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The recent economic recession has added more uncertainty to industries’ decision
processes regarding production quantity. Moreover, due to the nature of ambiguous
information, manufacturers often fail to achieve precise assessments of the parameters
of market demand, production cost functions, etc. This paper develops the Cournot produc-
tion game with multiple firms in an ambiguous decision environment, where the form of
ambiguity is described by a set of fuzzy parameters. Our model applies the weighted center
of gravity method (WCoG) to defuzzify the fuzzy profit function considering firms’ control
parameters. The resulting outcomes are in the form of matrix representations. We also ana-
lyze the effect of firms’ control parameters on outcomes. The results indicate that a firm’s
fuzzy profit function plays an important role in economic interpretation. To investigate the
effect of parameter perturbations on firms’ outcomes, we also conduct the sensitivity
analysis.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

A competitive global economy presents opportunities for new approaches to solve for the production quantity of decision
makers who are forced to operate in ambiguous environments. Intuitively, the decisions of multiple agents will affect the
payoffs of others. Thus, the conventional Cournot game is one of several methods commonly applied to analyze precise sce-
narios when exact model parameters are available. Liang et al. [20] categorize these as ‘‘precision-based models’’ because all
data are required to be precise. Yet, real-world decision makers typically are hampered due to a lack of data and/or the
imprecision of the available information concerning the behavior of other decision makers (see [17]), and both conditions
make it difficult to apply the Cournot game to real problems. Therefore, the excess of capacity observed in the recent eco-
nomic recession motivated us to develop a Cournot game with ambiguous parameters.

Employing the available game-theoretical models for decision making can be difficult due to the uncertainty of data in the
form of randomness and ambiguity. Even though the literature has proposed many stochastic game-theoretical models
[3,11,15,27,30], these models only consider the probabilistic type of uncertainty. In practice, however, the probability distri-
bution may not be available or the limited number of data points cannot provide exact estimates of a manufacturer’s variable
cost since the procurement costs can fluctuate over time. Thus, the fuzzy sets theory pioneered by Zadeh [36] becomes useful
because it can mathematically model the vagueness and impression of human cognitive processes, e.g., the phrase ‘‘around x
dollars’’, to describe a cost that can be regarded as a fuzzy number ~x.
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Unlike the literature which considers only zero-sum games, Dang and Hong [10] indicate that there are two streams of
fuzzy games: fuzzy matrix games and fuzzy non-cooperative games. The matrix game can be solved by the linear program-
ming method based on the duality (see [4,28,29]). Maeda [22,23] studies two-person zero-sum games and bimatrix games
with fuzzy payoffs and applies a-cut, possibility, and necessity theories to introduce two concepts of the equilibrium derived
by the mathematical programming. Liu and Kao [21] obtain the upper and lower bound values of a matrix game by utilizing a
pair of two-level mathematical programming.

Yao and Wu [31], who probably initiated the fuzzy non-cooperative game involving fuzzy data, apply the ranking method
transforming fuzzy numbers for comparison to defuzzify the demand and supply functions so that consumer surplus and
producer surplus can be calculated in a conventional manner. Their method of transforming fuzzy numbers to crisp values
is also utilized to construct the monopoly model [6]. Yao and Wu [32] discuss the best price of two mutual complementary
merchandises in a fuzzy sense. Yao and Chang [33] obtain the optimal quantity for maximizing the profit function whose
parameters are fuzzy numbers. Yao and Shih [34] derive the membership function of the profit function when the optimal
quantity occurs. Liang et al. [20] propose a duopoly model considering only fuzzy costs to obtain the optimal quantity of each
firm. Dang and Hong [10], who highlight an unreasonable occurrence of a negative equilibrium quantity, and the limited
flexibility for modification of the ranking method in fuzzy modeling in previous studies, propose a fuzzy Cournot game with
rigorous definitions ensuring a positive equilibrium quantity and with a controlling mechanism. However, for model simplic-
ity, Dang and Hong [10] restrict themselves to constant parameters of the controlling mechanism and to a duopoly produc-
tion game. Furthermore, Guo [12] initially proposes a one-shot decision approach to solve for the Cournot equilibrium,
where the solution procedure can be separated in two steps. In the first step, a decision maker can be categorized as passive,
normal or active attitude depicted by the satisfaction level that relates to his/her own profits. At the second step, a solution
procedure is then performed to seek for the Cournot equilibrium quantity, where the difference between the possibility of
the demand uncertainty and the satisfaction level is within a pre-specified tolerance. Guo et al. [13] further extend the meth-
od proposed in Guo [12] to a duopoly market with asymmetric possibilistic information describing the demand uncertainty
only known by one firm. This paper differs from (Guo [12] and Guo et al. [13]) in deriving the Cournot equilibrium quantity
with less computational manipulations which simplify the analysis of the model. Furthermore, the proposed model in this
paper comprehensively considers the uncertainty resulted from demand and cost functions.

This paper makes two contributions to the literature. First, we introduce a method solving for the equilibrium quantity of
each competing firm in a competitive market with multiple firms, where the demand and cost functions are characterized by
the form of ambiguity described by a set of fuzzy parameters, and the weighted center of gravity (WCoG) proposed by Bender
and Simonovic [5] is used to defuzzify a firm’s profit function into a crisp value. For simplicity, we assume that a firm’s de-
mand function and cost function take the form of linearity with fuzzy parameters, in order to obtain managerial insights with
less analytical complexity (see [10,33]). Second, we investigate the impact of the perturbation of uncertainty on the resulting
outcomes. For instance, we note that the fuzzy profit function and firms’ control parameters play key roles in analyzing the
perturbation of equilibrium quantity.

The remainder of this paper is organized as follows. In Section 2, we introduce the concepts and definitions of the pro-
posed model. Section 3 addresses the Cournot production game and presents the proposed method to solve for the equilib-
rium quantity of each firm in an ambiguous environment where multiple firms exist in a competitive market. In Section 4,
we analyze the resulting outcomes and discuss several valuable managerial insights.

2. Preliminary

This section presents the fuzzy sets theory and weighted center of gravity (WCoG) which are integral to this paper.

2.1. Fuzzy sets theory

The fuzzy sets theory initiated by Zadeh [36] attempts to analyze and to solve problems with a source of ambiguity called
fuzziness. In the following, we introduce the definitions and notations of triangular fuzzy numbers, the extension principle,
and the WCoG method.

2.1.1. Triangular fuzzy numbers
A popular type of fuzzy numbers is the triangular type because it is easy to handle arithmetically and has intuitive inter-

pretation [9,29,30]. Dağdeviren and Yüksel [9] indicate that using triangular fuzzy numbers has proven efficient for calcu-
lating a decision making problem. Petrovic et al. [25] and Giannoccaro et al. [14] show that triangular fuzzy numbers are
the most suitable for modeling market demand in a fuzzy sense (see [1,2,16,24] for other applications of triangular fuzzy
numbers). The membership function leAðxÞ of a triangular fuzzy number eA can be defined by
leAðxÞ ¼
x�mAþlA

lA
; mA � lA 6 x 6 mA

mAþrA�x
rA

; mA 6 x 6 mA þ rA

0; otherwise;

8>><
>>: ð1Þ
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where eA is represented as a triplet (mA � lA, mA, mA + rA), and mA, lA and rA are the apex, left, and right spreads of the fuzzy
number eA, respectively. The upper and lower bounds of eA can be derived by the apex, right, and left spreads, i.e., the upper
bound of eA equals mA + rA, and the lower bound of eA equals mA � lA.

2.1.2. Extension principle
Let ‘‘ � ’’ be any binary operation � and � between two fuzzy numbers eA and eB. Based on the extension principle, the

membership function of eA � eB is defined by
leA�eBðzÞ ¼ supx�y minfleAðxÞ;leBðyÞg

where ‘‘ � = � or �’’ corresponds to the operation ‘‘� = + or �’’. This result helps us to derive the membership function of a
fuzzy number.

2.2. Weighted center of gravity

Among the many ranking methods proposed (see [7,26]), the center of gravity (COG) ranking method, also known as the
centroid method [35] is commonly used to obtain the centroid of a fuzzy number because of its straightforward geometrical
interpretation. However, the COG method is inappropriate to distinguish two fuzzy sets that may have the same centroid,
but greatly differ in degree of fuzziness. In this case, the WCoG method is more useful because of flexibility [5]
WCoG ¼
R

gðxÞlðxÞkdxR
lðxÞkdx

; ð2Þ
where g(x) is the horizontal component of the area under scrutiny and l(x) is the membership function. We can define g(x) to
relieve the problem in which the COG method cannot distinguish two fuzzy numbers having the same center but different
spreads. For example, a segmental design of g(x), where g(x) puts zero weights on the left spread and positive weights on the
right spread provides the flexibility to distinguish two fuzzy numbers having the same center but different spreads.

In addition, Bender and Simonovic [5] indicate that the value of k is a control parameter representing the decision maker’s
preference. The definition of the control parameter k is a geometrical notion, which affects the shape of the membership
function. The membership function with k < 1(k > 1) behaves as a concave (quasiconcave) function, whereas the membership
function with k = 1 represents the degeneracy case of triangular fuzzy numbers. The different weighted centers can be de-
rived from the different values of the control parameter k.

3. The model

As mentioned, it is almost impossible to find the exact economic assessment of data for parameters’ estimation in the real
world. In this section, we apply the fuzzy sets theory to solve for the equilibrium quantity of multiple firms, given fuzzy de-
mand and fuzzy cost functions.

3.1. The Cournot game with multiple firms in a fuzzy decision environment

Let qi denote the production quantity of firm i, i = 1, . . . , n. Consider the general fuzzy profit function of firm i; ~pi, as
~pi ¼ ePðQÞqi � fTC iðqiÞ; i ¼ 1; � � � ; n ð3Þ
where ePðQÞ is the fuzzy inverse demand function, fTCiðqiÞ is the fuzzy cost of firm i, and Q is the total quantity in the market,
namely Q ¼

Pn
i¼1qi.

The fuzziness of ePðQÞ and fTCiðqiÞ result from the fuzzy parameters of the inverse demand function and the cost function.
From (3) it is clear that if ePðQÞ or fTCðqiÞ is unbounded, then ~pi is possibly unbounded as well. Thus, we require that both ePðQÞ
and fTCðqiÞ are bounded. We utilize (2) to defuzzify the fuzzy profit function into a crisp value. The weighted center of the
fuzzy profit function can be stated as
WCoGð~piÞ ¼

R pU
i

pL
i

gðpiÞlðpiÞkdpiR pU
i

pL
i
lðpiÞkdpi

; ð4Þ
where g(pi) is the horizontal component of the area under scrutiny (see [5]) and l(pi) is the membership function of firm i’s
profit function. As mentioned, the membership function can be described as a decision maker’s subjective perception. The
value of k would affect the shape and value of the decision maker’s membership function as shown in Fig. 1. In this paper,
we define the parameter ki as the control parameter of firm i. For example, suppose that there is a fuzzy number ~p as shown
in Fig. 1 where three points, A, B and C, represent the three different levels of membership function value at the same point of
p. As we can see, point A is a higher value of the membership function value than points B and C if the decision maker deter-
mines k < 1. In other words, one can apply different values of k to reflect the membership function value. A decision maker



π

(  )μ π

Fig. 1. The shape of the membership function given different values of control parameter.
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can determine k > 1 if he/she perceives a low membership function value of the extreme cases of the profit function. In prac-
tice, a conservative decision maker may decide the control parameter k greater than 1 because he/she may not perceive a
high level of membership function value of the extreme cases, whereas an aggressive decision maker may determine the
control parameter k less than 1 because he/she may perceive a high level of membership function value of the extreme cases.

Based on Dang and Hong [10], decision makers utilizing (2) to defuzzify the fuzzy profit function must check whetherR pU
i

pL
i

gðpiÞdpi is or is not bounded. Thus, the best response functions of firm i can be obtained by optimizing each firm’s profit

functions with respect to each firm’s decision variable qi and assuming the competitors’ quantities q�i as given, where q�i

denotes the vector of firms’ production quantities except firm i’s quantity. Hence, firm i’s best response function is
Riðq�iÞ ¼ arg maxqi
WCoGð~piÞ; i ¼ 1; . . . ;n: ð5Þ
We can now obtain each firm’s equilibrium quantity by simultaneously solving the first-order condition obtained by letting
each firm’s best response function equal zero. In addition, we can derive the membership function l(pi) via the extension
principle in Zadeh [36]. Note that by setting the different controlling mechanisms of g(x) and k we can adapt the proposed
method to fit the different criteria of decision makers or markets.

3.2. Linear model

Next, we develop the Cournot production game with triangular fuzzy numbers as the parameters. Initially, we introduce
the conventional Cournot game and generalize it in the fuzzy business environment. Given the linear inverse demand
function
PðQÞ ¼ a� bQ ; 0 6 Q 6
a
b

ð6Þ
where a, b > 0 are given numbers and P(Q) is the unit price. The total cost function of firm i, i = 1, . . . , n, denoted by TCi(qi), is
stated as
TCiðqiÞ ¼ ci þ diqi ð7Þ
where ci denotes the fixed cost of firm i’s production and di represents its variable cost of production. Thus, firm i’s profit
function is given by
pi ¼ PðQÞ � qi � TCiðqiÞ ¼ ða� bQÞqi � TCiðqiÞ: ð8Þ
Consider the situation where all parameters are fuzzy numbers, i.e., our model assigns a zero to the left and right spreads
of a fuzzy number for a crisp value. In particular, we let ePðQÞ ¼ ~a� ~bQ ; fTCiðqiÞ ¼ ~ci þ ~diqi, and ~pi ¼ ePðQÞ � qi � fTCiðqiÞ whereePðQÞ, fTCiðqiÞ, and ~pi represent the fuzzy price, fuzzy cost function of firm i, and fuzzy profit function of firm i, i = 1, . . . , n,
respectively. As mentioned, this paper uses triangular fuzzy numbers because they are the most suitable for modeling mar-
ket demand (see [14,25]). In this case, all parameters are nonnegative triangular fuzzy numbers; in other words, the lower
bounds of fuzzy numbers in the following are greater than or equal to zero
~a ¼ ða� la; a; aþ raÞ;
~b ¼ ðb� lb; b; bþ rbÞ;
~ci ¼ ðci � lci

; ci; ci þ rci
Þ;

~di ¼ ðdi � ldi
;di; di þ rdi

Þ:

ð9Þ
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To derive the lower bound of the price, we substitute the lower bound of a, namely a � la, and the upper bound of b, namely
b + rb, into (6). Also, the upper bound of the price can be derived by substituting the upper bound of a, namely a + ra, and the
lower bound of b, namely b � lb, into (6). Hence, by the extension principle, we have
ePðQÞ ¼ ða� bQ � ðla þ rbQÞ; a� bQ ; a� bQ þ ðra þ lbQÞÞ: ð10Þ
Similarly, fTCiðqiÞ and ~pi can be obtained in (7) and (8). Note that ePðQÞ, fTCiðqiÞ, and ~pi are also triangular fuzzy numbers due
to the nature of the extension principle. Noting that a firm may overestimate or underestimate the economic situation con-
cerning price fluctuation in the market, it follows that the weighted center of the fuzzy profit function with the right spread
greater than the left spread locates on the right side of the apex of the fuzzy profit function. Similarly, the weighted center of
the fuzzy profit function with the right spread less than the left locates on the left side of the apex of the fuzzy profit func-
tion. These results produce two definitions: the firm having the fuzzy profit function with the right spread greater than the
left spread is in the optimistic case, and the firm having the right spread less than the left spread is in the pessimistic case.

Defining the controlling mechanism follows the condition developed in Dang and Hong [10] before applying (2) to
defuzzify the fuzzy profit function into a crisp value. Let g(x) = x, which is a common assumption in Chen and Chen [8].
Let ki denote firm i’s control parameter. The membership function of firm i’s profit function can be derived by utilizing
the arithmetic operations on the parameters’ a-cuts. As a result, firm i’s profit function is a triangular fuzzy number (see
[18]). Thus, WCoGð~piÞ can be algebraically calculated as
WCoGð~piÞ ¼

R pU
i

pL
i
pilðpiÞki dpiR pU

i
pL

i
lðpiÞki dpi

¼

R pA
i

pL
i
pilðpiÞki dpi þ

R pU
i

pA
i
pilðpiÞki dpiR pA

i
pL

i
lðpiÞki dpi þ

R pU
i

pA
i
lðpiÞki dpi

; i ¼ 1; . . . ;n: ð11Þ
The membership function of firm i’s fuzzy profit function, l (pi), can be derived by substituting its apex, pA
i , left spread

pA
i � pL

i and right spread pU
i � pA

i into (1). As a result, (11) can be rewritten as
WCoGð~piÞ ¼

R pA
i

pL
i
pi

pi�pL
i

pA
i
�pL

i

� �ki

dpi þ
R pU

i

pA
i
pi

pi�pU
i

pA
i
�pU

i

� �ki

dpi

R pA
i

pL
i

pi�pL
i

pA
i
�pL

i

� �ki

dpi þ
R pU

i

pA
i

pi�pU
i

pA
i
�pU

i

� �ki

dpi

¼
1

pA
i
�pL

ið Þki

R pA
i

pL
i
pi pi � pL

i

� �ki dpi þ 1

pA
i
�pU

ið Þki

R pU
i

pA
i
pi pi � pU

i

� �ki dpi

1

pA
i
�pL

ið Þki

R pA
i

pL
i

pi � pL
i

� �ki dpi þ 1

pA
i
�pU

ið Þki

R pU
i

pA
i

pi � pU
i

� �ki dpi

; i ¼ 1; . . . ;n: ð12Þ
In order to simplify the integral
R pA

i
pL

i
pi pi � pL

i

� �ki dpi, denote s being pi � pL
i . Then, dpi = ds. Substituting these intoR pA

i

pL
i
pi pi � pL

i

� �ki dpi, we have
R pA

i
�pL

i
0 sþ pL

i

� �
ski ds. Similarly, by letting pi � pU

i ¼ t and dpi = dt, the integralR pU
i

pA
i
pi pi � pU

i

� �ki dpi can be simplified as
R 0
pA

i
�pU

i
t þ pU

i

� �
tki dt. As a result, (12) can be rearranged as
WCoGð~piÞ ¼
1

pA
i
�pL

ið Þki

R pA
i
�pL

i
0 sþ pL

i

� �
ski dsþ 1

pA
i
�pU

ið Þki

R 0
pA

i
�pU

i
t þ pU

i

� �
tki dt

1

pA
i
�pL

ið Þki

R pA
i

pL
i

pi � pL
i

� �ki dpi þ 1

pA
i
�pU

ið Þki

R pU
i

pA
i

pi � pU
i

� �ki dpi

¼
pA

i
�pL

ið Þ pL
i
þpA

i
þkipA

ið Þ
ð1þkiÞð2þkiÞ

þ pU
i
�pA

ið Þ pU
i
þpA

i
þkipA

ið Þ
ð1þkiÞð2þkiÞ

pA
i
�pL

i
1þki
þ pU

i
�pA

i
1þki

¼ pL
i þ kipA

i þ pU
i

2þ ki
; i ¼ 1; . . . ; n: ð13Þ
Thus, the partial derivative of WCoGð~piÞ can be stated as
@WCoGð~piÞ
@qi

¼ 1
2þ ki

ðð2a� la þ ra þ akiÞ � 2ð2b� lb þ rb þ bkiÞqi � ð2b� lb þ rb þ bkiÞ

Xn

j¼1
j–i

qj � ð2di � ldi
þ rdi

þ dikiÞÞ: ð14Þ
By letting (14) equal zero, we have the first-order condition of firm i, i = 1, . . . , n. The equilibrium quantity of firm i follows by
simultaneously solving the n first-order conditions. For notational simplicity, the weighted centers of fuzzy parameters are
acðkiÞ ¼
2a� la þ ra þ aki

2þ ki
;

bcðkiÞ ¼
2b� lb þ rb þ bki

2þ ki
; i ¼ 1; � � � ; n:

dc
i ðkiÞ ¼

2di � ldi
þ rdi

þ diki

2þ ki
:

ð15Þ
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According to (15), (14) can be rearranged as (16)
�2bcðkiÞqi � bcðkiÞ
Xn

j¼1
j–i

qj þ acðkiÞ � dc
i ðkiÞ

� �
¼ 0; i ¼ 1; � � � ; n: ð16Þ
The second-order conditions (17) allow us to ensure the concavity of WCoGð~piÞ.
@2WCoGð~piÞ
@ðqiÞ

2 ¼ �2bcðkiÞ < 0; i ¼ 1; . . . ;n: ð17Þ
To further simplify (16), we introduce an n � n matrix
A 	

�2bcðk1Þ �bcðk1Þ � � � �bcðk1Þ

�bcðk2Þ . .
. . .

. ..
.

..

. . .
. . .

.
�bcðkn�1Þ

�bcðknÞ � � � �bcðknÞ �2bcðknÞ

2
666664

3
777775

n�n

;

the column vectors
q 	

q1

q2

..

.

qn

2
66664

3
77775

n�1

and B 	

�ðacðk1Þ � dc
1ðk1ÞÞ

�ðacðk2Þ � dc
2ðk2ÞÞ

..

.

�ðacðknÞ � dc
nðknÞÞ

2
666664

3
777775

n�1

;

and rewrite the n first-order conditions as
Aq ¼ B: ð18Þ
We can now obtain the equilibrium quantity of each firm by solving the system Aq = B with an inverse matrix A�1. That is,
q⁄ = A�1B. Based on Larson et al. [19], we can derive A�1 by
A�1 ¼ 1
det A

adjA: ð19Þ
Note that the determinant of A, detA, and the adjacent matrix of A, adjA, can be obtained by A. From (16), we have
det A ¼ ð�1Þnðnþ 1Þ;
and adjA can be expressed as
adjA ¼

ð�1Þn�1n
Yn

i ¼ 1
i–1

bcðkiÞ ð�1Þn
Yn

i ¼ 1
i–2

bcðkiÞ � � � ð�1Þn
Yn

i ¼ 1
i–n

bcðkiÞ

ð�1Þn
Yn

i ¼ 1
i–1

bcðkiÞ ð�1Þn�1n
Yn

i ¼ 1
i–2

bcðkiÞ . . . ð�1Þn
Yn

i ¼ 1
i–n

bcðkiÞ

..

.
ð�1Þn

Yn

i ¼ 1
i–2

bcðkiÞ

..

.

. .
.

..

.

ð�1Þn
Yn

i ¼ 1
i–n

bcðkiÞ

ð�1Þn
Yn

i ¼ 1
i–1

bcðkiÞ ð�1Þn
Yn

i ¼ 1
i–2

bcðkiÞ � � � ð�1Þn�1n
Yn

i ¼ 1
i–n

bcðkiÞ

2
6666666666666666666666666666664

3
7777777777777777777777777777775

n�n:
Given each firm’s control parameter, ki, we have
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q
1
q
2

..

.

q
n

2
66664

3
77775 ¼

ðnþ1Þ acðk1Þ�dc
1ðk1Þð Þ

Yn

i ¼ 1
i–1

bcðkiÞ�
Xn

r¼1

ððacðkrÞ�dc
r ðkrÞÞ

Yn

i ¼ 1
i–r

bc ðkiÞÞ

ðnþ1Þ
Yn

i¼1

bcðkiÞ

ðnþ1Þ acðk2Þ�dc
2ðk2Þð Þ

Yn

i ¼ 1
i–2

bcðkiÞ�
Xn

r¼1

ððacðkrÞ�dc
r ðkrÞÞ

Yn

i ¼ 1
i–r

bc ðkiÞÞ

ðnþ1Þ
Yn

i¼1

bcðkiÞ

..

.

ðnþ1Þ ac ðknÞ�dc
N ðknÞð Þ

Yn

i ¼ 1
i–n

bc ðkiÞ�
Xn

r¼1

ððacðkrÞ�dc
r ðkr ÞÞ

Yn

i ¼ 1
i–r

bcðkiÞÞ

ðnþ1Þ
Yn

i¼1

bcðkiÞ

2
6666666666666666666666666666666666664

3
7777777777777777777777777777777777775

n�1

: ð20Þ
To ensure a nonnegative equilibrium quantity of firm i, we impose the condition that qi P 0, i = 1, . . . , n. Assumption 1
follows from this condition.

Assumption 1
ðnþ 1Þ acðkiÞ � dc
i ðkiÞ

� � Yn

j ¼ 1
j–i

bcðkjÞ �
Xn

r¼1

ððacðkrÞ � dc
i ðkrÞÞ

Yn

j ¼ 1
j–r

bcðkjÞÞ > 0
In addition, (20) is the same as the equilibrium quantity of the conventional Cournot game when the spreads of all fuzzy
parameters are equal to zero. Furthermore, the equilibrium market demand can be derived by
Q 
 ¼
Xn

i

q
i ¼

Pn
i acðkiÞ � dc

i ðkiÞ
� � Yn

j ¼ 1
j–i

bcðkjÞ

0
BBBBB@

1
CCCCCA

ðnþ 1Þ
Yn

i¼1

bcðkiÞ
: ð21Þ
The proposed model with the parameter k offers decision makers flexibility in describing their control parameters. If a
decision maker intends to remove k from the proposed model, he/she could define k = 1, which is a special case of our current
model.

The equilibrium quantity of each firm as shown in (20) is a solution to a system of n first-order conditions. Thus, the issue
of uniqueness is of interest. In this paper, we derive the unique equilibrium quantity because detA = (�1)n(n + 1) is greater
than zero based on Cramer’s Rule [19]. Furthermore, (20) indicates that if

Qn
i¼1bcðkiÞ– 0, the equilibrium quantity of each

firm would not be unbounded.

4. Economic analysis of the control parameter k and fuzzy parameters

Below, we map the resulting solutions derived in Section 3 to understand each firm’s control parameter in a fuzzy busi-
ness environment. Usually, decision makers in the market will conjecture similar predictions about the economic reality. For
instance, most likely, they will predict low consumption of products in a recession and adjust their quantity of production
accordingly. In other words, all of them may have the same control parameter.

4.1. A potential entrant’s incentive to enter a competitive market

To investigate the influence of a potential entrant on the equilibrium quantity, we assume that each incumbent’s and
potential entrant’s control parameter ki, i = 1, . . . , n are identical, namely, ki = k for all i. Substituting ki = k into (20), we have
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q
i ¼

acðkÞ � ndc
i ðkÞ þ

Xn

j ¼ 1
j–i

dc
j ðkÞ

ðnþ 1ÞbcðkÞ
i ¼ 1; � � � ; n: ð22Þ
The equilibrium quantity of a new entrant, firm n + 1, can be derived in (20)
q
nþ1 ¼
acðkÞ � ðnþ 1Þdc

nþ1ðkÞ þ
Xn

j¼1

dc
j ðkÞ

ðnþ 2ÞbcðkÞ
: ð23Þ
To ensure a nonnegative equilibrium quantity of firm n + 1, we impose the condition that qn+1 P 0. Assumption 2 follows
from this condition.

Assumption 2
dc
nþ1ðkÞ <

acðkÞ þ
Xn

j¼1

dc
j ðkÞ

nþ 1
Our first insight is that an entrant needs to drive its production cost at least as low as the right-hand side of the inequality in
Assumption 2, yet, entrants typically incur a high production cost in the beginning. As a result, Assumption 2 states that a
low production variable cost can be viewed as a barrier to entry.
Proposition 1. When a potential entrant enters a competitive market, the equilibrium quantity of each firm will decrease, but the
equilibrium market demand will increase.
Proof. To present the perturbation on firm i’s equilibrium quantity as an entrant enters the competitive market, we calculate
the difference between the equilibrium quantities of firm i in the original and new markets. For notational simplicity, let
q
i ðnÞ and q
i ðnþ 1Þ denote the equilibrium quantity of firm i in the original market consisting of n firms and in the new mar-
ket consisting of n + 1 firms, respectively. Therefore
q
i ðnÞ � q
i ðnþ 1Þ ¼
acðkÞ � ðnþ 1Þdc

nþ1ðkÞ þ
Xn

i¼1

dc
i ðkÞ

bcðkÞð2þ 3nþ n2Þ
: ð24Þ
The denominator of (24), bc(k)(2 + 3n + n2), is positive because this paper assumes that the terms bc(k) and n are positive. In
addition, the nominator of (24) is positive because of Assumption 2, meaning that the equilibrium quantity of firm i de-
creases as a new entrant enters the competitive market. Similarly, by (21) we have
Q 
ðnÞ � Q 
ðnþ 1Þ ¼ �
acðkÞ � ðnþ 1Þdc

nþ1ðkÞ þ
Xn

i¼1

dc
i ðkÞ

ðnþ 2ÞbcðkÞ

0
BBB@

1
CCCA; ð25Þ
where Q⁄(n) and Q⁄(n + 1) denote the equilibrium market demand in the original market consisting of n firms and in the new
market consisting of n + 1 firms. Obviously, the nominator of (25) and (21) is the same, which leads to the conclusion that the
equilibrium market demand increases as a new entrant enters the competitive market. This completes the proof. h
4.2. Effect of a firm’s control parameter k

Next, we analyze the behavior of each firm in the optimistic and pessimistic cases related to the location of the weighted
center of the fuzzy profit function. For comparative purposes, we perturb firm i’s control parameter, ki, with all of the other
firms’ control parameters remaining in the same level, k. This assumption allows us to conduct the sensitivity analysis with
less computational burden. Thus, we rewrite (20) as
q
i ¼

nbcðkÞ acðkiÞ � dc
i ðkiÞ

� �
� bcðkiÞ ðn� 1ÞacðkÞ �

Xn

j ¼ 1
j–i

dc
j ðkÞ

2
666664

3
777775

ðnþ 1ÞbcðkiÞbcðkÞ
ð26Þ
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and
q
j ¼

nbcðkiÞ acðkÞ � dc
j ðkÞ

h i
� bcðkÞ acðkiÞ � dc

i ðkiÞ
� �

� bcðkiÞ ðn� 2ÞacðkÞ �
Xn

j0 ¼ 1
j0–i; j

dc
j0 ðkÞ

2
666664

3
777775

ðnþ 1ÞbcðkiÞbcðkÞ
; j ¼ 1; . . . ;n; j – i: ð27Þ
Proposition 2. An increase in firm i’s control parameter ki leads to the following.
(i) Given that the left and right spreads of each parameter are identical, the change in firm i’s control parameter ki has no influ-
ence on the equilibrium quantity.

(ii) In the optimistic case, an increase in firm i’s control parameter ki will result in a decrease in its equilibrium quantity; in the
pessimistic case, an increase in firm i’s control parameter ki will result in an increase in its equilibrium quantity.

(iii) If an increase in firm i’s control parameter ki results in an increase in its equilibrium quantity, the equilibrium quantities of
the other firms will decrease.
Proof.

(i) The partial derivative of (26) with respect to ki is
@q
i
@ki
¼ nbðla � raÞ � nða� diÞðlb � rbÞ � nbðldi

� rdi
Þ

ðnþ 1Þð2b� lb þ rb þ bkiÞ2
: ð28Þ
If each fuzzy parameter has the same spreads, la = ra, lb = rb and ldi
¼ rdi

, there is no change in firm i’s equilibrium quantity due
to a perturbation of ki.

(ii) The denominator of (28), (n + 1)(2b � lb + rb + bki)2, is positive because the terms, n + 1 and (2b � lb + rb + bki)2, are posi-
tive. Suppose that the fuzzy profit function is la < ra, lb > rb, and ldi

> rdi
, which leads to the optimistic case; obviously,

the numerator is negative. As a result, firm i decreases its equilibrium quantity as ki increases. Similarly, firm i is in the
pessimistic case, given that the fuzzy profit function is la < ra, lb < rb, and ldi

< rdi
, resulting in a positive sign of (28).

Thus, firm i increases its equilibrium quantity as ki increases.
(iii) The partial derivative of (27) with respect to ki gives
@q
j
@ki
¼ �bðla � raÞ þ ða� diÞðlb � rbÞ þ bðldi

� rdi
Þ

ðnþ 1Þð2b� lb þ rb þ bkiÞ2
: ð29Þ
From (29), it is clear that the change in firm j’s equilibrium quantity negatively relates to the change in firm i’s equilibrium
quantity because the coefficients of la � ra, lb � rb, and ldi

� rdi
change signs in (28). This completes the proof. h

From (28) and (29) we note that the equilibrium quantity of firm i increases or decreases in ki at a faster rate than that of
firm j due to the coefficients of la � ra, lb � rb, and ldi

� rdi
.

Proposition 3. An increase in firm i’s control parameter, ki, will result in a decrease in its weighted fuzzy profit function in the
optimistic case and an increase in its weighted fuzzy profit function in the pessimistic case.
Proof. The partial derivative of (11) with respect to ki is
@WCoGð~piÞ
@ki

¼
2pA

i � pL
i þ pU

i

� �
ð2þ kiÞ2

: ð30Þ
As mentioned, if firm i’s weighted center of the fuzzy profit function locates on the right side of the apex, firm i is in the opti-
mistic case; i.e., an increase in its control parameter, ki, results in a decrease in WCoGð~piÞ, since 2pA

i � pL
i þ pU

i

� �
¼

pA
i � pL

i

� �
� pU

i � pA
i

� �
< 0. On the contrary, if firm i is in the pessimistic case, an increase in ki results in an increase in

WCoGð~piÞ , since 2pA
i � pL

i þ pU
i

� �
¼ pA

i � pL
i

� �
� pU

i � pA
i

� �
> 0. This completes the proof. h

To demonstrate the impact of firm i’s control parameter on the resulting outcomes, two examples consider the optimistic
and pessimistic cases. For simplicity, assume a competitive market with three firms. In the optimistic case of firm 1, we con-

sider the Cournot production game with the following setups. Suppose that ~a ¼ ð23;24;27Þ, ~b ¼ ð0:8;1;1:1Þ; ~d1 ¼ ð2;4;5Þ,
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~d2 ¼ ð2;3;5Þ, and ~d3 ¼ ð3;5;6Þ. In the pessimistic case of firm 1, let the fuzzy parameters be ~a ¼ ð23;25;26Þ;
~b ¼ ð0:8;0:9;1:2Þ, ~d1 ¼ ð2;3;6Þ; ~d2 ¼ ð2;3;5Þ, and ~d3 ¼ ð3;5;6Þ. Using our proposed model, plot the equilibrium quantity
of firm 1 in Fig. 2 for both cases as k1 varies. In Fig. 2, the solid line is the equilibrium of firm 1 in the optimistic case and
the dotted line is the equilibrium quantity of firm 1 in the pessimistic case. Observe that the equilibrium quantity of firm
1 decreases in k1 in the optimistic case, but increases in k1 in the pessimistic case because the control parameter affects
the weighted center of the fuzzy profit function.

In Fig. 3, we analyze the total equilibrium market demand obtained for the cases as k1 varies, and conclude that the total
equilibrium market demand increases in k1 in the pessimistic case, but decreases in k1 in the optimistic case. In Fig. 4, we
analyze the equilibrium quantity of firm 2, given firm 1’s control parameter. In Fig. 4a, the dotted line is the equilibrium
quantity of firm 1 and the solid line is the equilibrium quantity of firm 2 as k1 varies in the optimistic case. In Fig. 4b, the
dotted line is the equilibrium quantity of firm 1 and the solid line is the equilibrium quantity of firm 2 as k1 varies in the
pessimistic case. In Fig. 4a, we observe that the equilibrium quantity of firm 1 decreases in k1 in the optimistic case, but
the equilibrium quantity of firm 2 increases in k1. In Fig. 4b, we observe that the equilibrium of firm 1 increases in k1,
but the equilibrium quantity of firm 2 decreases in k1. In other words, the change in the equilibrium quantity of firm 1 neg-
atively relates to the change in the equilibrium quantity of firm 2.

4.3. Effect of fuzzy parameters

As discussed earlier, fuzzy parameters can be defuzzified into a crisp value representing the weighted center of the asso-
ciated fuzzy parameter. We now look at the impacts of weighted centers on the resulting equilibrium quantity and total mar-
ket demand.

Considering the weighted center of fuzzy parameter ~a as ki = 1, i = 1, . . . , n, it is trivial having the weighted center of ~a in
(31).
ac ¼ 1
3
fða� laÞ þ aþ ðaþ raÞg ð31Þ
Similarly, the weighted centers of the other fuzzy parameters can be written as
bc ¼ 1
3
fðb� lbÞ þ bþ ðbþ rbÞg;

dc
i ¼

1
3
fðdi � ldi

Þ þ di þ ðdi þ rdi
Þg; i ¼ 1; . . . ;n:

ð32Þ
Substituting (31) and (32) into (20), the equilibrium quantity of firm i can be rewritten as
q
i ¼
ðnþ 1Þ ac � dc

i

� �
�
Xn

r¼1

ac � dc
r

� �
ðnþ 1Þbc : ð33Þ
Note that all possible perturbations in fuzzy parameters can be represented in the right-hand side of (31) and (32) to reveal
changes in the weighted centers of fuzzy parameters. Eq. (33) indicates that the equilibrium quantity is a function of the
weighted center of fuzzy parameters. In other words, the change in the equilibrium quantity due to any perturbation in fuzzy
parameters can be explored in (33). As an example, assuming that the right spread of fuzzy parameter ~a, namely ra, increases,
then ac will be increasing because of the positive coefficient with ra in (31). As a result, the equilibrium quantity increases as
ac increases. Furthermore, by deriving the total market demand written as
Fig. 2. The equilibrium quantity of firm 1 for different values of k1.



Fig. 3. The total equilibrium market demand for different values of k1.

(a) The equilibrium quantity of firm 1 in 
the optimistic case 

(b) The equilibrium quantity of firm 
1 in the pessimistic case  

Fig. 4. The equilibrium quantity for different values of k1.

Table 1
Partial

qi

Q
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Q 
 ¼
Xn

i

q
i ¼
Pn

i ac � dc
i

� �
ðnþ 1Þbc ; ð34Þ
we can now conduct the sensitivity analysis of the total market demand and equilibrium quantity of firm i, i = 1, . . . , n. Tak-
ing the partial derivative of (33) and (34) with respect to ac, we have
@q
i
@ac
¼ 1
ðnþ 1Þbc ; ð35Þ

@Q 


@ac ¼
n

ðnþ 1Þbc : ð36Þ
Similarly, we also take the partial derivative of (33) and (34) with respect to the other weighted centers of fuzzy parameters.
Following Assumption 1, the resulting equilibrium quantity is positive and implies that the numerator of (33),
ðnþ 1Þ ac � dc

i

� �
�
Pn

r¼1 ac � dc
r

� �
is also positive. Obviously, the total market demand is positive due to the positive quantities

of individual firms; therefore, the numerator of (34)
Pn

i ac � dc
i

� �
is positive. Table 1 summarizes these results, for example,

n
ðnþ1Þbc is listed in the upper-left cell. We also make two observations:

Observation 1. The total market demand, Q, increases in ac, but decreases in bc
; dc

i and dc
j .
Observation 2. The equilibrium quantity of firm i, qi, increases in ac and dc
j , but decreases in bc and dc

i .
derivatives of outcomes with respect to different weighted centers.

ac bc dc
i dc

j

1
ðnþ1Þbc �ðnþ1Þ ðnþ1Þ ac�dc

ið Þ�
Pn

r¼1
ac�dc

rð Þ
� �

½ðnþ1Þbc �2

�n
ðnþ1Þbc

1
ðnþ1Þbc

n
ðnþ1Þbc �ðnþ1Þ

Pn

i
ac�dc

ið Þ
� �
½ðnþ1Þbc �2

�1
ðnþ1Þbc

�1
ðnþ1Þbc
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Note that the equilibrium quantity of firm i increases in dc
j , but the equilibrium quantity of firm j decreases in dc

j at a faster
rate; thus an increase in dc

j would lead to a decrease in Q.

4.4. Elasticity of equilibrium quantity

Economists usually measure responsiveness by examining elasticity. Therefore, the own-elasticity of the equilibrium
quantity of firm i with respect to its own control parameter can be written as
Eki :q
i
¼ @q
i =@ki
� �

= q
i =ki
� �

: ð37Þ
Similarly, we define the cross-elasticity of the equilibrium quantity of firm j with respect to firm i’s control parameter as
Eki :q
j
¼ @q
j =@ki

� 	
= q
j =ki

� 	
: ð38Þ
By substitution of (20), (28) and (29), we can obtain (37) and (38). Furthermore, the own-elasticity is twice the cross-elas-
ticity as shown below
Eki :q
i

Eki :q
j












 ¼ 2: ð39Þ
As a result, the perturbation of firm i’s control parameter on its equilibrium is more sensitive than on other firms’ control
parameters.

5. Conclusions

The conventional Cournot game is inadequate to explain or describe a real-world situation when an ambiguous environ-
ment hampers an accurate assessment of the relevant data. Moreover, probability distributions may be unavailable or dif-
ficult to estimate due to the paucity of data, poor record-keeping, etc. Thus, fuzzy sets theory is the most appropriate tool
when the uncertain parameters cannot be described by probability distributions.

In this paper, we propose the Cournot production game for solving the fuzziness aspect of demand and cost uncertainty.
We present a solution procedure to solve for the equilibrium quantity of each firm in a competitive market and indicate the
condition to ensure the uniqueness and existence of the equilibrium quantity. For simplicity, we assume that the demand
and cost functions of firms behave in a linear form and triangular fuzzy parameters. The linearity assumption commonly
adopted in the literature helps us obtain the equilibrium quantities in the form of a matrix representation.

We conduct a sensitivity analysis to examine the effect of the perturbation of the control parameter on firms’ outcomes
including the equilibrium quantity, the total market demand, and the weighted center of the fuzzy profit function. We ob-
serve that the equilibrium quantity of each firm varies with its control parameter at a faster rate than with other compet-
itors’ control parameters. We find that the fuzzy profit function plays a key role in analyzing the effect of the control
parameter. We define the optimistic and pessimistic cases based on the location of the weighted center of the fuzzy profit
function to discuss the change in the equilibrium quantity due to the perturbation of the control parameter. The results of
our model show that the control parameter has different influences on equilibrium quantity as we consider the optimistic
and pessimistic cases of each firm. We also analyze the effects of parameter perturbations on firms’ outcomes including the
equilibrium quantity and total market demand. It is worth mentioning that the resulting equilibrium quantity of each firm
varies with its own parameters at a faster rate than with its competitors’ parameters.
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