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To fill the gap in the literature on the application of three-dimensional elasticity theory to geometrically
induced stress singularities, this work develops asymptotic solutions for Williams-type stress singulari-
ties in bodies of revolution that are made of rectilinearly anisotropic materials. The Cartesian coordinate
system used to describe the material properties differs from the coordinate system used to describe the
geometry of a body of revolution, so the problems under consideration are very complicated. The eigen-
function expansion approach is combined with a power series solution technique to find the asymptotic
solutions by directly solving the three-dimensional equilibrium equations in terms of the displacement
components. The correctness of the proposed solution is verified by convergence studies and by compar-
isons with results obtained using closed-form characteristic equations for an isotropic body of revolution
and using the commercial finite element program ABAQUS for orthotropic bodies of revolution. Thereaf-
ter, the solution is employed to comprehensively examine the singularities of bodies of revolution with
different geometries, made of a single material or bi-materials, under different boundary conditions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Many stress singularities caused by material discontinuities and
geometric irregularities, such as a notch or an abrupt change in
cross-section, occur in real applications. Cracks or damages are
commonly initiated at points with stress singularities, so accu-
rately determining the singular behaviors around these singular
points is important. Two geometries are frequently considered in
investigations of geometrically induced stress singularities: bodies
of revolution and wedges. Analytical approaches can be applied to
such geometries because of their simplicity. The stress-singular
behaviors that are identified for such simple geometries can be uti-
lized to solve stress singularity problems of highly complicated
geometries.

The stress singularities in isotropic bodies of revolution or
wedges have been comprehensively examined. Since Williams
(1952a) pioneered the investigation of stress singularities of plates
under extension, many studies of stress singularities in wedges
composed of a single material or of multiple materials have been
carried out based on the plane strain or stress assumption (e.g.,
Williams, 1952b; Hein and Erdogan, 1971; England, 1971; Bogy
and Wang, 1971; Dempsey and Sinclair, 1981; Ying and Katz,
1987) or three-dimensional elasticity theory (e.g., Hartranft and
Sih, 1969; Chaudhuri and Xie, 2000). Geometrically induced stress
singularities in plates composed of a single material and of multi-
ple materials have also been extensively studied using classical
thin plate theory (e.g., Williams, 1952c; Williams and Owens,
1954), first-order shear deformation plate theory (e.g., Burton
and Sinclair, 1986; Huang, 2002a, 2003; Saidi et al., 2010; McGee
and Kim, 2005), and third–order plate theory (Huang, 2002b). Only
a few investigations of problems involving bodies of revolution
have been conducted. Zak (1964) analyzed stresses in the vicinity
of boundary discontinuities in the special case of axisymmetric
loading. Huang and Leissa (2007) proposed a closed-form asymp-
totic solution for stress singularities in a body of revolution using
three-dimensional theory.

Numerous studies have also been published on geometrically
induced stress singularities in an anisotropic body. Most of the lit-
erature addresses anisotropic wedge problems because of the wide
use of composite materials in engineering applications. Bogy
(1972) and Kuo and Bogy (1974) investigated plane traction or dis-
placement problems using the Mellin transform. Assuming that the
displacement and stress components were independent of the
thickness direction of the wedge, Ting and Chou (1981) adopted
the method of Stroh (1962) to determine possible stress distribu-
tions close to the vertex of a wedge or a composite wedge of
anisotropic materials. Based on the assumption of generalized
plane deformation, Chue et al. (2001) and Chue and Liu (2002)
determined the singularity orders for composite laminates with
an arbitrary fiber orientation using Lekhnitslii’s formulation.
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Stolarski and Chiang (1989), Pageau et al. (1995), Pageau and Big-
gers (1996) and Ping et al. (2008) conducted finite element analy-
ses of the stress singularity fields in anisotropic wedges. Applying
classical plate theory, Williams and Chapkis (1958) developed the
characteristic equations for stress singularities in polarly orthotro-
pic plates, while Ojikutu et al. (1984) analyzed stress singularities
in a laminated composite wedge.

No literature is available on geometrically induced stress singu-
larities in an anisotropic body of revolution. The present paper
aims to fill the gap by presenting an asymptotic solution for Wil-
liams-type stress singularities (i.e., rij / r�k) in a rectilinearly aniso-
tropic body of revolution, as displayed in Fig. 1, where the �X—�Y—�Z
coordinate system is used to describe the material anisotropy
whereas the X–Y–Z coordinate system is used to specify the geom-
etry of the body. These two coordinate systems are called the
material coordinate system (�X—�Y—�Z) and the geometric coordinate
system (X–Y–Z). The in-plane displacement components (in the
r–Z plane in Fig. 1) are coupled with the out-of-plane displacement
component for a general anisotropic body, and the strength of the
stress singularity may depend on h. Unlike solutions for isotropic
bodies of revolution, closed-form characteristic equations for the
stress singularity orders in a general anisotropic body of revolution
cannot be obtained. An eigenfunction expansion approach is com-
bined with a power series method to asymptotically solve the
equilibrium equations in terms of the displacements used in
three-dimensional elasticity theory. The accuracy of the proposed
solution is confirmed by comparing the orders of stress singulari-
ties herein with results determined from the characteristic equa-
tions for an isotropic body of revolution developed by Huang and
Leissa (2007) and obtained from the ABAQUS finite element pro-
gram for orthotropic bodies of revolution. The presented solution
is further applied to examine the effects of boundary conditions,
material properties, and the inconsistency between the �X—�Y—�Z
and X–Y–Z coordinate systems on the strength of the stress singu-
larities. The present analytical solutions are established based on
the general three-dimensional formulation, and can be used to ver-
ify solutions that are obtained using numerical techniques, such as
finite element approaches.
2. Analysis

Consider an anisotropic body of revolution, shown in Fig. 1,
where the �X—�Y—�Z coordinate system is used to describe the
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Fig. 1. Bi-material body of revolution with a sharp corner.
material anisotropy and the X–Y–Z coordinate system is used to
describe the geometry of the body. The body, subjected to no body
forces, should satisfy the following equilibrium equations in terms
of the stress components (rij) in the cylindrical coordinate system
(r,h,Z) (Fig. 1):
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If the material matrix ½�c� is defined in the �X—�Y—�Z coordinate sys-
tem, then the relations between the stress components and strain
components in the (r,h,Z) coordinates are

frg ¼ ½c�feg; ð2Þ

where

frg ¼ frrr rhh rzz rhz rzr rrh gT
;
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;

½c� ¼ ½T�r½K�½�c�½K�
T½T��1

e ;

½T�r¼

cos2 h sin2 h 0 0 0 2coshsinh

sin2 h cos2 h 0 0 0 �2coshsinh

0 0 1 0 0 0
0 0 0 cosh �sinh 0
0 0 0 sinh cosh 0

�coshsinh coshsinh 0 0 0 cos2 h�sin2 h

2
6666666664

3
7777777775
;

½T�e¼

cos2 h sin2 h 0 0 0 coshsinh

sin2 h cos2 h 0 0 0 �coshsinh

0 0 1 0 0 0
0 0 0 cosh �sinh 0
0 0 0 sinh cosh 0

�2coshsinh 2coshsinh 0 0 0 cos2 h�sin2 h

2
6666666664

3
7777777775
;

½L� ¼
cosð�X;XÞ cosð�X;YÞ cosð�X; ZÞ
cosð�Y;XÞ cosð�Y ;YÞ cosð�Y; ZÞ
cosð�Z;XÞ cosð�Z;YÞ cosð�Z; ZÞ

2
64

3
75 ¼

l11 l12 l13

l21 l22 l23

l31 l32 l33

2
64

3
75;

½K� ¼
K1 2K2

K3 K4

� �
; K1 ¼

l2
11 l2

12 l2
13

l2
21 l2

22 l2
23

l2
31 l2

32 l2
33

2
664

3
775;

K2 ¼
l12l13 l13l11 l11l12

l22l23 l23l21 l21l22

l32l33 l33l31 l31l32

2
64

3
75;

K3 ¼
l21l31 l22l32 l23l33

l31l11 l32l12 l33l13

l11l21 l12l22 l13l23

2
64

3
75; K4 ¼

l22l33þ l23l32 l23l31þ l21l33 l21l32þ l22l31

l32l13þ l33l12 l33l11þ l31l13 l31l12þ l32l11

l12l23þ l13l22 l13l21þ l11l23 l11l22þ l12l21

2
64

3
75:

Hence, the components of [c] are functions of h and of the angles be-
tween the axes of �X—�Y—�Z and X–Y–Z.

Fig. 2 shows a half-plane with a constant h in Fig. 1. To find an
asymptotic solution around the sharp corner in Fig. 2, the (r,Z)
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Fig. 2. Cylindrical (r, Z) and sharp corner (q, /) coordinates.
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coordinates are transformed to (q,/) coordinates, as presented in
Fig. 2. The relations between (r,Z) and (q,/) are

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � RÞ2 þ z2

q
; / ¼ tan�1 �z

r � R

� �
; r � R

¼ q cos /; and z ¼ �q sin /: ð3Þ

Using the linear relations between the displacements and
strains and the relations given in Eq. (3), substituting Eq. (2) into
Eq. (1) yields the following equilibrium equations in terms of the
displacement components in the (q,h,/) coordinate system:(
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where ur, uh, and uz are the displacement components in the r, h, and
Z directions, respectively; cij is the (i, j) component in [c]; and
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Eq. (4) are complicated partial differential equations with variable
coefficients. The eigenfunction expansion approach used by
Hartranft and Sih (1969) for an isotropic wedge is utilized herein
to establish an asymptotic solution around the sharp corner in
Fig. 2. We assume
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where km can be a sequence of complex numbers, ordered Re[ki]
6Re[kiþ1], whose real part must be positive to ensure finite dis-
placements at q = 0. Substituting Eq. (5) into Eq. (4) and considering
the terms in the least power of q yields
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where D1 ¼ c11sin2/þ c55cos2/þ c15sin2/, D2 ¼ c66sin2/þ c44

cos2/þ c46sin2/, and D3 ¼ c55sin2/þ c33cos2/þ c35sin2/.
Eq. (6) is a set of ordinary differential equations with variable

coefficients that depend on h and /. The three displacement com-
ponents are coupled. The exact closed-form solutions to Eq. (6) are
intractable, if they exist. The power series method can be directly
adopted to develop a general solution to the ordinary differential
equations. Very high-order terms are often needed to obtain an
accurate solution and usually cause numerical difficulties. To over-
come these difficulties, a domain decomposition technique is
Table 2
Convergence study of k1 for an isotropic body of revolution with a = 270�.

Geometry/boundary condition Number of sub-domains Number of poly

2 4

2 0.5274 0
4 0.5517 0
8 0.5468 0

10 0.5456 0

Table 3
Convergence study of k1 for an orthotropic body of revolution with a = 360�.

Geometry/boundary condition Cases Number of sub-domains N

2

1 2 0
4 0
8 0

10 0
2 2 0

4 0
8 0

10 0

Table 1
Material properties of orthotropic materials.

Stiffness (GPa) Material

TiSi2 BaSO4 FeSiO3

�c11 377.2 89.4 198.0
�c12 27.8 46.1 84.0
�c13 21.3 26.9 72.0
�c14 0.0 0.0 0.0
�c15 0.0 0.0 0.0
�c16 0.0 0.0 0.0
�c22 341.1 78.4 136.0
�c23 95.1 26.7 55.0
�c24 0.0 0.0 0.0
�c25 0.0 0.0 0.0
�c26 0.0 0.0 0.0
�c33 425.3 105.4 175.0
�c34 0.0 0.0 0.0
�c35 0.0 0.0 0.0
�c36 0.0 0.0 0.0
�c44 136.5 11.9 59.0
�c45 0.0 0.0 0.0
�c46 0.0 0.0 0.0
�c55 93.7 28.7 58.0
�c56 0.0 0.0 0.0
�c66 154.6 27.7 49.0
applied in conjunction with the power series method to establish
a general solution to Eq. (6).

The range of / under consideration is first divided into a num-
ber of sub-domains (Fig. 3). A series solution to Eq. (6) is con-
structed in each sub-domain. Consequently, a general solution
over the whole / domain is obtained by assembling the solutions
in all sub-domains and imposing continuity conditions between
each pair of adjacent sub-domains. This process is a very conve-
nient means of constructing solutions for multi-material bodies
of revolution, which are also considered in this work.

To establish the power series solution for sub-domain i of /,
the variable coefficients in Eq. (6) are expanded in terms of the
power series of / with respect to the middle point of the sub-
domain �/i:

sin 2/
D1

¼
XK

k¼0

aðiÞk ð/� �/iÞ
k
;

cos2 /
D1

¼
XK

k¼0

bðiÞk ð/� �/iÞ
k
;

sin2 /
D1

¼
XK

k¼0

cðiÞk ð/� �/iÞ
k
;

cos 2/
D1

¼
XK

k¼0

dðiÞk ð/� �/iÞ
k
;

sin 2/
D2

¼
XK

k¼0

eðiÞk ð/� �/iÞ
k
;

cos2 /
D2

¼
XK

k¼0

f ðiÞk ð/� �/iÞ
k
;

sin2 /
D2

¼
XK

k¼0

gðiÞk ð/� �/iÞ
k
;

cos 2/
D2

¼
XK

k¼0

hðiÞk ð/� �/iÞ
k
;

sin 2/
D3

¼
XK

k¼0

lðiÞk ð/� �/iÞ
k
;

cos2 /
D3

¼
XK

k¼0

mðiÞk ð/� �/iÞ
k
;

sin2 /
D3

¼
XK

k¼0

nðiÞk ð/� �/iÞ
k
;

cos 2/
D3

¼
XK

k¼0

oðiÞk ð/� �/iÞ
k
:

ð7Þ
nomial terms Huang and Leissa (2007)

8 12 16

.5246 0.5442 0.5445 0.5445 0.5445

.5439 0.5445 0.5445 0.5445

.5444 0.5445 0.5445 0.5445

.5445 0.5445 0.5445 0.5445

umber of polynomial terms ABAQUS

4 8 12 16

.4201 0.4359 0.4995 0.5000 0.5000 0.5001

.4141 0.4466 0.5000 0.5000 0.4999

.4631 0.4993 0.4998 0.4999 0.5000

.4918 0.4999 0.4999 0.4999 0.5000

.3933 0.4566 0.4842 0.5140 0.5123 0.4999

.4191 0.4557 0.4961 0.5014 0.4984

.4902 0.4990 0.4998 0.4999 0.4999

.4930 0.4999 0.4999 0.4999 0.5000



h

crack

Fig. 4. A finite element model and mesh configuration.

Table 4
Convergence study of k1 for an orthotropic body of revolution with a = 270�.

Geometry/boundary condition Cases Number of sub-domains Number of polynomial terms ABAQUS

2 4 8 12 16

1 2 0.6532 0.6479 0.6665 0.6553 0.6424 0.5500
4 0.5575 0.5538 0.5500 0.5506 0.5500
8 0.5564 0.5511 0.5501 0.5502 0.5502

10 0.5521 0.5500 0.5502 0.5502 0.5502
2 2 0.5964 0.6671 0.6068 0.5992 0.5905 0.5461

4 0.5770 0.5504 0.5546 0.5595 0.5606
8 0.5561 0.5439 0.5461 0.5463 0.5463

10 0.5496 0.5452 0.5463 0.5463 0.5463
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Fig. 6. Variation of k1 at h = 0� with respect to b for TiSi2 and Si bodies of revolution
having b1 = 180� under FF, FC, and CC boundary conditions.

Fig. 5. Variation of rzz with respect to q/R.
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Similarly, the solutions to Eq. (6) in sub-domain i are expressed as

ÛðmÞ0i ¼
XJ

j¼0

ÂðimÞj ð/� �/iÞ
j
; V̂ ðmÞ0i ¼

XJ

j¼0

B̂ðimÞj ð/� �/iÞ
j
;

Ŵ ðmÞ
0i ¼

XJ

j¼0

ĈðimÞj ð/� �/iÞ
j
: ð8Þ

Substituting Eqs. (7) and (8) into Eq. (6) and carefully rearranging
the terms yields the following recurrence relations among the un-
known coefficients in Eq. (8):

ÂðimÞjþ2 þ c16c0þc45b0þ
ðc14þ c56Þ

2
a0

� �
B̂ðimÞjþ2

þ c15c0þc35b0þ
ðc13þ c55Þ

2
a0

� �
ĈðimÞjþ2

¼ �1
ðjþ2Þðjþ1Þ

(Xj�1

k¼0

c16cj�kþc45bj�kþ
ðc14þ c56Þ

2
aj�k

� �

�ðkþ2Þðkþ1ÞB̂ðimÞkþ2þ c15cj�kþc35bj�kþ
ðc13þ c55Þ

2
aj�k

� �

�ðkþ2Þðkþ1ÞĈðimÞkþ2þ
Xj

k¼0

ðkm�1Þ½ðc55� c11Þaj�k�2c15dj�k�

� ðkþ1ÞÂðimÞkþ1þ kmððkm�1Þc55þ c11Þcj�kþkmððkm�1Þc11þ c55Þbj�k

	
þkð2�kÞc15aj�k



ÂðimÞk þðkm�1Þ½ðc45� c16Þaj�k

�ðc14þ c56Þdj�k�ðkþ1ÞB̂ðimÞkþ1

þ
"
kmðkm�1Þ� c16bj�kþ c45cj�k�

ðc14þ c56Þ
2

aj�k

� �

þkm c16cj�kþ c45bj�kþ
ðc14þc56Þ

2
aj�k

� �#
B̂ðimÞk

þðkm�1Þ½ðc35� c15Þaj�k�ðc13þ c55Þdj�k�ðkþ1ÞĈðimÞkþ1

þ
"
kmðkm�1Þ� c15bj�kþ c35cj�k�

ðc13þ c55Þ
2

aj�k

� �

þkm c15cj�kþ c35bj�kþ
ðc13þc55Þ

2
aj�k

� �#
ĈðimÞk

)
; ð9aÞ

B̂ðimÞjþ2 þ c16g0þ c45f0þ
ðc56þ c14Þ

2
e0

� �
ÂðimÞjþ2

þ c56g0þ c34f0þ
ðc36þ c45Þ

2
e0

� �
ĈðimÞjþ2

¼ �1
ðjþ2Þðjþ1Þ

(Xj�1

k¼0

c16gj�kþ c45fj�kþ
ðc56þ c14Þ

2
ej�k

� �

�ðþ2Þðkþ1ÞÂðimÞkþ2þ c56gj�kþ c34fj�kþ
ðc36þ c45Þ

2
ej�k

� �

�ðþ2Þðkþ1ÞĈðimÞkþ2þ
Xj

k¼0

ðkm�1Þ½ðc44� c66Þej�k�2c46hj�k�ðkþ1ÞB̂ðimÞkþ1

þ½kmððkm�1Þc44þ c66Þgj�kþkmððkm�1Þc66þ c44Þfj�k

þkmð2�kmÞc45ej�k�B̂ðimÞk þðkm�1Þ½ðc45�c16Þej�k

�ðc56þ c14Þhj�k�ðkþ1ÞÂðimÞkþ1 þ
"
kmðkm�1Þ

� c16fj�kþ c45gj�k�
ðc56þc14Þ

2
ej�k

� �

þkm c16gj�kþc45fj�kþ
ðc56þ c14Þ

2
ej�k

� �#
ÂðimÞk

þðkm�1Þ½ðc34� c56Þej�k�ðc36þ c45Þhj�k�ðkþ1ÞĈðimÞkþ1

þ
"
kmðkm�1Þ�ðc56fj�kþ c34gj�k�

ðc36þ c45Þ
2

ej�kÞ

þkm c56gj�kþc34fj�kþ
ðc36þ c45Þ
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ej�k

� �#
ĈðimÞk

)
; ð9bÞ
ĈðimÞjþ2 þ c15n0 þ c35m0 þ
ðc13 þ c55Þ

2
l0

� �
ÂðimÞjþ2

þ c56n0 þ c34m0 þ
ðc36 þ c45Þ

2
l0

� �
B̂ðimÞjþ2

¼ �1
ðjþ 2Þðjþ 1Þ

(Xj�1

k¼0

c15nj�k þ c35mj�k þ
ðc13 þ c55Þ

2
lj�k

� �

� ðþ2Þðkþ 1ÞÂðimÞkþ2 þ c56nj�k þ c34mj�k þ
ðc36 þ c45Þ

2
lj�k

� �

� ðþ2Þðkþ 1ÞB̂ðimÞkþ2 þ
Xj

k¼0

ðkm � 1Þ½ðc33 � c55Þlj�k � 2c35oj�k�
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� ðþ1ÞĈðimÞkþ1 þ ½kmððkm � 1Þc33 þ c55Þnj�k

þkmððkm � 1Þc55 þ c33Þmj�k þ kmð2� kÞc35lj�k�ĈðimÞk

þðkm � 1Þ½ðc35 � c15Þlj�k � ðc13 þ c55Þoj�k�ðkþ 1ÞÂðimÞkþ1

þ
"
kmðkm � 1Þ � c15mj�k þ c35nj�k �

ðc13 þ c55Þ
2

lj�k

� �

þkm c15nj�k þ c35mj�k þ
ðc13 þ c55Þ

2
lj�k

� �#
ÂðimÞk

þ ðkm � 1Þ½ðc34 � c56Þlj�k � ðc36 þ c45Þoj�k�ðkþ 1ÞB̂ðimÞkþ1

þ kmðkm � 1Þ � c56mj�k þ c34nj�k �
ðc36 þ c45Þ

2
lj�k

� ��

þkm c56nj�k þ c34mj�k þ
ðc36 þ c45Þ

2
lj�k

� ��
B̂ðimÞk

)
: ð9cÞ
(a)

(b)

TiSi2

β=90

Z

Fig. 7. Variation of Re½k1� with respect to h for TiSi2 bodies of revolution having
b = 90�, b1 = 180� under (a) FF and (b) FC boundary conditions.
A close examination of Eq. (9) reveals that the coefficients ÂðimÞj ,

B̂ðimÞj , and ĈðimÞj for j P 2 in Eq. (8) can be determined by solving the

linear algebraic equations in Eq. (9) when ÂðimÞ0 , ÂðimÞ1 , B̂ðimÞ0 , B̂ðimÞ1 , ĈðimÞ0 ,

and ĈðimÞ1 are known. In other words, Eq. (9) indicate that the coef-

ficients ÂðimÞj , B̂ðimÞj , and ĈðimÞj for j P 2 are functions of ÂðimÞ0 , ÂðimÞ1 ,

B̂ðimÞ0 , B̂ðimÞ1 , ĈðimÞ0 , and ĈðimÞ1 . Hence, the solutions to Eq. (6) in sub-do-
main i of / can be written as

ÛðmÞ0i ðh;/Þ ¼ ÂðimÞ0 ÛðmÞ0i0 þ ÂðimÞ1 ÛðmÞ0i1 þ B̂ðimÞ0 ÛðmÞ0i2 þ B̂ðimÞ1 ÛðmÞ0i3

þ ĈðimÞ0 ÛðmÞ0i4 þ ĈðimÞ1 ÛðmÞ0i5 ; ð10aÞ
V̂ ðmÞ0i ðh;/Þ ¼ ÂðimÞ0 V̂ ðmÞ0i0 þ ÂðimÞ1 V̂ ðmÞ0i1 þ B̂ðimÞ0 V̂ ðmÞ0i2 þ B̂ðimÞ1 V̂ ðmÞ0i3

þ ĈðimÞ0 V̂ ðmÞ0i4 þ ĈðimÞ1 V̂ ðmÞ0i5 ; ð10bÞ

Ŵ ðmÞ
0i ðh;/Þ ¼ ÂðimÞ0 Ŵ ðmÞ

0i0 þ ÂðimÞ1 Ŵ ðmÞ
0i1 þ B̂ðimÞ0 Ŵ ðmÞ

0i2 þ B̂ðimÞ1 Ŵ ðmÞ
0i3

þ ĈðimÞ0 Ŵ ðmÞ
0i4 þ ĈðimÞ1 Ŵ ðmÞ

0i5 : ð10cÞ

Consequently, the asymptotic solutions in sub-domain i of / are

uðiÞr ðq; h; zÞ ¼
X1
m¼0

qkm ÛðmÞ0i ðh; zÞ þ Oðqkmþ1Þ

¼ ~uðiÞr ðq; h; z; kmÞ þ Oðqkmþ1Þ; ð11aÞ
uðiÞh ðq; h; zÞ ¼
X1
m¼0

qkm V̂ ðmÞ0i ðh; zÞ þ Oðqkmþ1Þ

¼ ~uðiÞh ðq; h; z; kmÞ þ Oðqkmþ1Þ; ð11bÞ
uðiÞz ðq; h; zÞ ¼
X1
m¼0

qkm Ŵ ðmÞ
0i ðh; zÞ þ Oðqkmþ1Þ

¼ ~uðiÞz ðq; h; z; kmÞ þ Oðqkmþ1Þ: ð11cÞ

Eq. (11) clearly indicate that the asymptotic solution results in
stress singularities at q ? 0 when the real part of km is less than
unity. The resulting order of the stress singularities is Re[km] � 1.
When km is a real number smaller than one, the resulting stresses
monotonically approach infinity as q ? 0. When km is a complex
number whose real part is less than one, the resulting stresses ap-
proach infinity in an oscillating manner as q ? 0 .
Fig. 8. Variation of km at h = 0� with respect to b for TiSi2, FeSiO3, and BaSO4 bodies
of revolution having b1 = 180� and FF boundary conditions.
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If n sub-domains, as presented in Fig. 3, are used to construct
the asymptotic solution for the whole domain of /, then 6n coeffi-
cients, ÂðimÞ0 , ÂðimÞ1 , B̂ðimÞ0 , B̂ðimÞ1 , ĈðimÞ0 , and ĈðimÞ1 for i = 1,2, . . . ,n, must be
determined. The traction and displacement continuity conditions
between pairs of adjacent sub-domains must be satisfied, yielding
6(n � 1) equations. Homogenous boundary conditions at / = /0

and / = /n yield another six equations. As a result, 6n homoge-
neous algebraic equations are obtained, requiring 6n coefficients
to be determined. A nontrivial solution for the coefficients is given
by a 6n � 6n matrix with a determinant of zero. The roots of the
zero determinant (km), which can be complex numbers, are
obtained herein using the numerical method of Müller (1956).
(a)

(b)

material 
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Fig. 9. Variation of km with respect to h for TiSi2, FeSiO3, and BaSO4 bodies of rev
3. Verification of solution

To verify the correctness of the proposed solutions, convergence
studies of k1 were conducted for bodies of revolution having a
(=b + b1 in Fig. 2) =270� and 360� and with traction-free conditions
at / = 0� and / = a. Table 2 shows the results of k1 for an isotropic
body of revolution with a = 270� and Poisson’s ratio t = 0.3, while
Tables 3 and 4 show the results for orthotropic bodies of revolution
having a = 360� and 270�, respectively. The orthotropic bodies are
made of titanium disilicide (TiSi2), which is extensively used in the
gate, source and drain contacts in ultra-large-scale integration
technology (Özcan et al., 2002).
(c)

olution having b = 90�, b1 = 180�, and cy = 30� under FF boundary conditions.
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Two different cases, Cases I and II, are considered in Tables 3
and 4. They involve different relations between the geometry coor-
dinate system X–Y–Z and the material coordinate system �X—�Y—�Z,
which is used to specify the material properties given in Table 1. In
Case I, these two coordinate systems are identical, and in Case II,
the Y- and �Y-axes are coincidental and �X—�Y—�Z is formed by
rotating X–Y–Z about the Y-axis through an angle cy of 30�. The
results were obtained for k1 at h = 0� and 30� in Cases I and II,
respectively.

The present results given in Tables 2–4 were obtained using 2, 4,
8, and 10 equal sub-domains in / in conjunction with 2, 4, 8, 12, and
16 polynomial terms in the series solutions for each sub-domain.
These results indicate that convergent results can be obtained by
increasing the number of sub-domains or polynomial terms. The
convergence of the results can be in an oscillating manner as the
number of sub-domains or polynomial terms increases. Table 2
shows that the present results converge to the value of k1 deter-
mined from the closed-form characteristic equations developed
by Huang and Leissa (2007) for an isotropic body of revolution.

The commercial finite element package ABAQUS was also uti-
lized in the analysis of orthotropic bodies of revolution under uni-
form traction (r0) in the Z-direction on the surfaces Z = ± h/2,
where h is the height of the body of revolution. Herein, h is set to
20 m and the radii of the surfaces Z = 0 and Z = �h/2 are 5 m and
10 m, respectively. Finite element models of the bodies of revolution
were constructed with fine meshes, and very fine meshes were em-
ployed near the singular points. Fig. 4 shows the mesh for the bodies
with a = 360�. Three-dimensional elements, 20-node quadratic
brick elements (C3D20), were used in the analyses. Fig. 5 demon-
strates that (rzz/r0) varies with (q/R) on the lines (Z,h) = (0,0�) and
(Z,h) = (0,30�) in Cases I and II, respectively. The straight lines in
Fig. 5 were determined from the data points with logðq=RÞ 6 �3
using a conventional least-squares method. The slopes of these lines
are related to k1 by k1 = 1 + s, where s denotes the slope. Similarly,
the values of k1 were obtained for the bodies of revolution with
a = 270�. Tables 3 and 4 reveal that the present results converge to
values that agree very well with those determined using ABAQUS.
Si

β

Z

TiSi
2

4. Numerical results and discussion

After the correctness of the presented solutions was verified,
the above described method was further applied to determine
the roots of km, which are affected by the material properties, con-
figurations of bodies of revolution and the inconsistency between
the material coordinate system �X—�Y—�Z and the geometric coordi-
nate system X–Y–Z. Three orthotropic materials are considered in
this study, TiSi2, BaSO4, and FeSiO3, whose material properties
are given in Table 1. The configuration of a body of revolution is
specified by two parameters, b and b1, which are defined in
Fig. 2. The boundary conditions considered here are simply speci-
fied by two letters. The first and second letters refer to the bound-
ary conditions at u = u0 and u = un, respectively. Free traction and
clamped boundary conditions are denoted by F and C, respectively.
When the differences between �X—�Y—�Z and X–Y–Z are considered,
�X—�Y—�Z is assumed to be obtained by rotating X–Y–Z either about
the Y-axis through an angle cy or about the X-axis through an angle
cx. The case in which �X—�Y—�Z and X–Y–Z are identical is denoted by
c = 0�. The results shown here were obtained using eight equal
sub-domains for u and 12-term series solutions for each sub-
domain.
Fig. 10. Variation of Re½k1� with respect to b for TiSi2/Si bodies of revolution having
b1 = 180� and c = 0� under different boundary conditions.
4.1. Single orthotropic material

Fig. 6 plots the variation of k1 at h = 0� with respect to b for
bodies of revolution that are made of TiSi2 or Si under different
boundary conditions (FF, FC, and CC). The Young’s modulus and
Poisson’s ratio of Si are E = 130 GPa and t = 0.28, respectively.
Notably, the orthotropic bodies of revolution have material coordi-
nates coincident with the geometric coordinates. The roots of k1

are all real. Fig. 6 clearly indicates that FC boundary conditions pro-
duce the strongest stress singularities among the three combina-
tions of boundary conditions. In general, k1 decreases as b
increases. Under FC boundary conditions, the values of k1 for an
orthotropic body of revolution made of TiSi2 do not differ signifi-
cantly from those for an isotropic body made of Si. Nevertheless,
under FF and CC boundary conditions, the strength of stress singu-
larities in a TiSi2 body may or may not be more severe than that in
a Si body, depending on the values of b.

Fig. 7 indicates the effects of h on the orders of the stress singu-
larities in TiSi2 bodies of revolution with b = 90� and b1 = 90� under
FF and FC boundary conditions. The material coordinate system
�X—�Y—�Z can differ from the geometric coordinate system X–Y–Z,
with cx = 30�, 45� or cy = 30�, 45�. Notably, the order of the stress
singularities at h = h0 equals that at h = 2p � h0, so Fig. 7 plots only
the values of k1 for 0� 6 h 6 180�. Free-free boundary conditions
result in a real k1. Under FC boundary conditions, k1 is real when
�X—�Y—�Z is identical to X–Y–Z, and k1 can be complex when cx or
cy is equal to 30� or 45�, depending on h. For instance, k1 is complex
for cx = 30� when 5� 6 h 6 53� and when 127� 6 h 6 175�. Fig. 7 re-
veals no clear trend for the effects of cx and cy on the orders of the
stress singularities. Changing cx or cy from 0� to 30� and further to
45� may or may not increase the strength of the stress singularities,
depending on h. The variations of Re[k1] with both cx and cy are less
than 2.5% under FF boundary conditions, and the variation of Re[k1]
with h is less than 1.4%. When FC boundary conditions are consid-
ered, the variations of Re[k1] with both cx and cy are less than 5.3%,
while the variation of Re[k1] with h is less than 6.1%.

Fig. 8 displays the variations of k1, k2, and k3 at h = 0� with re-
spect to b for TiSi2, BaSO4, and FeSiO3 under FF boundary condi-
tions when c = 0� and b1 = 180�. These first three roots are real
and monotonously decrease with increasing b. The values of k2

are more affected by the three materials than those of k1 and k3.
The maximum difference between different values of k2 for the
bodies made of TiSi2, BaSO4, and FeSiO3 is less than 6.8%.
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Fig. 9 depicts the variations of k1, k2, and k3 with respect to h
for TiSi2, BaSO4, and FeSiO3 bodies of revolution with b = 90� and
b1 = 180� under FF boundary conditions. �X—�Y—�Z is assumed to
differ from X–Y–Z, with cy = 30�. Real values of k1, k2, and k3

were found. The body of revolution composed of BaSO4 exhibits
the largest variations with respect to h among the bodies made
of the three materials. The variations of k1, k2, and k3 with
respect to h are less than 2.4%, 16.6%, and 4.9%, respectively,
for the BaSO4 body of revolution. The maximum variations of
k1, k2, and k3 for the TiSi2 and FeSiO3 bodies of revolution are
approximately 1.5%, 4.7%, and 3.1%, respectively, and those of
the TiSi2 and BaSO4 bodies of revolution are approximately
2.3%, 8.6%, and 4.6%.
(a)

Si

β=90

Z

TiSi
2

Si

β=180

Z

TiSi
2

Fig. 11. Variation of k1 with respect to h for TiSi2/Si bodies of
4.2. Bi-material anisotropy

This section investigates k1 for bi-material bodies of revolution
made of Si and TiSi2. Fig. 10 plots the variation of Re½k1� at h = 0� with
respect to b for the bi-material bodies of revolution with b1 = 180� un-
der different boundary conditions (FF, CC, CF, and FC). The portion of
the body with 0� 6 / 6 180� is made of Si, whereas the rest is made of
TiSi2. �X—�Y—�Z and X–Y–Z are identical. The boundary conditions
greatly affect the orders of the stress singularities. Free-clamped
boundary conditions yield the strongest stress singularities among
the four combinations of boundary conditions under consideration.
The relatively abrupt changes around b = 132� and b = 155� in the
curves for CC and FF boundary conditions, respectively, arise from
(b)

(c)

Si

β=90

Z

TiSi
2

revolution having b1 = 180� and FF boundary conditions.
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the fact that k1 changes from real to complex around these two values
of b. Comparing Fig. 10 with Fig. 7 reveals that the TiSi2/Si bodies
exhibit more severe stress singularities than the TiSi2 bodies under
FC and FF boundary conditions when b is less than 180� and 135�,
respectively, while the opposite trend is observed under CC boundary
conditions when b is less than 180�. The differences in Re[k1] between
the TiSi2/Si and TiSi2 bodies may reach 14.9%, 12.7%, and 39.2% under
FF, CC and FC boundary conditions, respectively.

Fig. 11 shows the variation of k1 with respect to h for bodies of
revolution with various geometries under FF boundary conditions.
The bodies of revolution again consist of two materials, Si and TiSi2.
The figure also displays the shapes and material distributions on a
constant h of the bodies of revolution under consideration. The
effects of the inconsistency between �X—�Y—�Z and X–Y–Z on k1 are
also studied. Three different relations between �X—�Y—�Z and
X–Y–Z are considered; they are identical (c = 0�), or they differ
by cx = 30� or cy = 30�. Fig. 11(a) considers bi-material cylinders
with Si in the domain 90� 6 / 6 180�. As h changes, k1 varies be-
tween 0.924 and 0.933, between 0.924 and 0.941, and between
0.938 and 0.956 for c = 0�, cx = 30� and cy = 30�, respectively.
Fig. 11(b) investigates the bodies of revolution with b1 = 180� and
b = 90� having Si in the domain 0� 6 / 6 180�. As h changes, k1

varies between 0.508 and 0.513, between 0.511 and 0.513, and
between 0.509 and 0.514 for c = 0�, cx = 30� and cy = 30�, respec-
tively. Fig. 11(c) concerns bodies of revolution with b1 = 180�,
b = 180� and Si in the domain 0� 6 / 6 180�. As h varies, k1 remains
approximately constant at 0.5 for c = 0�, cx = 30� and cy = 30�.

5. Conclusion

This study presented an asymptotic solution for geometrically
induced stress singularities in rectilinearly anisotropic bodies of
revolution, taking into consideration the inconsistency between
the material coordinate system �X—�Y—�Z and the geometric coordi-
nate system X–Y–Z. The eigenfunction expansion approach cou-
pled with a power series solution technique was applied to solve
the three-dimensional governing equations in terms of displace-
ment components. The solution incorporates no auxiliary func-
tions, such as stress functions or displacement potential. The
proposed solution was verified by convergence studies and by
comparing the convergent results with those determined from
closed-form characteristic equations for an isotropic body of revo-
lution and from using the commercial finite element package ABA-
QUS for orthotropic bodies of revolution.

The presented solutions were employed to investigate the stress
singularities in bodies of revolution comprised of single orthotropic
materials (TiSi2, BaSO4, or FeSiO3) and bi-materials (Si and TiSi2).
The numerical results indicate that the stress singularities may de-
pend substantially on the geometry of the body of revolution, its
boundary conditions, its material properties, the differences be-
tween the material and geometry coordinate systems (�X—�Y—�Z
and X–Y–Z), and the angular coordinate variable (h).These results
are very useful for numerical analyses of static and dynamic stres-
ses and of the deformation of a body of revolution with geometri-
cally induced stress singularities. Notably, the dependence of
stress singularities on h can cause great difficulties in evaluating
stress intensity factors in real applications. The presented solutions
are easily extended to study the stress singularities in cylindrically
anisotropic bodies of revolution by properly modifying [c] in Eq. (2).
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