . . , s; (21)

where hkα represents the crisp efficiency score of DMU k. If hk equals 1, the DMU is regarded as
relatively efficient; otherwise, it is inefficient. The variables ur1, ur2, vi1, vi2 are the corresponding
virtual multipliers of the rth output and the ith input; n, m and s denote the number of DMUs,
inputs and outputs, respectively.

The dual form of our proposed IFCCR model can be expressed as follows:

(IFCCR-D) Min
θ ,λ

θ − ε

(
m∑

i=1

s−
i1 +

m∑
i=1

s−
i2 +

s∑
r=1

s+
r1

+
s∑

r=1

s+
r2

)
(22)

s.t. θxL
ikα −

n∑
j=1

λjx
L
ijα − s−

i1 = 0, (23)

θxU
ikα −

n∑
j=1

λjx
U
ijα − s−

i2 = 0, (24)

n∑
j=1

λjy
L
rjα − yL

rkα − s+
r1

= 0, (25)

n∑
j=1

λjy
U
rjα − yU

rkα − s+
r2

= 0, (26)

λj, s−
i1 , s−

i2 , s+
r1

, s+
r2

≥ 0, j = 1, . . . , n; i = 1, . . . , m; r = 1, . . . , s, (27)

θ unrestricted in sign; (28)

where θ represents the efficiency score of DMU k. If θ equals 1, the DMU is regarded as relatively
efficient; otherwise, it is inefficient. λj is the influence from DMU j; (s−

i1 , s−
i2 ) are slack variables of
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408 L.W. Lan et al.

the ith input and (s+
r1

, s+
r2
) are slack variables of the rth output for lower-bound and upper-bound

corresponding to a specific α-level, respectively.

2.2. IFBCC model

Following the above IFCCR procedures, the IFBCC model for VRS technology can be easily
derived by simply adding a convexity constraint. The dual form of the proposed IFBCC model
can be expressed as follows:

(IFBCC-D) Min
θ ,λ

θ − ε

(
m∑

i=1

s−
i1 +

m∑
i=1

s−
i2 +

s∑
r=1

s+
r1

+
s∑

r=1

s+
r2

)
(29)

s.t. θxL
ikα −

n∑
j=1

λjx
L
ijα − s−

i1 = 0, (30)

θxU
ikα −

n∑
j=1

λjx
U
ijα − s−

i2 = 0, (31)

n∑
j=1

λjy
L
rjα − yL

rkα − s+
r1

= 0, (32)

n∑
j=1

λjy
U
rjα − yU

rkα − s+
r2

= 0, (33)

n∑
j=1

λj = 1, (34)

λj, s−
i1 , s−

i2 , s+
r1

, s+
r2

≥ 0, j = 1, . . . , n; i = 1, . . . , m; r = 1, . . . , s, (35)

θ unrestricted in sign. (36)

3. Efficiency and slack analyses

Technical efficiency, scale efficiency, and slack analysis corresponding to the proposed IFCCR-D
and IFBCC-D models are further derived.

3.1. Technical efficiency

The crisp efficiency score for each DMU can be determined by the proposed IFCCR-D and
IFBCC-D models. Three types of efficiency scores are addressed:

(1) If θ∗
k < 1, DMU k is defined as relatively inefficient. Equations (23) and (24) show

that
∑n

j=1 λjxL
ijα + s−

i1 = θxL
ikα < xL

ikα and
∑n

j=1 λjxU
ijα + s−

i2 = θxU
ikα < xU

ikα , suggesting that
DMU k needs to reduce some amount of its inputs so as to achieve the efficiency frontier
(e.g. DMU B in Figure 2).

(2) If θ∗
k = 1 and s−

i1 , s−
i2 , s+

r1
, s+

r2
are not all equal to zero, DMU k is defined as having radical

efficiency. If θ∗
k = 1 and s−

i1 �= 0, Equations (23) and (24) show that
∑n

j=1 λjxL
ijα + s−

i1 = xL
ikα

and
∑n

j=1 λjxU
ijα = xU

ikα , suggesting that the lower-bound of input i of DMU k is larger than
the weighted lower-bound of input i of DMUs on the efficiency frontier. If θ∗

k = 1 and
s−

i2 �= 0, Equations (23) and (24) show that
∑n

j=1 λjxL
ijα = xL

ikα and
∑n

j=1 λjxU
ijα + s−

i2 = xU
ikα ,
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suggesting that the upper-bound of input i of DMU k is larger than the weighted upper-
bound of input iof DMUs on the efficiency frontier. If θ∗

k = 1 and s+
r1

�= 0, Equation (25)
shows that

∑n
j=1 λjyL

rjα > yL
rkα , suggesting that the lower-bound of output r of DMU k

is less than the weighted lower-bound of output r of DMUs on the efficiency frontier.
If θ∗

k = 1 and s+
r2

�= 0, Equation (26) shows that
∑n

j=1 λjyU
rjα > yU

rkα , suggesting that the
upper-bound of output r of DMU k is less than the weighted upper-bound of output r of
DMUs on the efficiency frontier. These DMUs are defined as relatively inefficient (e.g.
DMUs A and E in Figure 2).

(3) If θ∗
k = 1 and s−

i1 , s−
i2 , s+

r1
, s+

r2
are all equal to zero, DMU k is defined as relatively efficient.

Equations (23)–(26) show that
∑n

j=1 λjxL
ijα = xL

ikα ,
∑n

j=1 λjxU
ijα = xU

ikα ,
∑n

j=1 λjyL
rjα = yL

rkα ,
and

∑n
j=1 λjyU

rjα = yU
rkα , suggesting that the lower- and upper-bound of fuzzy inputs and

outputs of DMU k are equal to the weighted lower- and upper-bound of inputs and outputs
of DMUs on the efficiency frontier. Under this circumstance, further improvement is not
needed. Such DMUs are defined as relatively efficient (e.g. DMUs C and D in Figure 2).

3.2. Scale efficiency

To deal with both crisp and fuzzy data, the above IFBCC-D model can be further transformed into
the following IFBCC-D* model, where Equations (38)–(41) are for fuzzy data, and Equations
(43) and (44) are for crisp data.

(IFBCC-D)* Min
θ ,λ

θ − ε

(
m∑

i=1

s−
i1 +

m∑
i=1

s−
i2 +

s∑
r=1

s+
r1

+
s∑

r=1

s+
r2

)
(37)

s.t. θxL
ikα −

n∑
j=1

λjx
L
ijα − s−

i1 = 0, (38)

θxU
ikα −

n∑
j=1

λjx
U
ijα − s−

i2 = 0, (39)

n∑
j=1

λjy
L
rjα − yL

rkα − s+
r1

= 0, (40)

n∑
j=1

λjy
U
rjα − yU

rkα − s+
r2

= 0, (41)

n∑
j=1

λj = 1, (42)

θxik −
n∑

j=1

λjxij − s−
i = 0, (43)

n∑
j=1

λjyrj − yrk − s+
r = 0, (44)

λj, s−
i1 , s−

i2 , s−
i , s+

r1
, s+

r2
, s+

r ≥ 0; r = 1, . . . , s; i = 1, . . . , m;

j = 1, . . . , n, (45)

θunrestricted in sign. (46)
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410 L.W. Lan et al.

If
∑n

j=1 λj < 1, the DMU is regarded as increasing returns to scale (IRS); if
∑n

j=1 λj > 1, the
DMU is decreasing returns to scale (DRS); if

∑n
j=1 λj = 1, it is CRS.

3.3. Slack analysis

Slack values of each input variable provide useful information about initiating proper improvement
strategies for the inefficient DMUs. For an inefficient DMU k, its fuzzy input and output under
α-level can be expressed as ([xL

ijα , xU
ijα], [yL

rjα , yU
rjα]). If the efficiency score and optimal multipliers

of DMU k are θ∗, λ∗
j , s−∗

i1 , s−∗
i2 , s+∗

r1
, s+∗

r2
, the shadows of DMU k on the efficiency frontier are:

xL∗
ijα = θ∗xL

ikα − s−∗
i1 , (47)

xU∗
ijα = θ∗xU

ikα − s−∗
i2 , (48)

yL∗
rjα = yL∗

rkα + s+∗
r1

, (49)

yU∗
rjα = yU∗

rkα + s+∗
r2

. (50)

The DMUs with λ∗
j �= 0 determined by the IFBCC-D* model form a reference set – the efficiency

frontier of DMU k. The coordinates of these benchmarked DMUs are denoted as:⎛
⎝

⎡
⎣ n∑

j=1

λ∗
j xL

ijα ,
n∑

j=1

λ∗
j xU

ijα

⎤
⎦ ,

⎡
⎣ n∑

j=1

λ∗
j yL

rjα ,
n∑

j=1

λ∗
j yU

rjα

⎤
⎦

⎞
⎠ . (51)

From Equations (47)–(50), the slack values of DMU k can be expressed as follows.

�xL
ikα = xL

ikα − xL∗
ijα , (52)

�xU
ikα = xU

ikα − xU∗
ijα , (53)

�yL
rkα = yL

rkα + yL∗
rjα , (54)

�yU
rkα = yU

rkα + yU∗
rjα ; (55)

where �xL
ikα and �xU

ikα are the slack values of the lower- and upper-bounds of input i of DMU k,
respectively; �yL

rkα and �yU
rkα are the slack values of the lower- and upper-bounds of input i of

DMU k, respectively.

4. A numerical example

To demonstrate the superiority of the proposed IFDEA models, a numerical comparison with the
existent FDEA model proposed by León et al. (2003) is conducted, both using the same dataset
(Table 1) given by León et al. (2003).

First, the efficiency scores under CRS determined by the proposed IFCCR model under various
α-levels are presented in Table 2. We note that only DMU C is benchmarked as efficient under
all α-levels and that DMU A is evaluated as efficient for α ≤ 0.5. The FDEA model proposed by
León et al. (2003) did not evaluate the CRS case.

Second, the efficiency scores under VRS determined by the proposed IFBCC model and León’s
model are presented in Tables 3 and 4, respectively. From Table 3 (León’s model), two DMUs
(A and C) are evaluated as efficient under all α-levels, and another two DMUs (G and B) become
efficient as α ≤ 0.9 and α ≤ 0.3, respectively. The same results are also found in Table 4 (the
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Transportmetrica A: Transport Science 411

Table 2. Efficiency scores under various α-levels determined by the proposed IFCCR model.

DMU

α-Level A B C D E F G H

0.0 1.0000 0.6667 1.0000 0.6429 0.6000 0.4235 0.6000 0.4615
0.1 1.0000 0.6478 1.0000 0.6252 0.5931 0.4140 0.5841 0.4403
0.2 1.0000 0.6287 1.0000 0.6074 0.5863 0.4045 0.5684 0.4191
0.3 1.0000 0.6094 1.0000 0.5895 0.5797 0.3950 0.5529 0.3979
0.4 1.0000 0.5899 1.0000 0.5715 0.5732 0.3855 0.5377 0.3766
0.5 1.0000 0.5701 1.0000 0.5534 0.5668 0.3760 0.5227 0.3554
0.6 0.9418 0.5502 1.0000 0.5352 0.5604 0.3665 0.5079 0.3342
0.7 0.8839 0.5301 1.0000 0.5169 0.5542 0.3570 0.4932 0.3130
0.8 0.8337 0.5098 1.0000 0.4985 0.5480 0.3474 0.4787 0.2919
0.9 0.7895 0.4894 1.0000 0.4801 0.5418 0.3378 0.4643 0.2709
1.0 0.7500 0.4688 1.0000 0.4615 0.5357 0.3281 0.4500 0.2500

Table 3. Efficiency scores under various α-levels determined by the León’s model.

DMU

α-Level A B C D E F G H

0.0 1.0000 1.0000 1.0000 0.7500 0.6429 0.6050 1.0000 0.6923
0.1 1.0000 1.0000 1.0000 0.7399 0.6398 0.5952 1.0000 0.6899
0.2 1.0000 1.0000 1.0000 0.7292 0.6369 0.5857 1.0000 0.6875
0.3 1.0000 1.0000 1.0000 0.7084 0.6310 0.5660 1.0000 0.6850
0.4 1.0000 0.9767 1.0000 0.6853 0.6244 0.5446 1.0000 0.6667
0.5 1.0000 0.9412 1.0000 0.6623 0.6172 0.5227 1.0000 0.6400
0.6 1.0000 0.9048 1.0000 0.6383 0.6094 0.5004 1.0000 0.6129
0.7 1.0000 0.8675 1.0000 0.6144 0.6010 0.4776 1.0000 0.5854
0.8 1.0000 0.8293 1.0000 0.5894 0.5919 0.4543 1.0000 0.5574
0.9 1.0000 0.7901 1.0000 0.5645 0.5821 0.4305 1.0000 0.5289
1.0 1.0000 0.7500 1.0000 0.5385 0.5714 0.4062 0.4500 0.5000

Table 4. Efficiency scores under various α-levels determined by the proposed IFBCC model.

DMU

α-Level A B C D E F G H

0.0 1.0000 1.0000 1.0000 0.7500 0.6429 0.6050 1.0000 0.6923
0.1 1.0000 1.0000 1.0000 0.7396 0.6398 0.5953 1.0000 0.6899
0.2 1.0000 1.0000 1.0000 0.7292 0.6369 0.5857 1.0000 0.6875
0.3 1.0000 1.0000 1.0000 0.7081 0.6311 0.5660 1.0000 0.6850
0.4 1.0000 0.9767 1.0000 0.6853 0.6244 0.5446 1.0000 0.6667
0.5 1.0000 0.9412 1.0000 0.6620 0.6172 0.5227 1.0000 0.6400
0.6 1.0000 0.9048 1.0000 0.6383 0.6094 0.5004 1.0000 0.6129
0.7 1.0000 0.8675 1.0000 0.6141 0.6010 0.4776 1.0000 0.5854
0.8 1.0000 0.8293 1.0000 0.5894 0.5919 0.4543 1.0000 0.5574
0.9 1.0000 0.7901 1.0000 0.5642 0.5821 0.4305 1.0000 0.5289
1.0 1.0000 0.7500 1.0000 0.5385 0.5714 0.4063 0.4500 0.5000

proposed IFBCC model). We also find that the efficiency scores of the IFBCC model (Table 4)
are almost exactly the same as those of the León’s model (Table 3).

Third, by using the proposed IFBCC model, the scale efficiency scores can be easily computed
as shown in Table 5. We note that except for DMU G (characterised with DRS for α ≤ 0.9)
and DMUs A and C (characterised with CRS for α ≤ 0.3 and for all α-levels, respectively), the
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412 L.W. Lan et al.

Table 5. Scale efficiency scores under various α-levels determined by the IFDEA model.

DMU

α-Level A B C D E F G H

0.0 1.00 CRS 0.50 IRS 1.00 CRS 0.75 IRS 0.90 IRS 0.60 IRS 1.10 DRS 0.50 IRS
0.1 1.00 CRS 0.49 IRS 1.00 CRS 0.74 IRS 0.89 IRS 0.60 IRS 1.09 DRS 0.49 IRS
0.2 1.00 CRS 0.49 IRS 1.00 CRS 0.74 IRS 0.88 IRS 0.60 IRS 1.08 DRS 0.47 IRS
0.3 1.00 CRS 0.48 IRS 1.00 CRS 0.73 IRS 0.88 IRS 0.59 IRS 1.07 DRS 0.46 IRS
0.4 1.00 CRS 0.47 IRS 1.00 CRS 0.72 IRS 0.87 IRS 0.59 IRS 1.06 DRS 0.44 IRS
0.5 1.00 CRS 0.46 IRS 1.00 CRS 0.71 IRS 0.86 IRS 0.59 IRS 1.05 DRS 0.42 IRS
0.6 0.53 IRS 0.45 IRS 1.00 CRS 0.70 IRS 0.86 IRS 0.59 IRS 1.04 DRS 0.41 IRS
0.7 0.52 IRS 0.44 IRS 1.00 CRS 0.69 IRS 0.85 IRS 0.59 IRS 1.03 DRS 0.31 IRS
0.8 0.52 IRS 0.44 IRS 1.00 CRS 0.69 IRS 0.84 IRS 0.59 IRS 1.02 DRS 0.37 IRS
0.9 0.51 IRS 0.43 IRS 1.00 CRS 0.68 IRS 0.84 IRS 0.58 IRS 1.01 DRS 0.35 IRS
1.0 0.50 IRS 0.42 IRS 1.00 CRS 0.67 IRS 0.83 IRS 0.58 IRS 1.00 CRS 0.33 IRS

Table 6. Slack values for the lower-bound of input variable under various α-levels.

DMU

α-Level A B C D E F G H

0.0 0.0000 0.0000 0.0000 1.5000 1.7857 2.9622 0.0000 1.3846
0.1 0.0000 0.0000 0.0000 1.5756 1.8732 3.0557 0.0000 1.4109
0.2 0.0000 0.0000 0.0000 1.6519 1.9609 3.1486 0.0000 1.4375
0.3 0.0000 0.0000 0.0000 1.7952 2.0661 3.3203 0.0000 1.4646
0.4 0.0000 0.0860 0.0000 1.9512 2.1785 3.5067 0.0000 1.5667
0.5 0.0000 0.2206 0.0000 2.1123 2.2969 3.6989 0.0000 1.7100
0.6 0.0000 0.3619 0.0000 2.2787 2.4217 3.8968 0.0000 1.8581
0.7 0.0000 0.5102 0.0000 2.4505 2.5537 4.1008 0.0000 2.0110
0.8 0.0000 0.6659 0.0000 2.6279 2.6935 4.3109 0.0000 2.1689
0.9 0.0000 0.8290 0.0000 2.8110 2.8420 4.5272 0.0000 2.3318
1.0 0.0000 1.0000 0.0000 3.0000 3.0000 4.7500 5.5000 2.5000

remaining DMUs (B, D, E, F, and H) are all characterised with IRS (for all α-levels), suggesting
that most of the DMUs need expanding their scales. In contrast, it would be difficult for León’s
model to obtain the scale efficiency scores.

Furthermore, using the proposed IFBCC model two slack values can be easily computed for
lower- and upper-bounds under various α-levels, as shown in Tables 6 and 7, respectively. α = 1.0
represents a crisp input data, thus the slack values for lower- and upper-bounds must be the same.
From Tables 6 and 7, we note that except for the efficient DMUs (A and C for all α-levels; or
A, C and G for α ≤ 0.9), all inefficient DMUs require reducing their input amounts to achieve
efficiency. Taking DMU D as an example, one requires decreasing the input amounts by 1.50
to 3.00 for the lower-bound and by 1.75 to 3.00 for the upper-bound. With consideration of all
required reductions in lower- and upper-bound under various α-levels, the fuzzy input for DMU
D should decrease to a value of 3̃ = (3, 0.375) to achieve efficiency, suggesting that both cortex
and spread of the fuzzy input should simultaneously decrease. Once again, it is difficult for León’s
model to compute the slack values.

Compared with an existent FDEA model, the proposed IFDEA models can reach the same
results in technical efficiency scores; more importantly, the proposed models can compute scale
efficiency scores and slack values without difficulties. In sum, the proposed IFDEA models are
more generalised and with greater simplicity than an existent FDEA model.
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Table 7. Slack values for the upper-bound of input variable under various α-levels.

DMU

α-Level A B C D E F G H

0.0 0.0000 0.0000 0.0000 1.7500 3.2143 3.3571 0.0000 1.6923
0.1 0.0000 0.0000 0.0000 1.8100 3.1700 3.4200 0.0000 1.6899
0.2 0.0000 0.0000 0.0000 1.8686 3.1229 3.4800 0.0000 1.6875
0.3 0.0000 0.0000 0.0000 1.9996 3.0992 3.6242 0.0000 1.6850
0.4 0.0000 0.1000 0.0000 2.1400 3.0800 3.7800 0.0000 1.7667
0.5 0.0000 0.2500 0.0000 2.2813 3.0625 3.9375 0.0000 1.8900
0.6 0.0000 0.4000 0.0000 2.4233 3.0467 4.0967 0.0000 2.0129
0.7 0.0000 0.5500 0.0000 2.5663 3.0325 4.2575 0.0000 2.1354
0.8 0.0000 0.7000 0.0000 2.7100 3.0200 4.4200 0.0000 2.2574
0.9 0.0000 0.8500 0.0000 2.8546 3.0092 4.5842 0.0000 2.3789
1.0 0.0000 1.0000 0.0000 3.0000 3.0000 4.7500 5.5000 2.5000

5. Case study

A case study on the intercity bus companies in Taiwan is conducted by using the proposed IFDEA
models. The data and evaluation results are delineated below.

5.1. Data

Referring to previous relevant literature (Gillen and Lall 1997a, 1997b; Lan and Lin 2005; Chiou
and Chen 2006; Bhadra 2009; Karlaftis 2010; Lin, Lan, and Hsu 2010), this study selects number
of employees, length of operating network, capital cost and fuel cost as the input variables; total

Table 8. Correlation coefficients among crisp input and output variables.

Input Output

Operating Capital Fuel
Variable Bus Labour network cost cost Bus-km Passenger-km Revenue

Bus 1.00
Labour 0.95 1.00
Operating network 0.52 0.61 1.00
Capital cost 0.53 0.51 0.25 1.00
Fuel cost 0.90 0.96 0.54 0.52 1.00
Bus-km 0.84 0.90 0.39 0.58 0.96 1.00
Passenger-km 0.72 0.81 0.43 0.54 0.91 0.96 1.00
Revenue 0.94 0.98 0.55 0.52 0.98 0.95 0.87 1.00

Table 9. Regression results for input and output variables.

Independent variables
Dependent
variables Bus Labour Operating network Capital cost Fuel cost

Bus-km 26,991.389 7304.43 3872.509 0.015 0.217 (7.700)
(8.351) (2.409) (3.500) (2.801) R2 = 0.979

Passenger-km 790,437.011 693,665.200 27,678.15 0.258 4.842 (6.014)
(2.385) (1.395) (3.885) (2.730) R2 = 0.921

Revenue 551,132.550 127,018.628 25,300.793 0.015 2.524 (4.041)
(3.245) (2.421) (4.042) (3.132) R2 = 0.970

Note: t-Values in parentheses.
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414 L.W. Lan et al.

Table 10. Passenger satisfaction for 35 intercity bus companies.

Passenger Passenger Passenger
DMU satisfaction DMU satisfaction DMU satisfaction

1 Fair service 13 Fair service 25 Fair service
2 Fair service 14 Fair service 26 Fair service
3 Fair service 15 Good service 27 Poor service
4 Poor service 16 Fair service 28 Good service
5 Poor service 17 Poor service 29 Fair service
6 Poor service 18 Poor service 30 Poor service
7 Fair service 19 Poor service 31 Fair service
8 Fair service 20 Poor service 32 Fair service
9 Fair service 21 Poor service 33 Fair service
10 Fair service 22 Fair service 34 Fair service
11 Poor service 23 Fair service 35 Poor service
12 Poor service 24 Poor service

Table 11. Efficiency scores of 35 intercity bus companies under various α-levels.

CRS VRS

DMU α = 0.0 α = 0.4 α = 0.8 α = 1.0 α = 0.0 α = 0.4 α = 0.8 α = 1.0

1 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
2 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
3 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
4 0.4640 0.4640 0.4640 0.4640 0.4645 0.4645 0.4645 0.4645
5 0.5436 0.5436 0.5436 0.5436 0.6753 0.6753 0.6753 0.6753
6 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
7 0.8904 0.8904 0.8903 0.8902 0.9452 0.9452 0.9452 0.9452
8 0.6915 0.6915 0.6915 0.6915 0.8702 0.8702 0.8702 0.8702
9 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
10 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
11 0.5613 0.5613 0.5613 0.5613 0.8262 0.8262 0.8262 0.8262
12 0.9468 0.9468 0.9468 0.9468 0.9842 0.9842 0.9842 0.9842
13 0.6669 0.6668 0.6667 0.6666 0.7942 0.7942 0.7942 0.7942
14 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
15 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
16 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
17 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
18 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
19 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
20 0.5843 0.5842 0.5842 0.5842 0.7826 0.7826 0.7826 0.7826
21 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
22 0.6075 0.6075 0.6075 0.6075 0.7943 0.7943 0.7943 0.7943
23 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
24 0.9127 0.9127 0.9127 0.9127 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
25 0.7768 0.7768 0.7768 0.7768 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
26 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
27 0.5784 0.5783 0.5783 0.5782 0.5813 0.5813 0.5813 0.5813
28 0.4789 0.4789 0.4789 0.4789 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
29 0.5457 0.5457 0.5457 0.5457 0.5571 0.5571 0.5571 0.5571
30 0.8027 0.8027 0.8027 0.8027 0.9213 0.9213 0.9213 0.9213
31 0.8051 0.8051 0.8051 0.8051 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
32 0.9978 0.9978 0.9977 0.9977 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
33 0.8003 0.8003 0.8003 0.8003 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
34 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗
35 0.4704 0.4703 0.4702 0.4701 0.4759 0.4759 0.4759 0.4759

Note: ‘*’ represents the optimal efficient score.
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Table 12. Scale efficiency scores of 35 intercity bus companies under various α-levels.

α-level

DMU 0.0 0.4 0.8 1.0

1 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
2 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
3 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
4 0.9167 IRS 0.9148 IRS 0.9128 IRS 0.9118 IRS
5 1.5088 DRS 1.5088 DRS 1.5088 DRS 1.5088 DRS
6 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
7 1.0190 DRS 1.0185 DRS 1.0181 DRS 1.0179 DRS
8 2.0600 DRS 2.0600 DRS 2.0600 DRS 2.0600 DRS
9 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
10 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
11 1.1935 DRS 2.2882 DRS 2.2882 DRS 2.2882 DRS
12 1.7514 DRS 1.7514 DRS 1.7514 DRS 1.7514 DRS
13 1.1128 DRS 1.1102 DRS 1.1077 DRS 1.1065 DRS
14 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
15 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
16 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
17 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
18 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
19 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
20 1.1211 DRS 1.1181 DRS 1.1151 DRS 1.1137 DRS
21 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
22 1.0693 DRS 1.0676 DRS 1.0660 DRS 1.0652 DRS
23 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
24 4.4237 DRS 4.4237 DRS 4.4237 DRS 4.4237 DRS
25 3.5736 DRS 3.5736 DRS 3.5736 DRS 3.5736 DRS
26 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
27 0.9416 IRS 0.9403 IRS 0.9389 IRS 0.9382 IRS
28 1.3082 DRS 1.3082 DRS 1.3082 DRS 1.3082 DRS
29 1.3515 DRS 1.3515 DRS 1.3515 DRS 1.3515 DRS
30 1.6929 DRS 1.6929 DRS 1.6929 DRS 1.6929 DRS
31 1.2837 DRS 1.2837 DRS 1.2837 DRS 1.2837 DRS
32 1.0099 DRS 1.0097 DRS 1.0095 DRS 1.0094 DRS
33 2.7128 DRS 2.7128 DRS 2.7128 DRS 2.7128 DRS
34 1.0000 CRS 1.0000 CRS 1.0000 CRS 1.0000 CRS
35 0.9564 IRS 0.9554 IRS 0.9544 IRS 0.9539 IRS

passenger-km, total bus-km, total revenue, and passenger satisfaction as the output variables. It
should be noted that passenger satisfaction is the only qualitative variable (conducted by a ques-
tionnaire survey) and the remaining quantitative variables are all crisp. All the data are available
from the annual report published by the Institute of Transportation, Ministry of Transportation
and Communications (Taiwan) in 2005.

Table 8 gives the correlation coefficients among the crisp variables. All correlation coefficients
between input and output variables are significantly positive, confirming that the dataset satis-
fies the isotonicity property. To ensure that the selected input/output variables are important and
relevant, regression analyses are further conducted as shown in Table 9. Note that all the explana-
tory variables show positive and significant effects on at least one of the associated dependent
variables, suggesting the appropriateness of the above selected input variables.

The fuzzy variable, passenger satisfaction, is represented by three linguistic degrees: poor
service (75, 5), fair service (85, 5) and good service (95, 5), with half-overlapped triangular
membership functions. The original data of this fuzzy variable are summarised in Table 10.
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5.2. Efficiency analyses

Table 11 presents the efficiency scores of the bus companies under CRS and VRS technologies,
respectively. From Table 11, we note that 16 and 22 companies have been benchmarked as efficient
with IFCCR and IFBCC models, respectively. Interestingly, the efficiency scores do not vary much
with different α-levels. Similar to the numerical example presented in Section 4, the efficiency
scores of inefficient companies increase as the α-level goes higher.

Table 12 further gives the scale efficiency scores of these bus companies. We note that most of
the bus companies are characterised with DRS, implying the necessity of downsizing their scales.
Only three bus companies (4, 27 and 35) are characterised with IRS, suggesting that they have
the advantages to scale up.

5.3. Slack analysis

The slack values for the input variables of inefficient companies are computed by the IFBCC
model. Table 13 gives the slack values for the input variables under α = 0.8, from which one
notice that the percentages of reduction in input amounts for the inefficient companies can range

Table 13. Slack values of input variables for 35 intercity bus companies (α = 0.8).

Operating
DMU Bus Labour network Capital cost Fuel cost

1 0.00% 0.00% 0.00% 0.00% 0.00%
2 0.00% 0.00% 0.00% 0.00% 0.00%
3 0.00% 0.00% 0.00% 0.00% 0.00%
4 60.75% 63.10% 63.89% 71.11% 66.15%
5 46.12% 44.16% 36.83% 58.23% 45.18%
6 0.00% 0.00% 0.00% 0.00% 0.00%
7 37.00% 34.70% 4.62% 14.42% 63.19%
8 16.61% 15.40% 43.03% 67.43% 22.97%
9 0.00% 0.00% 0.00% 0.00% 0.00%
10 0.00% 0.00% 0.00% 0.00% 0.00%
11 40.06% 43.03% 55.90% 91.45% 47.18%
12 29.68% 23.37% 39.25% 81.48% 12.67%
13 27.83% 4.73% 5.48% 40.32% 16.15%
14 0.00% 0.00% 0.00% 0.00% 0.00%
15 0.00% 0.00% 0.00% 0.00% 0.00%
16 0.00% 0.00% 0.00% 0.00% 0.00%
17 0.00% 0.00% 0.00% 0.00% 0.00%
18 0.00% 0.00% 0.00% 0.00% 0.00%
19 0.00% 0.00% 0.00% 0.00% 0.00%
20 41.04% 39.79% 27.09% 9.09% 40.15%
21 0.00% 0.00% 0.00% 0.00% 0.00%
22 47.57% 39.01% 28.18% 52.64% 41.57%
23 0.00% 0.00% 0.00% 0.00% 0.00%
24 0.00% 0.00% 0.00% 0.00% 0.00%
25 0.00% 0.00% 0.00% 0.00% 0.00%
26 0.00% 0.00% 0.00% 0.00% 0.00%
27 50.43% 68.37% 68.60% 79.64% 73.01%
28 0.00% 0.00% 0.00% 0.00% 0.00%
29 68.51% 64.02% 89.35% 94.88% 51.98%
30 42.72% 42.26% 54.25% 48.53% 30.97%
31 0.00% 0.00% 0.00% 0.00% 0.00%
32 0.00% 0.00% 0.00% 0.00% 0.00%
33 0.00% 0.00% 0.00% 0.00% 0.00%
34 0.00% 0.00% 0.00% 0.00% 0.00%
35 66.77% 58.66% 82.03% 71.32% 70.72%
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from 4.73% to 94.88%. Taking Company 11 as an example, reducing the fleet size by 40.06%,
the labour force by 43.03%, the operating network by 55.90%, the capital by 91.45%, and the
fuel by 47.18% will move the company towards efficiency.

6. Discussion

The major merit of the proposed IFDEA models is to integrate the lower- and upper-bound
efficiency frontiers to generate a crisp efficiency value. With the determined crisp efficiency
frontier, the scale efficiency scores and the slack values for DMUs can be easily computed. As
such, and the improvement directions for the inefficient DMUs can be clearly identified.

To further highlight the advantages of the proposed IFCCR model, a comparison with the
FDEA models proposed by Kao and Liu (2000) is conducted. Table 14 presents the slack values
of input variables for DMU 13 determined by the IFCCR model. Figure 5 further compares the
efficiency scores for DMU 13 by the FDEA model (Kao and Liu 2000) and by the proposed
IFCCR model. We note that the efficiency value for DMU 13 decreases as α gets larger, showing
that the proposed IFCCR model computes lower efficiency value with higher α value (i.e. more
pessimistic than FDEA). The proposed IFCCR model becomes a crisp model and shows DMU
13 being inefficient as α = 1. From Figure 5, it is apparent that the results of IFCCR model lie
between lower- and upper-efficiency frontiers, which are in effect derived from two CDEA models
(Kao and Liu 2000). In contrast, the proposed IFCCR model has reasonably integrated the lower-
and upper-efficiency frontiers.

Figure 6 further displays the slack values of input variables for the inefficient DMU 13 under
different α values by the IFCCR model. When α value becomes larger, DMU 13 requires curtailing

Table 14. Slack values of input variables for DMU 13 by the IFCCR model.

Operating
α Value Bus Labour network Capital cost Fuel cost

0.0 31.57% 10.09% 5.66% 44.71% 22.95%
0.4 32.18% 10.97% 5.69% 45.43% 24.06%
0.8 32.79% 11.85% 5.72% 46.14% 25.17%
1.0 33.41% 12.73% 5.74% 46.86% 26.29%

Figure 5. Efficiency scores for DMU 13 by the FDEA model (Kao and Liu 2000) and by the IFCCR
model.
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Figure 6. Slack values of input variables for DMU 13 under different α values by the IFCCR model.

more amounts of its inputs. Hence, a pessimistic decision maker may choose a larger α value by
which the inefficient DMUs will be improved more remarkably, and vice versa. With this proce-
dure, the decision maker can easily determine how to improve the inefficient DMUs’performance
in a context containing crisp and fuzzy input/output measures. With flexible settings of α val-
ues, the proposed IFDEA models can facilitate the managers to make more flexible and correct
decisions, based on informative and useful evaluation results.

7. Concluding remarks

Previous FDEA models have separately determined the lower- and upper-bound efficiency scores
under various α-cut levels by using subjective ranking methods to find the crisp evaluation results.
This can often lead to unreasonable frontiers – with lower-bound efficiency scores greater than
upper-bound efficiency scores. This paper contributes two IFDEA models, IFCCR and IFBCC,
that have successfully overcome this problem. The proposed IFDEA models can determine
crisp evaluation scores under various α-levels with CRS and VRS technologies. In addition,
the proposed IFDEA models can easily determine the slack values for both lower- and upper-
bound input/output variables simultaneously. With the computed slack values under various α-cut
levels, the associated fuzzy values for input variables can be determined to achieve efficiency.
The numerical example has illustrated that the proposed IFDEA models are more generalised
and with greater simplicity than an existent FDEA model. The case study has also demonstrated
that the proposed IFDEA modelling approach can satisfactorily evaluate the relative efficiency
for DMUs with a portion of qualitative variables measured with vagueness.

This study inevitably has some limitations which call for further exploration. First, the proposed
IFDEA models are to determine the efficiency score under a pre-specified α-level. In practice,
however, it might be difficult for a decision maker to preset the α-level. Therefore, one may further
elaborate the IFDEA models to determine the efficiency scores by simultaneously considering all
possible α-levels. Second, more comparisons with other existent FDEA models deserve further
studies to test the superiority robustness of the proposed IFDEA models. Turning to the empirical
applications in bus transport evaluation, aside from passenger satisfaction, other qualitative data
such as driver attitudes, vehicle comfort or amenity, and passenger complaints may also affect the
overall performance of services. Therefore, in the future study, conducting a survey on such qual-
itative data before applying the proposed IFDEA models will make the performance evaluation
more holistic.
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