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Decisions related to supplier improvement and selection are inherently multiple criteria
decision making (MCDM) problems and are strategically important to companies. Although
efforts have been made to discover systematic methods to select the proper supplier, these
efforts have assumed that the criteria are independent, which is not actually the case. Some
studies that have treated the criteria as interdependent use additive models to obtain
aggregate performance. We propose a novel fuzzy integral-based model that addresses
the interdependence among the various criteria and employs the non-additive gap-
weighted analysis. The structure of the relationships among the criteria and the criteria
weights are developed using Decision Making Trial and Evaluation Laboratory (DEMATEL)
combined with a fundamental concept of an analytic network process (ANP) called DANP.
The fuzzy integral is then used to aggregate the gaps using the weights obtained from the
DANP. The proposed model addresses the shortcomings of prior models and provides a
more reasonable representation of the real world. The method is demonstrated using sup-
plier evaluation and improvement data from a Taiwanese company.

� 2013 Published by Elsevier Inc.
1. Introduction

Supplier evaluation and improvement processes are the most significant variables in the effective management of glob-
alization, as they improve organizations through the channels of high-quality products and customer satisfaction. The tra-
ditional approach has been to rank and select suppliers solely on the basis of price. However, moving from ranking/selection
to selection/improvement decisions in the contemporary supply-chain network is complicated, as potential options for
selection/improvement decisions are evaluated using multiple criteria. Therefore, supplier selection/improvement has be-
come an MCDM problem that includes several tangible and intangible factors [3,54]. Recently, these criteria have become
increasingly complex, interdependent, and dynamic as environmental, social, political, and customer satisfaction concerns
have been added to the traditional factors of quality, delivery, cost, and service. Additionally, traditional MCDM methods
have generally only employed an additive model to evaluate, rank, and/or select the alternatives. More important, and from
a practical standpoint, solving the problem of criteria gaps (gaps between actual performance and aspiration levels) while
incorporating a non-additive (or super-additive) framework to address interdependence and feedback problems is a current
trend within the MCDM field. Kahneman and Tversky [23] developed the basic concept of non-additive (or super-additive)
value-function aggregation in multi-criteria problems. This concept has led researchers to an important question on how
oad, San
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these two concepts (non-additive value functions and aspiration levels) can be applied to real world inter-relationship
(dependence and feedback) problems. This article contributes a novel, hybrid, fuzzy integral-based DANP (DEMATEL-based
ANP) model for reducing the gaps between each dimension and criterion to reach a given aspiration level in real world inter-
relationship problems.

Effective supplier selection/improvement demands robust analytical methods and tools that are applicable to the supplier
decision and able to analyze multiple subjective and objective criteria [2]. A series of literature reviews has summarized the
criteria and decision methods that have appeared in papers since the mid-1960s. For example, in an exhaustive review of 76
articles, Weber et al. [53] found that 47 articles address the involvement of more than one criterion. Two journal articles
[10,59] reviewed the literature regarding supplier evaluation and improvement/selection models. Ho et al. [16] extended
these reviews by surveying multi-criteria supplier evaluation and improvement/selection approaches through a literature
review and a classification of international journal articles from 2000 to 2008. They concluded that only extensive, multi-
criteria decision-making approaches have been proposed for supplier selection. The approaches include the analytic hierar-
chy process (AHP), analytic network process (ANP), data envelopment analysis (DEA), fuzzy set theory, genetic algorithms
(GA), mathematical programming, the multi-attribute rating technique (i.e., gray relation, VlseKriterijumska Optimizacija
I Kompromisno Resenje (VIKOR), technique for order preference by similarity to an ideal solution (TOPSIS), and their hybrids.

Prior studies have made significant contributions to supplier selection; however, they have assumed the criteria to be
independent when modeling the supplier selection problem. In the real world, the criteria are seldom independent. In fact,
the relationships between the criteria are all, to some extent, interactive and occasionally include dependence and feedback
effects [20,36,46]. Others [19,27,30,18,29,12] have accounted for this interdependence (i.e., by using the ANP) but nonethe-
less employed additive models (i.e., VIKOR, gray relation or TOPSIS) to aggregate performances and weights. However, these
methods are inconsistent with the assumption that the criteria are interdependent. A means of avoiding this inconsistency is
to apply non-additive fuzzy integrals to integrate the interdependent performance values. In this study, we improve on prior
research in three ways. First, the interdependent relationships between, and weights of, the criteria are constructed and cal-
culated using DEMATEL and a fundamental concept of the ANP called DANP. This method can derive weights directly from
the DEMATEL results and accommodate the different degrees of influence across dimensions. It also avoids the time-con-
suming process of performing pair-wise comparisons between criteria required in the original ANP analysis. Second, based
on the concepts of VIKOR, the traditional relative good solution from the existing alternatives is replaced by the aspiration
levels to avoid the ‘‘Choose the best among inferior choices/options/alternatives’’, i.e., avoid ‘‘Pick the best apple among a
barrel of rotten apples’’ option. Third, a non-additive fuzzy integral is used to obtain influence weighted gaps that enable
managers to better measure and understand the gaps between aspiration levels and actual levels and establish improvement
priorities. Using this hybrid model, we can remedy the inconsistency in our prior studies [18,29] that assume interdependent
criteria but apply additive models. This study may present the first model that integrates the concepts of a non-additive va-
lue function and interdependence with feedback effects in the supplier selection problems. Moreover, the emphasis in the
MCDM field has shifted from ranking and selection when determining the most preferable approaches to performance
improvement. Our model provides a systematic approach to identify the source of problems rather than addressing the sys-
tems of the problems. We used data from a Taiwanese company to demonstrate this model. This generic model can be easily
extended to other industries to aid other types of firms in selecting their optimal suppliers.
2. A brief review of the existing literature

Over the last two decades, various decision-making methods have been proposed to address supplier evaluation and
selection problems. Critical reviews have summarized the criteria and decision methods employed in the supplier selection
process, for example, Ho et al. [16], De Boer et al. [9], Degraeve et al. [10] Wu et al. [55] and Weber et al. [54]. Based on prior
studies, we categorize the methodologies used to analyze the supplier selection problem as follows: (1) multi-attribute deci-
sion-making, (2) mathematical programming models, (3) intelligent approaches, and (4) integrated approaches.
2.1. Multi-attribute decision-making (MADM)

The most popular multi-attribute decision-making methods are the AHP and ANP. Shaw et al. [40] applied a fuzzy AHP to
analyze a low carbon supply chain decision. The factors they considered are cost, quality, rejection percentage, late delivery
percentage, green house gas emissions and demand. Bertolini et al. [3] used the AHP to select the best discount rate in defin-
ing a proposal for a public works contract. A hierarchical structure comprised of 31 criteria is reported to illustrate the per-
formance and characteristics of the proposed technique. Chan and Kumar [4] developed a fuzzy AHP model to identify and
discuss some of the important and critical decision criteria including risk factors for the development of an efficient system
for global supplier selection. Although the AHP assumes independent criteria, other researchers applied the ANP to consider
interdependent criteria when constructing their models. Vinodh et al. [51] proposed a fuzzy ANP approach for the supplier
selection process. The study employed an Indian electronic switch manufacturing company as a case study to demonstrate
the model. Hsu and Hu [17] presented an ANP approach to incorporate the issue of hazardous substance management (HSM)
into supplier selection. The simple multi-attribute rating technique (SMART) is another MADM method. Barla [2] conducted
a five-step approach based on SMART to evaluate and select suppliers for a glass manufacturing company. They used seven
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evaluative criteria where multiple sub-factors had to be considered. The subcontractor receiving the highest score, called the
‘‘total expected utilities’’, would be selected.
2.2. Mathematical programming models

Most authors used single objective techniques, such as linear, nonlinear integer, goal, or mixed-integer programming, in
which one criterion, typically cost, is considered the objective function, while other criteria are considered constraints
[32,44,15,52]. Conversely, some researchers applied multi-objective mathematical programming to this problem. For exam-
ple, Wu et al. [56] proposed a fuzzy multi-objective programming model to select a supplier while accounting for risk factors.
Their supply chain model included three levels and used simulated historical quantitative and qualitative data. Liao and Ritt-
scher [26] developed a multi-objective supplier selection model under stochastic demand conditions. The stochastic supplier
decision is made through the simultaneous consideration of the total cost, the quality rejection rate, the late delivery rate
and the flexibility rate, including constraints on demand satisfaction and capacity. In addition to single or multiple objective
programming, the DEA and its derivative methods were used by many authors to address supplier selection problems. Fal-
agario et al. [13] developed a cross-efficiency DEA model for selecting the best supplier among the eligible candidates. The
proposed technique allows for the evaluation of quantitative data related to vendor selection and retains the transparency
aspects demanded by public procurement processes.
2.3. Intelligent approaches

There are examples [8,59] where intelligent systems such as an artificial neural network (ANN), evolutionary fuzzy sys-
tems, data-mining approaches, and expert systems tools have been used to evaluate the supplier selection process. Mogh-
adam et al. [31] presented a hybrid intelligent algorithm based on push supply chain management that uses a fuzzy neural
network and a genetic algorithm to forecast the rate of demand, determine material plans and select the optimal supplier. To
incorporate the uncertain environment, a genetic algorithm based on bi-random simulation was designed by Xu and Ding
[57] for solving a bi-random, multi-objective vendor selection problem.
2.4. Integrated approaches

Because the individual approaches contain limitations, numerous integrated approaches to supplier selection have been
proposed in the last decade. Sevkli et al. [39] applied an integrated AHP–DEA approach to supplier selection. They used the
AHP to derive local weights from a given pair-wise comparison matrix and aggregated local weights to yield overall weights.
Each row and column of the matrix was assumed to be a decision-making unit (DMU) and an output. A dummy input that
had a value of one for all DMUs was deployed in the DEA to calculate the efficiency scores of all suppliers. Amid et al. [1] used
a weighted max–min fuzzy model to effectively address the vagueness of the input data and different criteria weights in a
supplier selection problem. Kuo et al. [24] developed a green supplier selection model that combines the ANN and two multi-
attribute decision analysis methods, the DEA and ANP. This model overcomes traditional DEA drawbacks, limitations of data
accuracy and DMUs amount constraint.

Tzeng’s research group [48,58] used the ANP combined with the DEMATEL (DANP) to weight the influence levels of the
criteria. They then applied VIKOR to prioritize improvements in the performance of each alternative (such as service suppli-
ers). However, they still used additive models to aggregate performance scores. Many other integrated approaches have been
developed, including combining the ANP with goal programming [11], the ANN with GA [25], and the fuzzy AHP [4] and DEA
with multi-objective programming [45].

Based on the above literature review, previous studies have generally assumed that the criteria are independent when
establishing supplier evaluation models. A few authors have focused on the interdependence of the criteria when using
the ANP, but they nonetheless applied additive models to aggregate performance values. Unlike previous studies, we propose
a non-additive model combined with the measurement of gaps between observed aspired levels to make improvements and
select a supplier, as described in the next section.
3. Proposed fuzzy integral-based integrated approach

In this section, we introduce the analytical processes of the hybrid model as illustrated in Fig. 1. As shown in the figure, a
DEMATEL-based ANP is used to establish the structural relationship model and determine the criteria weights with depen-
dence and feedback. In a complex system, all system criteria are either directly or indirectly mutually related. In such intri-
cate systems, it is very difficult for a decision maker to obtain a specific objective/aspect and avoid interference from the rest
of the system. This study uses the DEMATEL technique to determine the effect on each dimension and criterion. Subse-
quently, the DANP approach, a novel combination of the DEMATEL and ANP methods based on concepts developed by Saaty
[38], was adopted to calculate the weights of the criteria. The concepts of VIKOR are applied to transform the performance
values into gaps. Finally, we utilize a non-additive, fuzzy-integral model to aggregate the weighted gaps. As the DANP



Fig. 1. Analysis processes.
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method has been applied in many of our past studies [19,30,41], details of the procedures are illustrated in Appendix A. We
will only stress the new concepts of the improved model here.

3.1. Using the basic concepts of the VIKOR method to determine the gap values in the performance matrix

In this study, we use the basic concepts of the VIKOR method to determine performance gap values. This article focuses on
a method for constructing strategic systems to improve and reduce the gaps from existing performance values to achieve the
aspiration/desired levels for each criterion. The decision makers then determine areas in need of improvement and select the
best alternative to make decisions based on the new theoretical approach and apply these new hybrid methods to real cases
with alternatives A1, A2, . . . , Ak, . . . , Am. The performance score of alternative Ak on the jth criterion is denoted as fkj; wj is the
relative influence weight of the jth criterion and can be obtained from the DANP where j = 1, 2, . . . , n, and n are the number of
criteria. The VIKOR method was developed using the following traditional additive form of the Lv-metric [30]:
Lv
k ¼

Xn

j¼1

½wjðjf �j � fkjjÞ=ðjf �j � f�j jÞ�
v

( )1=v

ð1Þ
where 1 6 v 61; k = 1, 2, . . . , m; and the influential weight wj is derived from the DANP. To formulate the ranking and gap
ratio, measures Lv¼1

k and Lv¼1
k are used in the VIKOR method [50,35,33,34].
Lv¼1
k ¼

Xn

j¼1

½wjðjf �j � fkjjÞ=ðjf �j � f�j jÞ� ð2Þ
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Lv¼1
k ¼max

j
fðjf �j � fkjjÞ=ðjf �j � f�j jÞ j ¼ 1;2; . . . ;nj g ð3Þ
where we define rkj ¼ ðjf �j � fkjjÞ=ðjf �j � f�j jÞ as the gap ratio of alternative k for criterion j. The compromise solution minkLv
k

yields the synthesized/aggregated gap ratio that will also be minimized using Eq. (2), and Lv¼1
k indicates which alternative

will be the improvement priority, that is, which one has the maximum gap ratio of the criteria in each dimension or criterion.
We then select the best f �j values as the aspiration levels and the worst f�j values as the tolerable levels for all criteria func-
tions, j = 1, 2, . . . , n. In this study, we modify the traditional approach (suppose the jth function denotes benefits: f �j ¼maxkfkj

and f�j ¼ minkfkj) and shift the concept from the ‘‘ranking’’ or ‘‘selection’’ of the most preferable alternatives to the ‘‘improve-
ment’’ of their performance levels to achieve the aspiration level for each dimension and criterion. Therefore, the f �j and f�j
values can be set by decision makers such that f �j is the aspiration level and f�j is the worst value. For example, in question-
naires, we can use performance scores ranging from zero to 10 (from very dissatisfied or very bad 0, 1, 2, . . . , 9, 10 ? very
satisfied or very good) expressed in natural language, wherein the aspiration level can be set at 10 and the worst value at
zero. In this study, we set f �j ¼ 10 as the aspiration level and f�j ¼ 0 as the worst value, settings that differ from the traditional
approach. This allows us to avoid ‘‘choosing the best among inferior options/alternatives (i.e., avoid picking the best apple
from among a barrel of rotten apples)’’. However, in the real world, the rational, suitable aggregation operator is not additive.
Rather, it is non-additive (also called super-additive), as explained below.

3.2. The k fuzzy measure and fuzzy integral

Based on the weight of each criterion obtained from the DANP, we can combine the fuzzy measure and performance ma-
trix to calculate the integrated performance for each alternative. Let gk be a k fuzzy measure that is defined on a power set
P(x) for the finite set X = {x1, x2, . . . , xn}. The fuzzy measure has the following property [49]:
8A;B 2 PðXÞ; A \ B ¼£;

gkðA [ BÞ ¼ gkðAÞ þ gkðBÞ þ kgkðAÞgkðBÞ for� 1 < k <1 ð4Þ
The density of the fuzzy measure gi ¼ gkðfxigÞ can be obtained from questionnaire responses (thus gkðfxigÞ ¼ uðx�i ; x0
�i
Þ. Sup-

pose that you have a ground-service company that perfectly meets all of your criteria, and you would like this company’s
rating to serve as 1. Now suppose that this company only perfectly meets one criterion x�i and is inferior with respect to other
criteria. How would you rate this company? The local weights (w1, w2, . . . , wn) can be obtained through the DANP. Next, we
let the fuzzy measure weights be
ðgkðfx1gÞ; gkðfx2gÞ; . . . ; gkðfxngÞÞ ¼ qðw1;w2; . . . ;wnÞ ¼ ðw1q;w2q; . . . ;wnqÞ; ð5Þ
where q is the adjusted weight coefficient.
gkðfx1; x2; . . . ; xngÞ ¼
Xn

i¼1

gkðfxigÞ þ k
Xn

i¼1;j>i

gkðfxigÞgkðfxjgÞ þ � � � þ kn�1gkðfx1gÞgkðfx2gÞ � � � gkðfxngÞ; where

gkðXÞ ¼ gkðfx1; x2; . . . ; xngÞ ¼ 1 ð6Þ
Based on the above properties, one of the three following situations will be realized for a specific case with two attributes,
x1 and x2.

a. If k > 0, the gkðA [ BÞ > gkðAÞ þ gkðBÞ, which implies that x1 and x2 have multiplicative effects in {A, B}.
b. If k = 0, then gkðA [ BÞ ¼ gkðAÞ þ gkðBÞ, which implies that x1 and x2 have additive effects in {A, B}.
c. If k < 0, then gkðA [ BÞ < gkðAÞ þ gkðBÞ; which means that x1 and x2 have substitutive effects in {A, B}.

In our model, the performance values are replaced by gaps that are equal to the aspired levels minus the evaluated values
with respect to each criterion. If we let h be a measurable set function (gap function) defined on the fuzzy measurable space
and suppose that h(x1) P h(x2) P � � �Ph(xn), then the fuzzy integral of fuzzy measure g(�) with respect to h(�) can be defined
as follows [22] and as shown in Fig. 2:
Z

hdg ¼ hðxnÞgðHnÞ þ ½hðxn�1Þ � hðxnÞ�gðHn�1Þ þ � � � þ ½hðx1Þ � hðx2Þ�gðH1Þ

¼ hðxnÞ½gðHnÞ � gðHn�1Þ� þ hðxn�1Þ½gðHn�1Þ � gðHn�2Þ� þ � � � þ hðx1ÞgðH1Þ ð7Þ
where H1 = {x1}, H2 = {x1, x2}, . . . , Hn = {x1, x2, . . . , xn} = X.
The fuzzy integral defined in Eq. (7) is called the Choquet integral [43,22,42,5–7,28]. By using the fuzzy integral to for-

mulate the original data, not only can fewer and more representative factors be extracted to describe the system but the
interactions between attributes are also considered. Here we used

R
h dg = akn as the integrated weighted gaps of the cluster

Cn at alternative k.



Fig. 2. Concept of fuzzy integral.
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4. Empirical example using a real case

An empirical study on the selection and improvement of service suppliers in the airline industry is used in this section to
illustrate the feasibility of the proposed methodology.

4.1. Problem descriptions

Many decision-making methods have been proposed to address the supplier evaluation problem; however, the majority
of prior works concern supplier selection in manufacturing industries, and few of them address service industries. Suppliers
in service industries require greater collaboration than those in manufacturing industries because they perform numerous
consecutive activities in a complete service process and to consistently impress customers, they have to employ manage-
ment practices consistent with those of the outsourcing firm [14]. Therefore, it is necessary to consider the interdependen-
cies between the outsourcing firm and the suppliers. Furthermore, the improvement and selection criteria in service
industries are generally interrelated to a certain extent. Therefore, we use a service industry as the case study to validate
our proposed model, reduce the gaps in the improvement criteria based on an influential network relationship map, and
make a selection.

The model is developed and implemented using data from a Taiwanese airline that serves over 50 international destina-
tions. To reduce manpower costs and improve service efficiency, the company sought to contract out its ground services at
foreign destinations. Data from Bangkok, Thailand are selected for the case study because this is one of the most important
destinations in this airline’s flight network. Currently, five major ground-service companies (A1 to A5) are the potential alter-
natives to be selected as the airline’s partner. The decision is strategic because its successful completion will have a signif-
icant bearing on the company’s continued competitiveness.

4.2. Supplier improvement/selection criteria

In any supplier improvement/selection activity, there are risks, such as potential structural and cultural incompatibilities.
To ensure success, it is crucial that both firms and suppliers have a clear understanding of their similarities and differences
and recognize mutually beneficial opportunities under cooperative arrangements. Because supplier improvement/selection
is crucial, it is imperative for decision makers to devise, identify, and recognize effective supplier selection/improvement cri-
teria and evaluate compatibility and feasibility issues prior to selecting any suppliers. Several issues are important for deter-
mining the optimal collaborator in this supplier improvement/selection process, including whether there have been
favorable past associations between the potential suppliers, whether the national and corporate cultures of the suppliers
are compatible, and whether trust exists among the suppliers’ management teams. The supplier selection criteria are devel-
oped based on our review of the literature and a series of discussions with the case company’s managers. This discussion
with the industry helped us to classify the various decision-making criteria into four dimensions (or perspectives):
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compatibility, risk, quality, and cost. These dimensions are then divided into various criteria, as indicated in Table 1. By
examining these dimensions, we can avoid the pitfalls of classical supplier improvement/selection decisions where cost is
used as the sole deciding factor.
4.3. Measuring the relationships between dimensions and criteria

Following the DANP procedures, as described in Appendix A (Step 4–8), the managers were asked to determine the degree
of influence for each of the relationships among the criteria. The average initial direct-relation matrix A is an 11 � 11 matrix,
obtained by pair-wise comparisons with respect to levels of influence and the direction of the relationships between dimen-
sions, as shown in Table 2. As seen in matrix A, the normalized direct-relation matrix X is calculated using Eqs. (A2) and (A3).
Then, using Eq. (A4), the total-influence matrix T is derived, as indicated in Table 3. Additionally, by using Eqs. (A5) and (A6),
the sum of the influence given (ri � si) and received ðri þ siÞ for each dimension and criterion is shown in Table 4. It should be
noted that the values on the left-hand side are the degrees of influence between dimensions, and the values on the right-
hand side are the degrees of influence within criteria.

As seen in Table 4, risk (ri � si) has the largest positive value, as it is the most important dimension. Risk plays a major role
in the evaluation system and has the most substantial impact on all other dimensions. As a result, managers perceive risk as
a core consideration in any potential outsourcing activity. Compatibility has the highest value (ri + si), meaning that it can
dramatically affect and be affected by other dimensions. Cost, however, has the lowest (ri + si) value, which implies that it
is less significant than the other dimensions. In terms of degrees of influence among the criteria, these results indicate that
managers believe that cost is the least influential factor when selecting a service supplier. This result seems to imply that
service industries place greater emphasis on the level of quality provided and the potential risk than on the cost. The influ-
ential network-relationship can be visualized by drawing an influential network-relationship map (INRM) of the four dimen-
sions and their subsystems as illustrated in Fig. 3. As the figure demonstrates, the ‘‘relationship,’’ ‘‘loss of management
control’’ and ‘‘knowledge skill’’ factors have the largest degrees of net influence under the subsystems of compatibility, risk
and quality, respectively. The INRM can provide information on how to reduce the performance gaps in each dimension and
provide assistance in identifying alternatives to reach the aspiration level.

The DANP method combines the DEMATEL with the ANP and conducts a survey of the case company to obtain indicators
for the dynamic relationship. This information is used to construct an unweighted supermatrix indicating the degrees of
importance among the relationships. Using the Eqs. (A10)–(A12), we can obtain the DEMATEL-based unweighted supermar-
tix as shown in Table 5. We also consider the impacts of various dimensions to create the weighted supermatrix. The
weighted supermatrix (Table 6) is calculated from Eqs. (A8), (A14), and (A15) to reflect the degrees of influence exerted
by the various dimensions. The limits of the supermatrix are used to obtain the weights of the various factors (global weight),
and the weighted supermatrix is then raised to its limiting powers until the supermatrix has converged, as shown in Table 7.
The DANP approach allows us to derive the local weights of the assessment factors at their respective hierarchical levels and
global weights, which helps us to understand the absolute weights of individual criteria across all four perspectives. The
properties are arranged according to the global weights. The purpose is to examine the primary criteria in the supplier
selection decision to improve performance based on the INRM (Fig. 3). The results indicate that compatibility is the most
Table 1
Dimensions and criteria of the evaluating systems.

Dimensions Criteria Explanations

Compatibility (D1) Relationship (C11) Includes shared risks and rewards, ensuring cooperation between the airline and ground
service provider

Flexibility (C12) Flexibility when dealing with abnormal situations, such as flight delays, overbooking, and
incidents

Information sharing (C13) Compatibility of computer systems and information-sharing, such as new information/
regulations at a destination airport

Quality (D2) Knowledge and skills (C21) Service provider’s airplane maintenance facilities and their knowledge of manpower are
essential

Customer satisfaction (C22) Average customer’s level of satisfaction regarding ground services, such as check-in and
luggage handling

On-time rate (C23) Ratio of airplanes delivered on time

Cost (D3) Cost saving (C31) Total cost of outsourcing activities
Flexibility in billing (C32) Flexibility in billing and payment conditions, increasing goodwill between airlines and the

service supplier

Risk (D4) Labor union (C41) Service outsourcing may be accompanied by the possibility of layoffs and disturbances
within the airline. Supplier employee strikes could disrupt flight schedules

Loss of management control (C42) Poor management of the service supplier may not provide adequate service and may cause
potential flight safety problems

Information security (C43) Mutual trust-based information sharing between the airline and the service supplier is
necessary for both the continuance of the agreement and also for the security of
confidential information



Table 2
Initial direct influence matrix.

A C11 C12 C13 C21 C22 C23 C31 C32 C41 C42 C43

C11 0.0 2.5 3.3 1.3 1.9 1.5 3.0 3.3 3.2 3.1 2.9
C12 1.4 0.0 2.5 2.1 2.4 1.9 1.5 1.3 2.8 2.7 2.9
C13 3.3 2.4 0.0 2.8 1.5 1.8 0.8 0.7 3.2 2.9 2.8
C21 2.9 0.8 2.3 0.0 2.5 2.7 0.4 0.5 1.2 1.5 1.6
C22 3.2 2.2 2.1 2.5 0.0 1.1 0.7 0.9 0.5 0.8 0.6
C23 1.2 1.9 1.5 0.6 3.7 0.0 1.4 1.4 0.3 0.7 0.5
C31 3.1 1.3 1.5 0.5 0.8 1.3 0.0 2.7 1.8 1.3 1.1
C32 2.4 3.3 0.9 0.2 0.4 0.4 2.7 0.0 0.9 0.7 0.4
C41 2.8 2.5 2.3 1.7 2.3 3.1 0.5 0.4 0.0 3.3 1.8
C42 3.1 2.3 2.4 0.8 3.3 2.7 2.7 2.3 2.9 0.0 3.5
C43 2.2 1.6 3.2 1.3 0.9 1.3 1.1 1.0 1.4 2.8 0.0

Note 1: The scales 0, 1, 2, 3 and 4 represent the range from ‘‘no influence (0)’’ to ‘‘very high influence (4)’’, respondents by experts.

Note 2: 1
nðn�1Þ

Pn
i¼1
Pn

j¼1
jdp

ij
�dp�1

ij
j

dp
ij
� 100% ¼ 3:45% < 5%, i.e., significant confidence is 96.55%, where p = 16 denotes the number of experts and dp

ij is the average

influence of i criterion on j; and n denotes number of criteria, here n = 11 and n � n matrix.

Table 3
Total influence matrix of criteria.

TC C11 C12 C13 C21 C22 C23 C31 C32 C41 C42 C43

C11 0.34 0.37 0.41 0.24 0.33 0.29 0.31 0.32 0.37 0.39 0.36
C12 0.33 0.23 0.34 0.24 0.31 0.27 0.22 0.21 0.31 0.33 0.32
C13 0.41 0.33 0.27 0.28 0.30 0.29 0.21 0.21 0.34 0.35 0.33
C21 0.32 0.21 0.28 0.13 0.27 0.25 0.15 0.15 0.21 0.23 0.22
C22 0.31 0.24 0.26 0.21 0.16 0.18 0.15 0.16 0.18 0.20 0.18
C23 0.21 0.21 0.20 0.13 0.26 0.12 0.15 0.15 0.14 0.16 0.14
C31 0.31 0.23 0.24 0.14 0.19 0.19 0.13 0.23 0.23 0.22 0.20
C32 0.25 0.26 0.19 0.11 0.15 0.14 0.21 0.11 0.17 0.17 0.15
C41 0.37 0.32 0.33 0.23 0.31 0.31 0.19 0.18 0.21 0.34 0.28
C42 0.44 0.36 0.38 0.22 0.37 0.33 0.30 0.28 0.35 0.27 0.37
C43 0.31 0.25 0.32 0.19 0.22 0.22 0.18 0.18 0.24 0.29 0.18

Note: The total influence matrix is obtained from Eqs. (A2)–(A4) as shown in Appendix.

Table 4
Sum of influences given ri and received si on dimensions and criteria.

TD Dimensions TC Criteria

ri si ri + si ri � si ri si ri + si ri � si

D1 1.21 1.18 2.39 0.04 C11 3.73 3.61 7.34 0.12
C12 3.12 3.02 6.14 0.09
C13 3.33 3.22 6.55 0.11

D2 0.78 0.89 1.67 �0.11 C21 2.43 2.11 4.54 0.33
C22 2.23 2.87 5.10 �0.65
C23 1.88 2.59 4.48 �0.71

D3 0.76 0.79 1.54 �0.03 C31 2.30 2.21 4.51 0.09
C32 1.89 2.17 4.07 �0.28

D4 1.11 1.00 2.12 0.11 C41 3.09 2.76 5.85 0.34
C42 3.68 2.96 6.64 0.72
C43 2.59 2.74 5.33 �0.16

Note: The sum of influences ri and si are calculated by Eqs. (A5) and (A6).
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important dimension in terms of influence, and the relationship is the first priority in terms of the global weights. As noted
above, the DEMATEL is combined with the ANP method to validate individual performance perspectives, the causal relation-
ships among the criteria, and the influence weights of the respective criteria.

4.4. Integrated weighted gaps using the fuzzy integral method

We first transform the performance values into the values representing the sizes of the gaps between actual and desired
performance. Then, using the obtained global weights and gaps for each criterion and dimension, we synthesize the influence
weights and gap values. In contrast to previous studies that only apply additive models (i.e., simple additive weight, VIKOR,



Fig. 3. Influential network-relationship map within systems.

Table 5
Un-weighted supermatrix of criteria.

W C11 C12 C13 C21 C22 C23 C31 C32 C41 C42 C43

C11 0.300 0.367 0.405 0.393 0.383 0.341 0.403 0.362 0.364 0.371 0.351
C12 0.332 0.258 0.327 0.263 0.301 0.335 0.290 0.372 0.312 0.306 0.286
C13 0.368 0.375 0.268 0.344 0.316 0.324 0.307 0.267 0.324 0.323 0.363
C21 0.280 0.293 0.321 0.201 0.377 0.249 0.263 0.274 0.267 0.242 0.297
C22 0.380 0.376 0.347 0.410 0.289 0.520 0.366 0.378 0.367 0.404 0.355
C23 0.340 0.331 0.332 0.389 0.334 0.231 0.371 0.347 0.366 0.354 0.348
C31 0.496 0.512 0.508 0.497 0.491 0.501 0.371 0.653 0.509 0.514 0.509
C32 0.504 0.488 0.492 0.503 0.509 0.499 0.629 0.347 0.491 0.486 0.491
C41 0.333 0.326 0.334 0.315 0.320 0.314 0.351 0.348 0.255 0.354 0.330
C42 0.346 0.342 0.343 0.350 0.355 0.361 0.340 0.346 0.410 0.273 0.411
C43 0.321 0.332 0.323 0.335 0.325 0.325 0.309 0.306 0.335 0.373 0.259

Note: The un-weighed supermatrix is derived by Eqs. (A10)–(A12).

Table 6
Weighted supermatrix Wa.

Wa C11 C12 C13 C21 C22 C23 C31 C32 C41 C42 C43

C11 0.084 0.102 0.113 0.126 0.123 0.110 0.131 0.118 0.112 0.114 0.108
C12 0.092 0.072 0.091 0.085 0.097 0.108 0.094 0.121 0.096 0.094 0.088
C13 0.103 0.105 0.075 0.111 0.101 0.104 0.100 0.087 0.100 0.100 0.112
C21 0.065 0.068 0.075 0.049 0.092 0.061 0.053 0.055 0.064 0.058 0.071
C22 0.089 0.088 0.081 0.100 0.071 0.127 0.074 0.076 0.088 0.097 0.085
C23 0.079 0.078 0.077 0.096 0.082 0.056 0.075 0.070 0.089 0.085 0.084
C31 0.101 0.104 0.103 0.097 0.096 0.098 0.083 0.145 0.100 0.101 0.100
C32 0.103 0.099 0.100 0.098 0.100 0.097 0.140 0.077 0.097 0.096 0.097
C41 0.095 0.093 0.095 0.075 0.076 0.075 0.088 0.087 0.065 0.090 0.084
C42 0.098 0.097 0.098 0.083 0.085 0.086 0.085 0.087 0.104 0.070 0.105
C43 0.091 0.094 0.092 0.080 0.077 0.078 0.077 0.077 0.085 0.095 0.066

Note: The weighted supermatrix is calculated by Eqs. (A8), (A14), and (A15).
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TOPSIS, gray relation), we utilize fuzzy integrals to aggregate the weighted gaps. Because the criteria within the same dimen-
sion have interdependent relationships, their weighted gaps should be integrated rather than treated as individual values.
Similarly, the integrated weighted gaps of the four dimensions should be further calculated with their final synthesized



Table 7
Influential weights of system factors.

Dimensions Local weights Rankings Criteria Local weights Rankings Global weights

D1 0.306 1 C11 0.367 1 0.112
C12 0.310 3 0.095
C13 0.324 2 0.099

D2 0.231 3 C21 0.281 3 0.065
C22 0.379 1 0.088
C23 0.340 2 0.079

D3 0.204 4 C31 0.506 1 0.103
C32 0.494 2 0.101

D4 0.259 2 C41 0.327 2 0.085
C42 0.351 1 0.091
C43 0.322 3 0.083

Note: The global weights are derived by raising the weighted supermatrix to the limiting powers.
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values. Through a survey questionnaire conducted by the case company’s managers, fuzzy integral k values are obtained,
which range from �1 to positive infinity1. These values represent the substitutive or multiplicative properties of the rela-
tionships among the criteria. There are substitutive effects among the risk attributes, and there is a multiplicative effect
among compatibility, quality, and cost. The k values and the fuzzy measures g(�) are shown in Table 8. The fuzzy measures
of each dimension and criterion are surveyed from the questionnaire. Using Eq. (5), we obtain the adjusted weight coeffi-
cient. Then, the k value is derived by solving the polynomial Eq. (6). Using the obtained g(�) and the original data (Appendix
B, Table A1), we obtain the gap ratios (rkj ¼ ðjf �j � fkjjÞ=ðjf �j � f�j jÞ for alternatives k = 1, 2, . . . , m for each criterion (Table 9).
The data in Table A1 represent the satisfaction levels for each ground-service company obtained from the managers of
the case airline. The integrated weighted gaps of each potential supplier are then calculated as shown in Table 10. To illus-
trate the calculations, we use ground-service company A1 as an example. Fig. 4(a) indicates how the integrated weighted gap
of dimension 1 (compatibility) for company A1 is obtained. Fig. 4(b) demonstrates how the total weighted gap is aggregated
from the synthesized values of the four dimensions. The values for the other alternatives can be derived using the same
methodology. According to our fuzzy integral model, A2 has the smallest weighted gap and should, therefore, be selected,
whereas the results from the conventional additive model (Table 9) differ, showing that A3 is the best supplier. The results
of a comparison of the two methods are illustrated in Table 11.

Table 11 shows the effect of the k values in the non-additive model. When k is equal to zero (additive model), the gap is not
affected during the synthesization/aggregation processes. However, the gap will increase after synthesization/aggregation
Table 8
Fuzzy measure g(k) of each parameter and parameter combination.

Fuzzy Measure g(�)

Supplier selection (evaluating systems) k = �0.597, q = 1.358
gkðfD1gÞ ¼ 0:415 gkðfD1;D2gÞ ¼ 0:651 gkðfD1;D2;D3gÞ ¼ 0:821 gkðfD1;D2;D3;D4gÞ ¼ 1
gkðfD2gÞ ¼ 0:314 gkðfD1;D3gÞ ¼ 0:624 gkðfD1;D2;D4gÞ ¼ 0:866
gkðfD3gÞ ¼ 0:277 gkðfD1;D4gÞ ¼ 0:680 gkðfD1;D3;D4gÞ ¼ 0:844
gkðfD4gÞ ¼ 0:352 gkðfD2;D3gÞ ¼ 0:539 gkðfD2;D3;D4gÞ ¼ 0:778

gkðfD2;D4gÞ ¼ 0:600
gkðfD3;D4gÞ ¼ 0:571

Compatibility (D1) k = 0.358, q = 0.900
gkðfC11gÞ ¼ 0:330 gkðfC11 ;C12gÞ ¼ 0:642 gkðfC11;C12;C13gÞ ¼ 1
gkðfC12gÞ ¼ 0:279 gkðfC11 ;C13gÞ ¼ 0:656
gkðfC13gÞ ¼ 0:291 gkðfC12 ;C13gÞ ¼ 0:599

Quality (D2) k = 3.902, q = 0.539
gkðfC21gÞ ¼ 0:151 gkðfC21 ;C22gÞ ¼ 0:476 gkðfC21;C22;C23gÞ ¼ 1
gkðfC22gÞ ¼ 0:204 gkðfC21 ;C23gÞ ¼ 0:443
gkðfC23gÞ ¼ 0:183 gkðfC22 ;C23gÞ ¼ 0:533

Cost (D3) k = 1.268, q = 0.798
gkðfC31gÞ ¼ 0:403 gkðfC31 ;C32gÞ ¼ 1
gkðfC33gÞ ¼ 0:395

Risk (D4) k = �0.073, q = 1.025
gkðfC41gÞ ¼ 0:336 gkðfC41 ;C42gÞ ¼ 0:687 gkðfC41;C42;C43gÞ ¼ 1
gkðfC42gÞ ¼ 0:360 gkðfC41 ;C43gÞ ¼ 0:657
gkðfC43gÞ ¼ 0:330 gkðfC42 ;C43gÞ ¼ 0:681

Note 1: The fuzzy measures for each dimension and criterion are obtained by questionnaire. The other fuzzy measures are calculated by Eq. (6).



Table 9
Gap ratio values of potential suppliers by SAW.

Criteria Weights (Global) Weights (Local) Alternative

A1 A2 A3 A4 A5

Compatibility (D1) 0.306 0.241 0.198 0.197 0.183 0.264
Relationship (C11) 0.112 0.367 0.264 0.208 0.199 0.198 0.268
Flexibility (C12) 0.095 0.310 0.214 0.211 0.198 0.176 0.264
Information sharing (C13) 0.099 0.324 0.242 0.175 0.194 0.173 0.258

Quality (D2) 0.231 0.290 0.231 0.236 0.236 0.221
Knowledge and skills (C21) 0.065 0.281 0.280 0.221 0.275 0.224 0.214
Customer satisfaction (C22) 0.088 0.379 0.286 0.255 0.227 0.265 0.203
On-time rate (C23) 0.079 0.340 0.302 0.213 0.213 0.214 0.246

Cost (D3) 0.204 0.243 0.306 0.320 0.343 0.268
Cost saving (C31) 0.103 0.506 0.246 0.333 0.313 0.324 0.267
Flexibility in billing (C32) 0.101 0.494 0.239 0.278 0.328 0.362 0.269

Risk (D4) 0.259 0.251 0.244 0.227 0.248 0.277
Labor unions (C41) 0.085 0.327 0.257 0.292 0.214 0.219 0.275
Loss of management control (C42) 0.091 0.351 0.255 0.208 0.218 0.248 0.288
Information security (C43) 0.083 0.322 0.242 0.235 0.249 0.278 0.268

Total Gap 0.255 0.240 0.238 0.245 0.258
(rank) (4) (2) (1) (3) (5)

Note: For example alternative A1, D1: (0.264 � 0.367) + (0.214 � 0.310) + (0.242 � 0.324) = 0.241, and total gap ratio = 0.241 � 0.306 + 0.290 � 0.231 +
0.243 � 0.204 + 0.251 � 0.259 = 0.255 (additive); the original data are shown in the Appendix, Table A1. The gap ratio is rkj ¼ ðjf �j � fkj jÞ=ðjf �j � f�j jÞ for
alternatives k = 1, 2, . . . , m and criteria j = 1, 2, . . . , n.

Table 10
Gap ratio values of potential suppliers by fuzzy integral.

Criteria Weights (local) Alternative

A1 A2 A3 A4 A5

Compatibility (D1) 0.306 0.240 0.197 0.197 0.182 0.263
Relationship (C11) 0.367 0.264 0.208 0.199 0.198 0.268
Flexibility (C12) 0.310 0.214 0.211 0.198 0.176 0.264
Information sharing (C13) 0.324 0.242 0.175 0.194 0.173 0.258

Quality (D2) 0.231 0.286 0.224 0.227 0.227 0.214
Knowledge and skills (C21) 0.281 0.280 0.221 0.275 0.224 0.214
Customer satisfaction (C22) 0.379 0.286 0.255 0.227 0.265 0.203
On-time rate (C23) 0.340 0.302 0.213 0.213 0.214 0.246

Cost (D3) 0.204 0.242 0.300 0.319 0.339 0.268
Cost saving (C31) 0.506 0.246 0.333 0.313 0.324 0.267
Flexibility in billing (C32) 0.494 0.239 0.278 0.328 0.362 0.269

Risk (D4) 0.259 0.252 0.245 0.227 0.249 0.277
Labor unions (C41) 0.327 0.257 0.292 0.214 0.219 0.275
Loss of management control (C42) 0.351 0.255 0.208 0.218 0.248 0.288
Information security (C43) 0.322 0.242 0.235 0.249 0.278 0.268

Total gap – 0.258 0.245 0.246 0.254 0.262
(rank) (4) (1) (2) (3) (5)
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when the dimension exhibits a substitutive effect (k < 0). Conversely, the multiplicative effect (k > 0) will reduce the gap after
synthesization/aggregation. The above phenomenon can be observed in our empirical example. The multiplicative effect on
quality (D2) reduces the gap of A3, and the substitutive effect (k = �0.597) within the dimensions increases the gap of A3. The
combined effects cause A3 to fall from the leading position to second place and A2 to shift from second place to first. Based on
the substitutive or multiplicative effects within the dimensions and the INRM, we are able to derive some strategies for
improvement. For example, for companies seeking to reduce the overall gap, controlling risk should be the most important
task, as risk ranked first in the INRM and there is a substitutive effect among dimensions.
5. Discussion

According to the global weights (Table 7) of the improvement/selection criteria, the relationship (11.2%) is the most
important criterion in supplier improvement/selection, followed by cost savings (10.3%) and billing flexibility (10.1%).
However, based on the INRM (Fig. 3) and the influential degree analysis (Table 4), cost has the lowest (ri � si) value. These



Fig. 4. Illustration for the fuzzy integral calculation in A1.

Table 11
Results comparison between non-additive and additive methods.

Dimension (additive/non-additive)

A1 A2 A3 A4 A5

D1 Compatibility 0.241/0.240 0.198/0.179 0.197/0.197 0.183/0.182 0.264/0.263
k = 0.358 (-1%) (-1%) (0%) (0%) (0%)
D2 Quality 0.290/0.286 0.231/0.224 0.236/0.227 0.236/0.227 0.221/0.214
k = 3.902 (-1%) (-3%) (-4%) (-4%) (-3%)
D3 Cost 0.243/0.242 0.306/0.300 0.320/0.319 0.343/0.339 0.268/0.268
k = 1.268 (0%) (-2%) (-1%) (-1%) (0%)
D4 Risk 0.251/0.252 0.244/0.245 0.227/0.227 0.248/0.249 0.277/0.277
k = -0.073 (0%) (1%) (0%) (0%) (0%)
Total gaps 0.255/0.258 0.240/0.245 0.238/0.246 0.245/0.254 0.258/0.262
k = �0.597 (1%) (2%) (3%) (4%) (1%)

Note: Parenthesis represents the increased gap ratio%.
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interesting results indicate that managers do not believe that cost influences the other criteria; however, they nonetheless
consider cost an important factor when evaluating a supplier. Furthermore, these results do not necessarily suggest that less
attention should be paid to risk factors. In fact, Table 4 indicates that risk has the highest degree of influence given (ri � si),



J.J.H. Liou et al. / Information Sciences 266 (2014) 199–217 211
and risk will influence the other dimensions more than they influence risk. In other words, risk considerations between the
firm and its supplier will affect how the supplier fulfills other needs of the firm, such as compatibility and quality. However,
compatibility has the highest value (ri + si), which means it will affect the other dimensions and will also be dramatically
affected by them. This is why compatibility has the greatest weight of all the dimensions. It should again be emphasized that
the proposed model is capable of handling such interdependencies. Another advantage of the proposed model is that we can
observe the directions of influence between dimensions through the INRM (Fig. 3) and provide improved supplier strategies.
For example, the consideration of knowledge and skills has the highest value (ri � si) in the quality subsystem, meaning that
employees with superior knowledge skills could lead to increased service quality and avoid the possibility of delayed flights.

In the traditional evaluation system, relative performance values are generally applied to prioritize the alternatives. How-
ever, with our new approach, the decision maker sets an aspiration level (i.e., zero gaps in each dimension/criterion) as a
benchmark. The performances are replaced by the weighted gaps that represent the direction of improvement between
the alternative and the benchmark, which is more suitable in the contemporary competitive environment. As a consequence,
the old model can only determine the gaps between a company and its leading competitors. Our model, however, not only
helps companies to discover the gaps between current performance and aspiration levels, but it also provides an opportunity
for them to outperform their leading competitors.

In the case study, if cost savings is the only criterion, it is obvious that A1 should be selected. However, when multiple
criteria and network relationships are included in the evaluation system and an additive model is used to synthesize the
weighted gaps, the best service provider becomes A3. This approach neglects the interdependence between performance lev-
els, whereas our fuzzy integral-based model addresses this problem. Accordingly, our results reveal that A2 is the best service
provider. This non-additive model should provide more reasonable results than previous additive models because if there are
network relationships between criteria, the performance levels should have the same effect.

Our model could also identify how alternatives can help a company reach its aspiration level for each criterion. For exam-
ple, A5 demonstrates poor performance for its on-time rate (the largest gap in the quality subsystem); however, it can reduce
this gap by increasing its employees’ knowledge and skills. This is because the knowledge and skills criterion has the highest
net influence (ri � si) in the INRM within the ‘‘quality’’ subsystem. Therefore, this model is capable of not only providing
rankings and selections but also strategies for selecting improved alternatives to reach the desired aspiration levels, which
is a new contribution.

It is worth noting that compared with the authors’ previous study [18], which used the DANP and the additive models
(i.e., gray relation analysis), the current study uses a non-additive model. Although the prior method captured the interde-
pendency problem, the assumptions of the hybrid model are actually inconsistent. The DANP considers the criteria to be
interdependent with the network relationship, but the gray relation method is basically an additive model that assumes that
the criteria remain independent. Our current model corrects for this problem by using a non-additive model (i.e., fuzzy inte-
grals). The empirical example shows that the effects of the information fusion are significant. Another similar study [29] was
conducted using the ANP and fuzzy preference programming, but with the ANP method one needs to construct the network
relationship in advance (by assumption). Our current model uses the DEMATEL to build the INRM. Fuzzy preference pro-
gramming is used to cope with the diverse expert opinions rather than information fusion. This paper is the first attempt
to consider information fusion and the INRM, and accordingly, it points to a new strategy for using MCDM to solve actual
problems.

6. Conclusion and remarks

This paper analyzes supplier evaluation using a fuzzy integral-based model. We improve on previous models in several
ways. First, the traditional models assume that the criteria are independently and hierarchically structured; however, in real-
ity, decision problems are frequently characterized by interdependent criteria and dimensions and may even exhibit feed-
back-like effects. We applied the DEMATEL method to construct the network relationship. The DEMATEL-based ANP method
is then used to derive the influence weights that, in a way, eliminate the time-consuming pair-wise comparisons in the ori-
ginal ANP. Second, relatively good solutions from the existing alternatives are replaced by aspiration levels to meet the de-
mands of contemporary competitive markets. In this paper, VIKOR concepts are used to transform the performance levels
into weighed gaps (the smaller the better) in each aspiration level. This enables a decision maker to reduce the gaps in alter-
natives to reach the aspiration levels and not simply a given performance level. Third, the emphasis on the MCDM applica-
tions has shifted from ranking and selection when determining the most preferable approaches to improving the
performance of existing methods. The INRM identifies how and in which directions the criteria influence each other, which
helps managers understand the root causes of performance issues and devise strategies for improvement. Fourth, informa-
tion fusion techniques, including the fuzzy integral method, have been developed to aggregate the performance values. We
utilized a fuzzy integral methodology to integrate the weights and gaps, which should be more applicable than conventional
additive models. The empirical example indicates that the effect of the interdependencies among criteria is significant. We
believe that the results of this application of our method are promising. Therefore, we conclude that the application of a fuz-
zy integral-based model to support decisions related to supplier selection can be fruitful.

Although the present study makes a significant contribution to the literature, it does have limitations. To obtain the
non-additive effect, we applied the k fuzzy measure and assumed the k value of each criterion to be the same within each
dimension. A different method or various k values could be possible for each criterion, which would better represent the real
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world by creating various operating environments. Although we developed an empirical evaluation tool, we occasionally
were forced to spend a substantial amount of time explaining the questionnaire to respondents. Therefore, another avenue
for improvement is the development of a more effective fuzzy measure. As an additional limitation, the conclusions drawn
from our study are based on service industry data; thus, we explored only a portion of our model. Other cases in manufac-
turing could be used to test our model across different industries to draw comparisons, thereby providing greater insight into
the interdependence and non-additive effects in supplier selection/improvement problems.

Appendix A.

This section introduces the DANP method that constructs the interdependent structure and determines the weights of the
criteria.

A.1. DANP method based on DEMATEL

The DANP is a novel method that combines the original DEMATEL with the basic concepts of ANP. The method can be
summarized as follows:

Step 1: Calculate the direct relation average matrix

Assuming that the levels 0, 1, 2, 3 and 4 represent the range from ‘‘no influence (0)’’ to ‘‘very high influence (4)’’, experts

ask respondents to propose the degree of direct influence each perspective/criterion i exerts on each perspective/criterion j,
which is denoted dij, using the assumed levels. A direct relationship matrix is produced for each respondent, and an average
matrix A is then derived from the mean of the same perspective/criteria in the various direct matrices for all respondents.
The average matrix A is as follows:
A ¼

a11 � � � a1j � � � a1n

..

. ..
. ..

.

ai1 � � � aij � � � ain

..

. ..
. ..

.

an1 � � � anj � � � ann

2
66666664

3
77777775
: ðA1Þ
Step 2: Calculate the initial direct influence matrix

The initial direct influence matrix X can be obtained by normalizing the average matrix A. In addition, the matrix X can be

obtained through Eqs. (A2) and (A3), in which all principal diagonal criteria are equal to zero.
X ¼ s � A ðA2Þ

s ¼min
1

maxi
Pn

j¼1jdijj
;

1
maxj

Pn
i¼1jdijj

( )
: ðA3Þ
Step 3: Derive the total influence matrix
A continuous decrease of the indirect effects of criteria along the powers of X, e.g., X2, X3, . . . , Xh and limh!1Xh ¼ ½0�n�n,

where X ¼ ½xij�n�n;0 6 xij < 1;0 <
P

ixij 6 1;0 <
P

jxij 6 1 and at least one column sum
P

jxij or one row sum
P

ixij equals 1.
The total influence matrix T is
T ¼ X þ X2 þ � � � þ Xh ¼ XðI � XÞ�1
; when lim

h!1
Xh ¼ ½0�n�n ðA4Þ
where T = [tij]n�n, for i, j = 1, 2, . . . , n and (I � X)(I � X)�1 = I. In addition, the method presents each row sum and column sum
of the influence matrix T = [tij]n�n separately expressed as vector r and vector s using Eqs. (A5) and (A6) then
r ¼ ðriÞn�1 ¼
Xn

j¼1

tij

" #
n�1

; ðA5Þ

s ¼ ðsjÞn�1 ¼ ðsjÞ01�n ¼
Xn

i¼1

tij

" #0
1�n

; ðA6Þ
where the superscript 0 denotes transpose; ri denotes the row sum of the ith row of matrix T and indicates the sum of the
direct and indirect effects of perspective/criterion i on the other perspectives/criteria. Similarly, sj denotes the column
sum of the jth column of matrix T and indicates the sum of direct and indirect effects that perspective/criterion j has received
from the other perspectives/criteria. In addition, when i = j (i.e., the sum of the row and column aggregates) ri + si provides an
index of the strength of influences given and received, that is, ri + si indicates the extent to which criterion i plays a central
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role in the problem. If ri � si is positive, then criterion i affects the other criteria, and if ri � si is negative, then criterion i is
influenced by other criteria [47].

Step 4: Analyze the influence weights within dimensions
Each criterion tij of influence matrix T can reveal network information regarding the degree of influence criterion i has on

criterion j, and the influential network relationship map (INRM) can thus be obtained. The influence matrix T can be divided
into TD based on the perspectives (dimensions, or clusters) and Tc based on the criteria, respectively.
ðA7Þ

TD ¼

t11
D � � � t1j

D � � � t1n
D

..

. ..
. ..

.

ti1
D � � � tij

D � � � tin
D

..

. ..
. ..

.

tn1
D � � � tnj

D � � � tnn
D

2
666666664

3
777777775

ðA8Þ
The ANP weights, the general form of the AHP, are used here in the MCDM to remove the restriction of a hierarchical struc-
ture. The initial step in ANP procedures is to compare the criteria for the whole system in the form of an unweighted superm-
atrix through pair-wise comparisons. The weighted supermatrix is derived by transforming each column such that they will
sum to unity (1.00) for a suitable Markov Chain process. This is achieved by dividing each element in a column by the num-
ber of clusters. Using this normalization method implies that each cluster has the same weight. However, employing the
assumption that each cluster has equal weight to obtain the weighted supermatrix seems debatable in traditional ANP pro-
cedures because of the different degrees of influence among the criteria [36]. Therefore, in our new method, the DEMATEL
technique is adopted to determine the degrees of influence for these criteria that are then applied to normalize the un-
weighted supermatrix in the ANP to suit the real world by using the normalized total-influential matrix Ta

D of perspectives
(dimensions) in weighting to avoid the equal weight problem. In the process Ta

c can be obtained from a normalized Tc

providing the total effect of the perspectives (or clusters) (Eq. (A9)), an example sub-matrix T12
c (Eq. (A8)) from matrix Tc

normalized into Ta12
C as is, for example, shown as Eqs. (A10) and (A11).
ðA9Þ

ðA10Þ
where t12
i ¼

Pm2
j¼1t12

ij , i = 1, 2, . . . , m1
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ðA11Þ
Step 5: Construct an un-weighted supermatrix W
In the traditional approach, the first step of the ANP is to use pair-wise comparisons with the criteria. For instance, you

can use pairwise comparisons to form an un-weighted super-matrix by asking the following: ‘‘How important is a criterion
relative to another criterion with respect to our interests or preferences?’’ It is very difficult to obtain consistent results from
questionnaires in empirical settings. Therefore, we develop a new method, based on an original concept that allows param-
eter values to be matched in the total-influence matrix Tc to complete the relationships between perspectives (clusters) used
in the DEMATEL technique. An unweighted supermatrix W can be easily obtained, as shown as Eq. (A12), by transposing the
normalized influence matrix Ta

c with respect to the perspectives (clusters).
ðA12Þ
If the matrix W11 is blank or 0 as shown as Eq. (A13), this means that the matrix of the clusters or criteria is independent and
lacks interdependence, and the other Wnn value are as above.
ðA13Þ
Step 6: Normalize the total-influence matrix
We normalized the total-influence matrix TD (Eq. (A8)) based on the perspectives and then obtained a new normalized

influential matrix Ta
D using the perspectives, as shown as Eq. (A14) (where taij

D ¼ tij
D=di and di ¼

Pn
j¼1tij

D).
Ta
D ¼

t11
D =d1 � � � t1j

D =d1 � � � t1n
D =d1

..

. ..
. ..

.

ti1
D =di � � � tij

D=di � � � tin
D =di

..

. ..
. ..

.

tn1
D =dn � � � tnj

D =dn � � � tnn
D =dn

2
6666666664

3
7777777775
¼

ta11
D � � � ta1j

D � � � ta1n
D

..

. ..
. ..

.

tai1
D � � � taij

D � � � tain
D

..

. ..
. ..

.

tan1
D � � � tanj

D � � � tann
D

2
6666666664

3
7777777775

ðA14Þ
Let the normalized total-influence matrix Ta
D complete the un-weighted super-matrix to obtain the weighted super-matrix as

in the following step.



Table A1
Performance of each alternative.

Criteria Alternatives

A1 A2 A3 A4 A5

Relationship (C11) 7.36 7.92 8.01 8.02 7.32
Flexibility (C12) 7.86 7.89 8.02 8.24 7.36
Information sharing (C13) 7.58 8.25 8.06 8.27 7.42
Knowledge and skills (C21) 7.20 7.79 7.25 7.76 7.86
Customer satisfaction (C22) 7.14 7.45 7.73 7.35 7.97
On-time rate (C23) 6.98 7.87 7.87 7.86 7.54
Cost saving (C31) 7.54 6.67 6.87 6.76 7.33
Flexibility in billing (C32) 7.61 7.22 6.72 6.38 7.31
Labor union (C41) 7.43 7.08 7.86 7.81 7.25
Loss of management control (C42) 7.45 7.92 7.82 7.52 7.12
Information security (C43) 7.58 7.65 7.51 7.22 7.32
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Step 7: Obtain the weighted supermatrix
The normalization is used to derive the weighted super-matrix by transforming each column to sum exactly to unity. This

step is similar to the Markov chain concept for ensuring that the sum of the probabilities of all states equals 1 [21]. In the
traditional normalized method, each criterion in a column is divided by the number of perspectives (clusters) such that each
column will sum to unity. Using this normalization method means each perspective (cluster) has the same weight. However,
the effect of each perspective (cluster) on the other perspective (clusters) may be different. Therefore, it is not rational to use
the assumption of equal weight for each perspective (cluster) to obtain the weighted super-matrix. Ou Yang et al. [36,37]
proposed a hybrid method that employed the DEMATEL technique to solve this problem. First, the DEMATEL technique is
used to derive the total influence matrix Tc, and based on basic concept of ANP, an un-weighted super-matrix W of the per-
spectives can be obtained as in Eq. (A12). Then, the normalized total influence matrix Ta

D of perspectives is represented as Eq.
(A14). Thus, the weighted supermatrix Wa, for normalization, can be obtained as in Eq. (A15).
Wa ¼ Ta
DW ¼

ta11
D �W11 � � � tai1

D �W i1 � � � tan1
D �Wn1

..

. ..
. ..

.

ta1j
D �W1j � � � taij

D �W ij � � � tanj
D �Wnj

..

. ..
. ..

.

ta1n
D �W1n � � � tain

D �W in � � � tann
D �Wnn

2
666666664

3
777777775

ðA15Þ
Step 8: Limit the weighted super-matrix process for obtaining DANP influence weights
The weighted supermatrix can be raised to the limiting powers until the supermatrix has converged and become a long-

term stable supermatrix to obtain the global priority vectors, called DANP (DEMATEL-based ANP) influence weights, such as
limg!1ðWaÞg , where g represents any number of powers.

Appendix B.

See Table A1.
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[59] M. Zeydan, C. Colpan, C. Cobanoğlu, A combined methodology for supplier selection and performance evaluation, Expert Systems with Applications 38
(3) (2011) 2741–2751.

http://refhub.elsevier.com/S0020-0255(13)00667-1/h0275
http://refhub.elsevier.com/S0020-0255(13)00667-1/h0275
http://refhub.elsevier.com/S0020-0255(13)00667-1/h0280
http://refhub.elsevier.com/S0020-0255(13)00667-1/h0280
http://refhub.elsevier.com/S0020-0255(13)00667-1/h0285
http://refhub.elsevier.com/S0020-0255(13)00667-1/h0285
http://refhub.elsevier.com/S0020-0255(13)00667-1/h0290
http://refhub.elsevier.com/S0020-0255(13)00667-1/h0290

	A fuzzy integral-based model for supplier evaluation  and improvement
	1 Introduction
	2 A brief review of the existing literature
	2.1 Multi-attribute decision-making (MADM)
	2.2 Mathematical programming models
	2.3 Intelligent approaches
	2.4 Integrated approaches

	3 Proposed fuzzy integral-based integrated approach
	3.1 Using the basic concepts of the VIKOR method to determine the gap values in the performance matrix
	3.2 The ? fuzzy measure and fuzzy integral

	4 Empirical example using a real case
	4.1 Problem descriptions
	4.2 Supplier improvement/selection criteria
	4.3 Measuring the relationships between dimensions and criteria
	4.4 Integrated weighted gaps using the fuzzy integral method

	5 Discussion
	6 Conclusion and remarks
	Appendix A.
	A.1 DANP method based on DEMATEL

	Appendix B.
	References


