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Let �k(A) denote the rank-k numerical range of an n-by-n complex matrix A. We
give a characterization for �k1(A) = �k2(A), where 1 ≤ k1 ≤ k2 ≤ n, via the
compressions and the principal submatrices of A. As an application, the matrix
A satisfying W (A) = �k(A), where W (A) is the classical numerical range of
A and 1 ≤ k ≤ n, is under consideration. We show that if W (A) = �k(A) for
some k > n/3, then A is unitarily similar to B ⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸

3k−n copies

⊕C , where B is

a 2-by-2 matrix, C is a (3n − 6k)-by-(3n − 6k) matrix and W (A) = W (B) =
W (C) = �n−2k(C).

Keywords: numerical range; higher-rank numerical range; compression;
principal submatrix

AMS Subject Classification: 15A60

1. Introduction

The rank-k numerical range (1 ≤ k ≤ n) of an n-by-n complex matrix A is the subset of
the complex plane:

�k(A) ≡ {λ ∈ C : P AP = λP for some rank-k orthogoanl projection P}.
Therefore, λ ∈ �k(A) if and only if there is an n-by-n unitary matrix U such that λIk

is the leading principal submatrix of U∗ AU . Here, Ik denotes the k-by-k identity matrix.
The investigation of the higher-rank numerical range was started in [1]. Specifically, it is
introduced when constructing the quantum error correction code in quantum computing
(cf. [2]). It is already known that �k(A) is always a convex compact set, invariant under
unitary similarity and �1(A) ⊇ �2(A) ⊇ · · · ⊇ �n(A). For other properties, we refer the
readers to [1,3–7]. In particular, the rank-one numerical range �1(A) is exactly the classical
numerical range W (A) ≡ {〈Ax, x〉 : x ∈ Cn and ‖x‖ = 1} of A, where 〈·, ·〉 is the standard
inner product in Cn and ‖ · ‖ is the corresponding norm. In this paper, the characterization
of matrix A which satisfies �k1(A) = �k2(A), where 1 ≤ k1 ≤ k2 ≤ n, is obtained.

∗Corresponding author. Email: kzwang@math.nctu.edu.tw

© 2013 Taylor & Francis
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Linear and Multilinear Algebra 627

We study this property by analysing the compressions and the principal submatrices of the
matrix A.

Recall that an �-by-� matrix B, 1 ≤ � ≤ n, is a compression of an n-by-n matrix A if

there is an n-by-n unitary matrix V such that V ∗ AV =
[

B ∗
∗ ∗
]

. In this case, A is called

a dilation of B. Notice that �k(B) ⊆ �k(A) for all 1 ≤ k ≤ �. On the other hand, for
any index set K = { j1, j2, · · · , jp} ⊆ {1, 2, · · · , n}, let A[K ] or A[ j1, j2, · · · , jp] be the
principal submatrix of A obtained by deleting its rows and columns indexed by j1, . . . , jp.
We also define A[K ] ≡ A if K = ∅. It is obvious that A[K ] is a compression of A.
However, for a compression B of A, B = A[K ] for some K is not always true. Our main
result is that, for 1 ≤ k1 ≤ k2 ≤ n, �k1(A) = �k2(A) if and only if �k1(A) = ��+k2−n(B)

for all its �-by-� compression B, n + k1 − k2 ≤ � ≤ n. This is also equivalent to that
�k1(A) = �k1(A[K ′]) for all index set K ′ ⊆ {1, 2, · · · , n} with #K ′ = k2 − k1 when
�k1(A) has no corner (Theorem 2.2). Here #S is the cardinal number of the set S. As an
application, we investigate those matrix A satisfying W (A) = �k(A) for some k > n/3,
and obtain a decomposition of A (Theorem 2.10). Consequently, such matrix A must be
unitarily reducible.

We conclude this section with some notations frequently used in the discussions below.
Let Mn be the algebra of all n-by-n complex matrices. For A ∈ Mn , we use AT , Re A,
Im A, tr A, det A and rank A to denote its transpose, real part (A + A∗)/2, imaginary part
(A − A∗)/(2i), trace, determinant and rank, respectively. Denote by σ(A) the spectrum
of A. Also, let In and diag (a1, . . . , an) be the n-by-n identity matrix and diagonal matrix
with diagonal entries a1, . . . , an , respectively. Denote by

∨S the subspace generated by
the vectors in S ⊆ Cn (or the span of S). For a subset � of C, let �∧, #� and ∂� denote the
convex hull, the cardinal number and the boundary of �, respectively. In addition, for an n-
by-n Hermitian matrix H and j = 1, 2, · · · , n, let λ j (H) be the j th largest eigenvalue of H .

2. Main results

In [7], Li and Sze gave a nice characterization of higher-rank numerical ranges of matrices.
More specifically, they showed that, for A ∈ Mn and 1 ≤ k ≤ n,

�k(A) =
⋂

θ∈[0,2π)

{
z ∈ C : Re (zeiθ ) ≤ λk(Re (eiθ A))

}
(2.1)

(cf. [7, Theorem 2.2]). On the other hand, the kth numerical range of A is defined by

Wk(A) =
⎧⎨
⎩

1

k

k∑
j=1

〈Ax j , x j 〉 : {x1, . . . , xk} is an orthonormal set in Cn

⎫⎬
⎭ .

When k = 1, Wk(A) reduces to the classical numerical range of A, which has been studied
extensively (e.g. see [8]). Moreover, for θ in [0, 2π), the line

L(k, θ) =
⎧⎨
⎩z ∈ C : Re z = 1

k

k∑
j=1

λ j (Re (eiθ A))

⎫⎬
⎭
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628 C.-T. Chang et al.

is the right supporting line of the convex set Wk(eiθ A) = eiθ Wk(A) (e.g. see [9]). Since
λk(Re (eiθ A)) ≤ (1/k)

∑k
j=1 λ j (Re (eiθ A)) for all real θ , by (2.1), we infer that

�k(A) ⊆ Wk(A)

for all k, 1 ≤ k ≤ n. Using this inclusion and [8, Theorem 2.1], we have the following
property.

Proposition 2.1 Suppose A ∈ Mn and 1 ≤ k ≤ n. The following conditions are
equivalent:

(a) �1(A) = �k(A).
(b) There exists m with 1 ≤ m < k such that Wm(A) = Wk(A).
(c) Wr (A) = Ws(A) for all 1 ≤ r < s ≤ k.
(d) λ1(Re (eiθ A)) = λk(Re (eiθ A)) for all θ ∈ [0, 2π).

Proof By [8, Theorem 2.1], we obtain the equivalence of (b), (c) and (d). The implication
(d) ⇒ (a) follows directly from (2.1). Now, suppose (a) holds. Then, �k(A) ⊆ Wk(A) ⊆
W1(A) = �1(A) = �k(A) implies W1(A) = Wk(A). Thus, condition (b) holds. �

We remark that for 1 < r < k ≤ n, if Wr (A) = Wk(A), by Proposition 2.1, we have
W1(A) = Wk(A). But, if �r (A) = �k(A), the equality �1(A) = �k(A) does not hold

in general. For example, let A =
[

0 2
0 0

]
⊕
[

0 1
0 0

]
⊕
[

0 1
0 0

]
. Then, �2(A) = �3(A) =

{z ∈ C : |z| ≤ 1/2}, but �1(A) = {z ∈ C : |z| ≤ 1} �= �3(A).
The next theorem characterizes the equality of higher-rank numerical ranges of a matrix

via its compressions and principal submatrices.

Theorem 2.2 Let A ∈ Mn and 1 ≤ k1 < k2 ≤ n. The following statements are
equivalent:

(a) �k1(A) = �k2(A).
(b) �k1(A) = ��+k2−n(B) for all �-by-� compressions B of A with n+k1−k2 ≤ � ≤ n.
(c) For some � ∈ {n + k1 − k2, · · · , n}, �k1(A) = ��+k2−n(B) for all �-by-� com-

pressions B of A.
If �k1(A) has no corner, then the statements (a)–(c) are also equivalent to:

(d) �k1(A) = �k2−p(B) for all (n − p)-by-(n − p) principal submatrices B of A with
p ≤ k2 − k1.

(e) �k1(A) = �k1(B) for all (n + k1 − k2)-by-(n + k1 − k2) principal submatrices B
of A.

(f) λk1(Re (eiθ A)) = λk2(Re (eiθ A)) for all θ ∈ [0, 2π).

We emphasize that in Theorem 2.2 (b)(c), the condition �k1(A) = ��+k2−n(B)

and the observation ��+k2−n(B) ⊆ �k1(B) ⊆ �k1(A) together imply that �k1(A) =
��+k2−n(B) = �k1(B).

Among other things, we remark that if �k1(A) has a corner, then the implication (d) ⇒
(a) does not hold in general. Here we give an example as following.
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Linear and Multilinear Algebra 629

Example 2.3 Let

A1 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 −i 0
0 0 0 −i

⎤
⎥⎥⎦

and A = A1 ⊕ A2 ∈ M8. Then A is a unitary matrix with eigenvalues 1, i , −1, −1, −1,
−i , −i , −i . Thus

�2(A) = {−1,−i, 0}∧ and �3(A) = {−1,−i}∧.

It is clear that �2(A) �= �3(A).

On the other hand, for j = 1, 2, 3, 4, the principal submatrix A[ j] of A is unitarily
similar to J3 ⊕ A2, where J3 is the 3-by-3 Jordan block. Moreover, we have

λ2(Re (e−iθ A[ j])) =
⎧⎨
⎩

0 if θ ∈ [0, π/2],
Re (−e−iθ ) if θ ∈ [π/2, 5π/4],
Re (−ie−iθ ) if θ ∈ [5π/4, 2π ].

Thus, �2(A[ j]) = {−1,−i, 0}∧ for j = 1, 2, 3, 4.

Next, A[5] = A[6] = A1 ⊕ diag (−1,−i,−i) is unitarily similar to diag (1, i,−1,−1,

−i,−i,−i). It is easy to check that �2(A[ j]) = {−1,−i, 0}∧ for j = 5, 6. Similarly,
A[7] = A[8] = A1 ⊕ diag (−1,−1,−i) is unitarily similar to diag (1, i,−1,−1,−1,

−i,−i). We also have �2(A[ j]) = {−1,−i, 0}∧ for j = 7, 8. From above, we obtain
�2(A[ j]) = {−1,−i, 0}∧ = �2(A) for all j . Hence, the matrix A satisfies the condition
(d) of Theorem 2.2, but A does not satisfy the condition (a) of Theorem 2.2. �

For the proof of Theorem 2.2, we need to estimate the eigenvalues of the principal
submatrices of a Hermitian matrix and analyse the corresponding eigenvectors. Next two
lemmas provide useful approximation and can be found in [10, Theorem 4.3.15] and
[11, Theorem 1], respectively.

Lemma 2.4 Let H1 be an n-by-n Hermitian matrix and H2 be any �-by-� principal
submatrix of H1, where 1 ≤ � ≤ n. For each integer k with 1 ≤ k ≤ �, we have

λk(H1) ≥ λk(H2) ≥ λk+n−�(H1).

Lemma 2.5 Suppose H is an n-by-n Hermitian matrix partitioned as

H =
(

H1 B∗
B H2

)
,

where H1 is an m-by-m matrix. If there is an index set J ⊆ {1, 2, . . . , m} such that for any
j ∈ J , either λ j (H) = λ j (H1) or λn−m+ j (H) = λ j (H1), then there is an orthonormal set
{u j } j∈J in Cm such that Bu j = 0 and H1u j = λ j (H1)u j for all j ∈ J .

Let K be a nonempty subset of {1, 2, . . . , n} with #K = p < n. Suppose that
{s1, s2, . . . , sn−p} = {1, 2, . . . , n} \ K with s1 < s2 < . . . < sn−p. For each y =
(y1, y2, . . . , yn−p)

T ∈ Cn−p, we define y[K ] = (y′
1, y′

2, . . . , y′
n)T ∈ Cn by
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630 C.-T. Chang et al.

y′
i =
{

y j if i = s j for some 1 ≤ j ≤ n − p,

0 if i ∈ K ,

for i = 1, 2, . . . , n. That is, y[K ] is obtained from y by inserting zero in the i th entry for all
i ∈ K . The following lemma plays an important role for establishing Theorem 2.2.

Lemma 2.6 Let H be an n-by-n Hermitian matrix, 1 ≤ m < n and 1 ≤ r ≤ n − m.
Then λr (H) = λr (H [K ]) for all K ⊆ {1, 2, . . . , n} with #K = m if and only if λr (H) =
λr+1(H) = · · · = λr+m(H).

Proof The sufficiency follows directly from Lemma 2.4. We need only prove the necessity.
Suppose that λr (H) = λr (H [K ]) for all K ⊆ {1, 2, . . . , n} with #K = m. Write

λ1(H) ≥ λ2(H) ≥ · · · ≥ λp−1(H)

> λ ≡ λp(H) = λp+1(H) = · · · = λr (H) (2.2)

≥ λr+1(H) ≥ · · · ≥ λn(H).

We claim thatλp(H [K ]) = λp+1(H [K ]) = · · · = λr (H [K ]) = λ for all K ⊆ {1, 2, · · · , n}
with #K = m. Indeed, by Lemma 2.4, we have

λr (H) = λp(H) ≥ λp(H [K ]) ≥ λp+1(H [K ]) ≥ · · · ≥ λr (H [K ]) = λr (H),

hence the inequalities are indeed equalities. Let K1 ≡ {n − m + 1, n − m + 2, . . . , n}.
We have #K1 = m and above argument ensures that λ j (H) = λ j (H [K1]) = λ for all
p ≤ j ≤ r . Lemma 2.5 yields that there is an orthonormal set {u1,1, u1,2, . . . , u1,r−p+1}
in Cn−m such that H [K1]u1, j = λu1, j and Hu[K1]

1, j = λu[K1]
1, j for all j , 1 ≤ j ≤ r − p + 1.

Let y j ≡ u[K1]
1, j for 1 ≤ j ≤ r − p + 1, then {y1, y2, . . . , yr−p+1} is an orthonormal set

in ker (λIn − H). Notice that for each index i ∈ K1, the i th entry of y j is zero for all
1 ≤ j ≤ r − p + 1. Let q1 be the index such that the q1th entry of yr−p+1 is nonzero and
set K2 ≡ (K1 \ {n − m + 1})∪ {q1} = {q1, n − m + 2, n − m + 3, . . . , n}. It is obvious that
q1 /∈ K1 and #K2 = m. As claimed before, λ j (H) = λ j (H [K2]) = λ for all p ≤ j ≤ r .
Applying Lemma 2.5 again to obtain an orthonormal set {u2,1, u2,2, . . . , u2,r−p+1} in Cn−m

such that H [K2]u2, j = λu2, j and Hu[K2]
2, j = λu[K2]

2, j for all j , 1 ≤ j ≤ r − p + 1.

Therefore, S2 ≡ {u[K2]
2,1 , u[K2]

2,2 , . . . , u[K2]
2,r−p+1} forms an orthonormal set in ker (λIn − H).

Since q1 ∈ K2, the q1th entry of u[K2]
2, j is zero for all j , 1 ≤ j ≤ r − p + 1. Thus, the q1th

entry of all vectors in
∨S2 is zero. We now check that

∨S2 �
∨{y1, y2, . . . , yr−p+1}.

Indeed, since the q1th entry of yr−p+1 is nonzero, then dim
∨

(S2 ∪{yr−p+1}) = r − p +2.
If
∨S2 ⊆∨{y1, y2, . . . , yr−p+1}, then

∨
(S2 ∪ {yr−p+1}) ⊆∨{y1, y2, . . . , yr−p+1} and

r − p+2 ≤ dim
∨{y1, y2, . . . , yr−p+1} = r − p+1, a contradiction. Hence, we can choose

an unit vector yr−p+2 ∈∨S2 so that H yr−p+2 =λyr−p+2 and {y1, y2, . . . , yr−p+1, yr−p+2}
is an orthonormal set in ker (λIn − H). Let q2 be the index so that the q2th entry of yr−p+2
is nonzero and let K3 ≡ (K2 \ {n −m +2})∪{q2} = {q1, q2, n −m +3, n −m +4, . . . , n}.
Then, q2 /∈ K2 and #K3 = m. Similarly, we have λ j (H) = λ j (H [K3]) = λ for all j ,
p ≤ j ≤ r . Lemma 2.5 yields that there is an orthonormal set {u3,1, u3,2, . . . , u3,r−p+1}
in Cn−m such that H [K3]u3, j = λu3, j and Hu[K3]

3, j = λu[K3]
3, j for all j , 1 ≤ j ≤ r − p + 1.

Hence S3 ≡ {u[K3]
3,1 , u[K3]

3,2 , . . . , u[K3]
3,r−p+1} is an orthonormal set in ker (λIn − H). Since

q1 and q2 are in K3, we indicate that the q1th and the q2th entries of all vectors in
∨S3
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Linear and Multilinear Algebra 631

are zero. On the other hand, we also have
∨S3 �

∨{y1, y2, . . . , yr−p+2}. Indeed, since
the q1th entry of yr−p+1 is nonzero, the q1th entry of yr−p+2 is zero and the q2th entry of
yr−p+2 is nonzero, we deduce that dim

∨
(S3 ∪{yr−p+1, yr−p+2}) = r − p +3. If

∨S3 ⊆∨{y1, y2, . . . , yr−p+2}, then
∨

(S3 ∪ {yr−p+1, yr−p+2}) ⊆ ∨{y1, y2, . . . , yr−p+2} and
r − p+3 ≤ dim

∨{y1, y2, . . . , yr−p+2} = r − p+2, a contradiction. Therefore, there exists
an unit vector yr−p+3 ∈∨S3 such that H yr−p+3 = λyr−p+3 and {y1, y2, . . . , yr−p+3} is
an orthonormal set in ker (λIn − H). Repeating these arguments can obtain an orthonor-
mal set {y1, y2, . . . , yr−p+m+1} in ker(λIn − H). Combining this with (2.2) together, we
conclude that λr (H) = λr+1(H) = · · · = λr+m(H) as asserted. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2 We will prove this result by establishing the equivalence of (a), (b)
and (c), and the implications (f) ⇒ (a) ⇒ (b) ⇒ (d) ⇒ (e) ⇒ (f) for the case �k1(A) has
no corner.

Fix � = n − k2 + k1, · · · , n. For any �-by-� compression B of A, we have that

�k2(A) =
⋂

{��+k2−n(B ′) : B ′ is an �-by-� compression of A} (2.3)

⊆ ��+k2−n(B) ⊆ �k1(B) ⊆ �k1(A),

where the equality is given in [5, Corollary 4.9]. Hence, the implications (a) ⇒ (b) ⇒ (c)
are trivial. Suppose (c) holds. As indicated in the paragraph after Theorem 2.2, we obtain
that ��+k2−n(B ′) = �k1(A) for all �-by-� compressions B ′ of A. Then, (a) follows directly
from the equality in (2.3).

We now suppose that �k1(A) has no corner. The implication (f) ⇒ (a) follows from
the Li-Sze characterization (2.1). The implications (b) ⇒ (d) ⇒ (e) are trivial. We now
prove the implication (e) ⇒ (f). Suppose (e) holds, we want to show that λk1(Re (eiθ A)) =
λk2(Re (eiθ A)) for all θ ∈ [0, 2π). Fix a θ ∈ [0, 2π). For any K ′ ⊆ {1, 2, · · · , n} with
#K ′ = k2 −k1, let Lθ be the right supporting line of the convex set �k1(e

iθ A[K ′]) and write

Lθ = {z ∈ C : Re z = d(θ)},
where d(θ) ∈ R. Then, d(θ) ≤ λk1(Re (eiθ A[K ′])) by the Li-Sze characterization (2.1).
On the other hand, the assumption �k1(A) = �k1(A[K ′]) implies that Lθ is also the right
supporting line of the convex set �k1(e

iθ A). Let α be a point in Lθ ∩ �k1(e
iθ A). Since

�k1(A) has no corner, Lθ is the unique supporting line of �k1(e
iθ A) which passing the

point α. It forces that

Lθ = {z ∈ C : Re z = λk1(Re (eiθ A))}
by the Li-Sze characterization (2.1). Thus, we have

λk1(Re (eiθ A)) = d(θ) ≤ λk1(Re (eiθ A[K ′])) ≤ λk1(Re (eiθ A)),

where the last inequality follows from Lemma 2.4. Hence, the inequalities are indeed
equalities. We infer from above that λk1(Re (eiθ A)) = λk1(Re (eiθ A[K ′])) for all K ′ ⊆
{1, 2, . . . , n} with #K ′ = k2 − k1. Then, Lemma 2.6 yields that

λk1(Re (eiθ A)) = λk1+(k2−k1)(Re (eiθ A)) = λk2(Re (eiθ A)).

Since θ is arbitrary, hence condition (f) holds. �
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632 C.-T. Chang et al.

We now restrict our attention to matrices A with W (A) = �k(A) for some k. We known
that the boundary ∂W (A) of the numerical range of a matrix A consists of arcs, flat portions
and/or corners. We first consider the case that W (A) has a corner. For this purpose, we
need the Kippenhahn polynomial of a matrix. Recall that the Kippenhahn polynomial of
an n-by-n matrix A is the degree-n real-coefficient homogeneous polynomial pA(x, y, z)
given by det(xRe A + yIm A + z In). It relates to the numerical range of A by the fact that
W (A) equals the convex hull of the real part of the dual curve of pA(x, y, z) = 0 (cf. [12,
Theorem 10]).

Proposition 2.7 Let A ∈ Mn, 1 ≤ k ≤ n and α ∈ C be a corner of W (A). Then, the
following statements are equivalent:

(a) α is a corner of Wk(A).
(b) α is a corner of �k(A).
(c) (z + xRe α + yIm α)k divides pA(x, y, z).
(d) A is unitarily similar to α Im ⊕ C with m ≥ k and α /∈ W (C).

Proof The implication (a) ⇒ (d) follows from [8, Lemma 4.1]. The implication (d) ⇒ (c)
is trivial.

Suppose (c) holds. Write pA(x, y, z) = (z + xRe α + yIm α)k · q(x, y, z). Since α is a
corner of W (A), there exists a θ0 ∈ R such that the line L ≡ {z ∈ C : Re z = Re (e−iθ0α)}
intersects W (A) with a singleton {e−iθ0α}. Note that

det (z In − Re (e−iθ0 A)) = pA(− cos θ0,− sin θ0, z)

= (z − cos θ0 Re α − sin θ0 Im α)k · q(− cos θ0,− sin θ0, z)

= (z − Re (e−iθ0α))k · q(− cos θ0,− sin θ0, z).

Thus, Re (e−iθ0α) is an eigenvalue of Re (e−iθ0 A) with multiplicity at least k. Moreover, let
M ≡ ker (Re (e−iθ0α)In − Re (e−iθ0 A)) and m ≡ dim M , then m ≥ k. On the other hand,
for any unit vector x ∈ M , we have Re 〈(e−iθ0 A)x, x〉 = 〈Re (e−iθ0 A)x, x〉 = Re (e−iθ0α).
Since W (A) ∩ L = {e−iθ0α}, it forces that 〈(e−iθ0 A)x, x〉 = e−iθ0α or 〈Ax, x〉 = α for
all unit vector x ∈ M . That is, the numerical range of the compression B of A on M is the
singleton {α}. It follows that B is unitarily similarly to α Im . Consequently, α Im dilates to
A, hence α ∈ �m(A) ⊆ �k(A). Since �k(A) ⊆ W (A) and α is a corner of W (A), hence
α is also a corner of �k(A).

Suppose (b) holds. Since �k(A) ⊆ Wk(A) ⊆ W (A), it follows that α ∈ Wk(A).
Moreover, since Wk(A) ⊆ W (A) and α is a corner of W (A), hence α is also a corner of
Wk(A). �

Next, if A ∈ Mn and ∂W (A) ∩ ∂�k(A) contains an arc, Gau and Wu had gave a
characterization as following [4, Lemma 5].

Proposition 2.8 Let A be an n-by-n matrix, q be an irreducible real homogeneous
polynomial in x, y and z with degree at least two, and C be the real part of the dual curve
of q(x, y, z) = 0. Then qm divides pA (m ≥ 1) if and only if ∂�k0(A)∩ ∂�k0−1(A)∩ · · ·∩
∂�k0−m+1(A) contains an arc of C for some k0, 1 ≤ k0 ≤ �n/2�.
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The next theorem gives a detailed characterization of matrices A with W (A) = �k(A)

for some k > n/3.

Theorem 2.9 Let A ∈ Mn.

(a) If k > n/2, then W (A) = �k(A) if and only if A is a scalar matrix.
(b) If n is even, then W (A) = �n/2(A) if and only if A is unitarily similar to

B ⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸
n/2 copies

,

where B ∈ M2. Therefore, W (A) = W (B).
(c) If n/3 < k < n/2, then W (A) = �k(A) if and only if A is unitarily similar to

B ⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸
3k−n copies

⊕C,

where B ∈ M2 and C ∈ M3n−6k , and W (A) = W (B) = W (C) = �n−2k(C).

For the proof of Theorem 2.9, we need a series of lemmas. Suppose A ∈ Mn and
W (A) = �k(A). Using Propositions 2.7 and 2.8, we can determine the shape of W (A)

when k > n/3.

Lemma 2.10 Let A ∈ Mn. If k > n/3 and W (A) = �k(A), then W (A) is either a
singleton set, a line segment or an elliptic disc.

Proof Suppose k > n/3 and W (A) = �k(A). We first consider the case that W (A) has
a corner a + ib, where a, b ∈ R. We claim that W (A) is either a singleton set or a line
segment. Indeed, Proposition 2.7 yields that (ax + by + z)k divides pA(x, y, z). If ∂W (A)

contains an arc, by Kippenhahn’s result [12, Theorem 10], there exists an irreducible factor
p(x, y, z) of pA(x, y, z) with degree at least two such that C p ∩ ∂W (A) contains an arc,
where C p is the real part of the dual curve of p(x, y, z) = 0. Since W (A) = �k(A), by
Propositon 2.8, we obtain that pk divides pA. Then

n = deg pA ≥ deg
(

pk · (ax + by + z)k
)

≥ 3k > n,

where deg f denotes the degree of the polynomial f , and this is a contradiction. Therefore,
we infer that ∂W (A) is a convex polygon. On the other hand, if W (A) has at least three
vertices a1+ib1, a2+ib2 and a3+ib3, then Proposition 2.7 yields that

∏3
j=1(a j x+b j y+z)k

divides pA(x, y, z). This implies that n = deg pA ≥ 3k > n, a contradiction. Hence we
conclude that W (A) is either a singleton set or a line segment.

Next, we now suppose that W (A) has no corner. By Kippenhahn’s result, there exists an
irreducible factor q(x, y, z) of pA(x, y, z) with degree at least two such that Cq ∩ ∂W (A)

contains an arc, where Cq is the real part of the dual curve of q(x, y, z) = 0. We indicate
that n = deg pA ≥ k · deg q > (n/3) · deg q by Proposition 2.8. Therefore, the degree of
q(x, y, z) is exactly two and Cq is an ellipse. We want to show that ∂W (A) = Cq . Indeed,
if it is not the case, there is another irreducible factor p(x, y, z) of pA(x, y, z) with degree
at least two such that C p ∩ ∂W (A) contains an arc, where C p is the real part of the dual
curve of p(x, y, z) = 0. By Proposition 2.8 again, pk divides pA. As a result, we get that
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634 C.-T. Chang et al.

n = deg pA ≥ deg(qk · pk) ≥ 4k > n, a contradiction. Hence ∂W (A) = Cq and W (A) is
an elliptical disc. �

Lemma 2.11 Let A =
[

B x
y∗ α

]
∈ M3, where B ∈ M2, x, y ∈ C2 and α ∈ C. If

W (A) = W (B) then x = y = 0. In this case, A = B ⊕ [α].

Proof Since W (A) = W (B), then λ1(Re B) = λ1(Re A) and λ2(Re B) = λ3(Re A).
Note that

Re A =
[

Re B (x + y)/2
(x + y)∗/2 Re α

]
.

By Lemma 2.5, we have (x + y)∗u j = 0 for j = 1, 2, where u j is an eigenvector of Re B
with respect to the eigenvalue λ j (Re B) for j = 1, 2. Since Re B is a 2-by-2 Hermitian
matrix and

∨{u1, u2} = C2, it forces that x + y = 0 or y = −x . On the other hand,
W (A) = W (B) implies that λ1(Im B) = λ1(Im A) and λ2(Im B) = λ3(Im A). Note that

Im A =
[

Im B −i x
i x∗ Im α

]
.

Similarly, Lemma 2.5 yields that x∗v j = 0 for j = 1, 2, where v j is an eigenvector of Im B
with respect to the eigenvalue λ j (Im B) for j = 1, 2. Since Im B is a 2-by-2 Hermitian
matrix and

∨{v1, v2} = C2, hence we conclude that x = 0 as asserted. �

Using Lemma 2.11, we have the following corollary.

Corollary 2.12 Let A =
[

B C
D E

]
∈ Mn on Cn = C2 ⊕ Cn−2. If W (B) = W (A),

then A = B ⊕ E.

Proof Write C = [x1 . . . xn−2], D = [y1 . . . yn−2]∗ and E = [ti j ]n−2
i, j=1, where x1, . . . ,

xn−2, y1, . . . , yn−2 ∈ C2. Let Tj =
[

B x j

y∗
j t j j

]
∈ M3 for j = 1, . . . , n − 2. Then,

W (B) ⊆ W (Tj ) ⊆ W (A) = W (B) implies that W (Tj ) = W (B) for all j . Thus, Lemma
2.11 yields that x j = y j = 0 for all j . Hence, C = 0 and D = 0 as desired. �

The next example shows that the condition B ∈ M2 in Corollary 2.12 is essential.

Example 2.13 Let

A =

⎡
⎢⎢⎢⎣

0 1 0 1√
2

0 0 1 0
0 0 0 0
0 0 − 1√

2
0

⎤
⎥⎥⎥⎦ and B =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ .

By a direct computation, we obtain that

pA(x, y, z) =
(

z2 − x2

2
− y2

2

)(
z2 − x2

4
− y2

4

)
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Linear and Multilinear Algebra 635

and

pB(x, y, z) = z

(
z2 − x2

2
− y2

2

)
.

Thus, W (A) = W (B) = {z ∈ C : |z| ≤ 1/
√

2}. Note that

A2 =

⎡
⎢⎢⎣

0 0 1
2 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , A3 = 0 and A4 = 0.

Thus, A is nilpotent. We now show that A is unitarily irreducible. Otherwise, A is unitarily
similar to [a]⊕ A1 for some a ∈ C and A1 ∈ M3 or to A2 ⊕ A3 for some A2, A3 ∈ M2. If A
is unitarily similar to [a] ⊕ A1, where a ∈ C and A1 ∈ M3, then a is a reducing eigenvalue
of A and a = 0. Therefore, we get ker A ∩ ker A∗ �= {0}. But,

ker A =
∨
⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0

−√
2

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ , ker A∗ =

∨
⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0√
2

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

and

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0

−√
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0√
2

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ are linearly independent, hence ker A ∩ ker A∗ =

{0}, a contradiction. On the other hand, if A is unitarily similar to A2 ⊕ A3, where A2, A3 ∈
M2, then the fact that 0 is the only eigenvalue of A implies A2

2 = A2
3 = 0. This guarantees

that A2 = 0, a contradiction. Hence, we conclude that A is unitarily irreducible.
We are now ready to prove Theorem 2.9. For convenience, let A ∼= B denote that the

matrix A is unitarily similar to the matrix B. Furthermore, let
∑p

j=1 ⊕B j stand for the
direct sum of the matrices B j , j = 1, 2, . . . , p.

Proof of Theorem 2.9 (a) and (b) follow directly from Proposition 2.1, [8, Theorem 2.2]
and [8, Corollary 4.7 (a)]. The sufficiency of (c) is trivial. We need only prove the necessity
of (c).

Suppose n/3 < k < n/2 and W (A) = �k(A). If A is a scalar matrix, then the desired
decomposition always holds. Hence, we assume that A is not a scalar matrix. Since W (A) is
either a line segment or an elliptic disc by Lemma 2.10, after suitable translation, rotation and
scaling, we may assume that W (A) centres at the origin, its axes lie on R and iR, the length
of the former is 2 and the length of the latter is 2b, where 0 ≤ b ≤ 1. Since W (A) = �k(A),
then 1 (respectively, −1) is the maximal (respectively, minimal) eigenvalue of Re A with
multiplicity at least k. From [13, Theorem 2.7], we obtain that A is unitarily similar to the
matrix
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636 C.-T. Chang et al.

⎡
⎣ Ik E ∗

−E∗ −Ik ∗
∗ ∗ ∗

⎤
⎦ on Cn = Ck ⊕ Ck ⊕ Cn−2k,

where E ∈ Mk . Let A′ =
[

Ik E
−E∗ −Ik

]
∈ M2k . Notice that, as mentioned in the paragraph

after Theorem 2.2, we have W (A) = �3k−n(A′) = W (A′). Let E = U
V ∗ be the
singular value decomposition of E , where U and V are k-by-k unitary matrices and 
 =
diag (α1, α2, . . . , αk) for some α1 ≥ α2 ≥ · · · ≥ αk ≥ 0, and let W = U∗ ⊕ V ∗. We obtain
that

W A′W ∗ =
[

U∗ 0
0 V ∗

] [
Ik E

−E∗ −Ik

] [
U 0
0 V

]
=
[

Ik 


−
 −Ik

]

∼=
k∑

j=1

⊕
[

1 α j

−α j −1

]
=

k∑
j=1

⊕B j ,

where B j =
[

1 α j

−α j −1

]
∈ M2. Therefore, W (B j ) ⊆ W (A′) ⊆ W (A) for all j =

1, 2, . . . , k. Moreover, W (Im B j ) ⊆ W (Im A) = [−b, b] implies that α j ≤ b for all
j = 1, 2, . . . , k. In addition, the fact W (A) = �3k−n(A′) = W (A′) = ⋃k

j=1 W (B j )

ensures that α1 = α2 = · · · = α3k−n = b, B1 = B2 = · · · = B3k−n and W (B1) = W (A).
Consequently, from [13, Theorem 2.7], we deduce that

A ∼=

⎡
⎢⎢⎢⎣

B1
. . .

B1

D

−D∗ C

⎤
⎥⎥⎥⎦ ,

where C ∈ M3n−6k , D is a (6k−2n)-by-(3n−6k) matrix, and B1 appears 3k−n times. Since
W (B1) = W (A), by Corollary 2.12, we obtain that D = 0 and A ∼=

(∑3k−n
j=1 ⊕B1

)
⊕ C .

Among other things, since ∂W (A) = ∂�k(A) = ∂W (B1) and B1 ∈ M2, from the proof of
Theorem 2.9, we have pk

B1
divides pA. Moreover, pA = pC · p3k−n

B1
implies that pn−2k

B1
is

a factor of pC . It follows that

W (B1) ⊆ �n−2k(C) ⊆ W (C) ⊆ W (A) = W (B1),

hence the inclusions are indeed equalities. �

We end this paper by remarking that, in Theorem 2.9, the number n/3 is sharp for the
reducibility of A, that is, we cannot replace it with any smaller integer, because there exists
a 3k-by-3k unitarily irreducible matrix A which satisfies W (A) = �k(A). For example, let
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E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√

2 0
√

1
2 0 0

0 0
√

2 0 0 0
0 0 0 0 0 0

0 0 −
√

1
2 0

√
3
2 0

0 0 0 0 0
√

2
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, E is unitarily irreducible and W (E) = W2(E) = �2(E) is the closed unit disc
(cf. [8, Theorem 3.2]). As a result, the matrix C in Theorem 2.9 (c) may be unitarily
irreducible and the decomposition of A is the best representation. For example, let

A =
[

0 2
0 0

]
⊕
[

0 2
0 0

]
⊕ E ∈ M10.

Then, W (A) = �4(A) is the closed unit disc and �5(A) = {z ∈ C : |z| ≤ 1/(2
√

2)}. It is
clear that E is unitarily irreducible and 3k − n = 3 · 4 − 10 = 2.
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[2] Choi M-D, Kribs DW, Życzkowski K. Quantum error correcting codes from the compression
formalism. Rep. Math. Phys. 2006;58:77–91.

[3] Gau H-L, Li C-K, Wu PY. Higher-rank numerical ranges and dilations. J. Operator Theory.
2010;63:181–189.

[4] Gau H-L, Wu PY. Higher-rank numerical ranges and Kippenhahn polynomials. Linear Algebra
Appl. 2008;438:3054–3061.

[5] Li C-K, Poon Y-T, Sze N-S. Higher rank numerical ranges and low rank perturbations of quantum
channels. J. Math. Anal. Appl. 2008;348:843–855.

[6] Li C-K, Poon Y-T, Sze N-S. Condition for the higher rank numerical range to be non-empty.
Linear Multilinear Algebra. 2009;57:365–368.

[7] Li C-K, Sze N-S. Canonical forms, higher rank numerical ranges, totally isotropic subspaces,
and matrix equations. Proc. Am. Math. Soc. 2008;136:3013–3023.

[8] Li C-K, Spitkovsky I, Shukla S. Equality of higher numerical ranges of matrices and a conjecture
of Kippenhahn on Hermitian pencils. Linear Algebra Appl. 1998;270:323–349.

[9] Li C-K, Sung C-H, Tsing N-K. c-convex matrices: characterizations, inclusion relations and
normality. Linear Multilinear Algebra. 1989;25:275–287.

[10] Horn RA, Johnson CR. Matrix analysis. Cambridge: Cambridge University Press; 1985.
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