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In this paper we obtain a closed form expression of the zeta
function Z(XΓ , u) of a finite quotient XΓ of the Bruhat–
Tits building of PGL3 over a nonarchimedean local field F
by a discrete cocompact torsion-free subgroup Γ of PGL3.
Analogous to a graph zeta function, Z(XΓ , u) is a rational
function with two different expressions and it satisfies the
Riemann hypothesis if and only if XΓ is a Ramanujan
complex.
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1. Introduction

1.1. First introduced by Ihara [9] for groups and later reformulated by Serre for
regular graphs, the zeta function of a finite, connected, undirected graph X is defined as
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Z(X,u) =
∏
[C]

(
1 − ul([C]))−1

,

where the product is over equivalence classes [C] of geodesic tailless primitive cycles C,
and l([C]) is the length of a cycle in [C]. In this paper we adopt the convention that a
cycle is an oriented closed path with a starting point and possible repetition of vertices.
Two cycles are equivalent if one is obtained from the other by changing the starting
vertex. A geodesic path on a graph means no backtracking. A cycle is tailless if all cycles
equivalent to it are geodesic; it is primitive if it is not a repetition of a shorter cycle more
than once. Taking the logarithmic derivative of Z(X,u), one gets

Z(X,u) = exp
(∑

n�1

Nn(X)
n

un

)
,

where Nn(X) counts the number of geodesic tailless cycles in X of length n.
Not only defined analogous to the zeta function of a curve over a finite field, the zeta

function of a graph is also a rational function. This can be seen in two ways. The first is
the result of Ihara:

Theorem 1.1.1. (See Ihara [9].) Let X be a (q + 1)-regular graph. Then its zeta function
is a rational function of the form

Z(X,u) = (1 − u2)χ(X)

det(I −Au + qu2I) ,

where χ(X) is the Euler characteristic of X and A is the adjacency matrix of X.

This theorem is extended to irregular graphs in [1,7,20,8]. The reader is referred to
[20] and the references therein for the history and various zeta functions attached to a
graph.

Endow two opposite orientations on each edge of X. Define the out-neighbor of the
directed edge u → v to be the edges v → w with w �= u. The (directed) edge adjacency
matrix Ae has its rows and columns indexed by the directed edges e of X such that the
ee′ entry records the number of times e′ is an out-neighbor of e. Hashimoto [6] observed
that Nn(X) = TrAn

e so that

Z(X,u) = 1
det(I −Aeu) . (1.1)

This gives the second proof of the rationality of the graph zeta function.
A (q + 1)-regular graph X is called Ramanujan if all eigenvalues λ of its adjacency

matrix A other than ±(q + 1) satisfy |λ| � 2√q (cf. [14]). The Ramanujan graphs
are optimal expanders with extremal spectral property. It is easily checked that X is
Ramanujan if and only if its zeta function Z(X,u) satisfies the Riemann hypothesis,
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that is, the poles of Z(X,u) other than ±1 and ±q−1 (called nontrivial poles) have the
same absolute value q−1/2 (cf. [20]).

1.2. When q is a prime power, the universal cover of a (q + 1)-regular graph can
be identified with the (q + 1)-regular tree associated to PGL2(F ) for a nonarchimedean
local field F with q elements in its residue field. Denote by OF its ring of integers
and let π be a uniformizer of F . The vertices of the tree can be parametrized by the
right cosets of the standard maximal compact subgroup PGL2(OF ) and the directed
edges by the right cosets of the Iwahori subgroup I of PGL2(OF ). Moreover, the (ver-
tex) adjacency operator A on the tree is the Hecke operator given by the double coset
PGL2(OF ) diag(1, π)PGL2(OF ) and the edge adjacency operator Ae is the Iwahori–
Hecke operator given by the double coset I diag(1, π)I. One obtains a (q + 1)-regular
graph XΓ̃ by taking a left quotient by a torsion-free discrete cocompact subgroup Γ̃ of
PGL2(F ).

This set-up has a higher dimensional extension to the Bruhat–Tits building Bn as-
sociated to PGLn(F ), which is a contractable (n − 1)-dimensional simplicial complex.
Like graphs, one obtains finite complexes XΓ by taking quotients of Bn by torsion-free
discrete cocompact subgroups Γ of PGLn(F ). The concept of Ramanujan complexes was
introduced in [13], called Ramanujan hypergraphs there. Three explicit constructions of
infinite families of Ramanujan complexes were given in [13], [15] and [18], respectively,
using deep results on the Ramanujan conjecture over function fields for automorphic
representations of the multiplicative group of a division algebra by Laumon, Rapoport
and Stuhler [12] and of GLn by Lafforgue [11]. Further, the paper [16] discusses what
kind of Γ would fail to yield a Ramanujan complex.

To extend zeta functions from graphs to complexes, one seeks a similarly defined zeta
function counting closed geodesic tailless cycles in XΓ with the following properties:

(a) it is a rational function with a closed form expression;
(b) it captures both topological and spectral information of XΓ ; and
(c) it satisfies the Riemann hypothesis if and only if XΓ is a Ramanujan complex.

The purpose of this paper is to present zeta functions with such properties for
2-dimensional complexes which are finite quotients of B3. This was previously considered
in [2] by Deitmar and Hoffman. The zeta functions there were defined differently, and
they were not shown to possess the properties (a)–(c). Recently, Fang, Li and Wang in [3]
obtained zeta functions for 2-dimensional complexes arising from finite quotients of the
building associated to Sp4(F ).

1.3. In what follows, we fix a local field F with q elements in its residue field as
before. Let B denote the Bruhat–Tits building B3 associated to PGL3(F ), which is a
2-dimensional contractable simplicial complex. Write G for the group GL3(F ), Z for
its center, K for its standard maximal compact subgroup GL3(OF ), and B for the
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standard Iwahoric subgroup of K. Denote by E the parahoric subgroup of K whose
elements modulo πOF are of the form

( ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

)
. Similar to the case of PGL2(F ), the

vertices, type 1 edges, and pointed chambers of the building B can be parametrized by
the right KZ-, EZ-, and BZ-cosets of G, respectively. The Hecke operators A1 and
A2 associated to the double cosets K diag(1, 1, π)KZ and K diag(1, π, π)KZ describe
the type 1 and type 2 out-neighbors of a vertex, the operator LE associated to the
double coset E diag(1, 1, π)EZ describes the type 1 out-neighbors of a type 1 edge, and
the out-neighbors of a pointed chamber are given by the operator LB associated to the
double coset B

( 1
1

π

)
BZ. Details are given in Section 3.

All 1-dimensional paths in B considered in this paper are contained in the 1-skeleton
of B. A 1-geodesic between two vertices in B is a shortest path in the 1-skeleton of B.
As B is the union of apartments and each apartment is a Euclidean plane, there is a
metric on B so that a geodesic in B is a straight line contained in an apartment. Thus a
1-geodesic in B is a geodesic if and only if it consists of edges of the same type. Let Γ be
a discrete torsion-free cocompact-mod-center subgroup of G satisfying ordπ detΓ ⊂ 3Z.
Denote by XΓ the (finite) quotient Γ\B. A 1-geodesic in XΓ is called a geodesic if all of
its liftings in B are geodesics.

1.4. For i = 1 or 2, the type i edge zeta function of XΓ is defined as

Z1,i(XΓ , u) =
∏
[C]

(
1 − ulA([C]))−1

,

where [C] runs through the equivalence classes of tailless primitive closed geodesics C

in XΓ consisting of edges of type i, and lA([C]) is the algebraic length of any geodesic
in [C] defined in Section 5.3. The first main result below follows from Proposition 6.1.1
and Theorem 8.5.1. It extends Hashimoto’s identity (1.1) to type i edge zeta functions,
and gives an explicit formula in terms of conjugacy classes of Γ for the number of tailless
closed geodesics in XΓ of a given length.

Theorem A. The edge zeta functions are rational functions in u with the following ex-
pressions:

Z1,i(XΓ , u) = 1
det(1 − LEui) = exp

(∑
n�1

Nn(XΓ )
n

uin

)
, i = 1, 2,

where Nn(XΓ ) counts the number of closed tailless geodesics of algebraic length n using
only type 1 edges in XΓ ; it is given by

Nn(XΓ ) =
∑

vol
(
[γ]
)
ω[γ]. (1.2)
γ∈[Γ ], [γ] of type (n,0)
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Here [Γ ] is a set of representatives of conjugacy classes of Γ , [γ] is a set of closed
geodesics defined by (4.1), vol([γ]) is given in (5.4), and ω[γ] is as in Theorem 7.2.1 and
Proposition 8.4.4.

In addition to paths formed by directed edges, we also consider paths formed by
edge-adjacent chambers, called galleries. The type 1 chamber zeta function of XΓ is
defined similar to the type 1 edge zeta function:

Z2,1(XΓ , u) =
∏
[C]

(
1 − ul([C]))−1

,

where [C] runs through the equivalence classes of primitive closed tailless galleries C

in XΓ of type 1, and l([C]) is the length of any gallery in [C]. (See Section 9.2 for
definitions.) Our second main result is a detailed description of Z2,1(XΓ , u), obtained
from Proposition 10.1.1 and Corollary 10.2.2.

Theorem B. The type 1 chamber zeta function is a rational function with the following
expressions:

Z2,1(XΓ , u) = 1
det(I − LBu) = exp

(∑
n�1

Mn(XΓ )
n

un

)
, (1.3)

where the number Mn(XΓ ) of closed tailless galleries in XΓ of type 1 and length n is
given below:

(1) If n = 2m + 1 is odd, then

Mn(XΓ ) =
∑

γ∈[Γ ] ramified rank-one split,
[γ] of type (1,m)

vol
(
[γ]
)
.

(2) If n = 2m is even, then

Mn(XΓ ) =
∑

γ∈[Γ ] split,
[γ] of type (0,m)

vol
(
[γ]
)
ω[γ] +

∑
γ∈[Γ ] irregular,
[γ] of type (0,m)

vol
(
[γ]
)
q

+
∑

γ∈[Γ ] unramified rank-one split,
[γ] of type (0,m)

vol
(
[γ]
)
(ω[γ] − 2)

+
∑

γ∈[Γ ] ramified rank-one split,
[γ] of type (0,m)

vol
(
[γ]
)
(ω[γ] − 1).

Here [Γ ], [γ], vol([γ]) and ω[γ] are as in Theorem A.
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The elements of Γ are classified in Section 4.2 according to their eigenvalues. It is
interesting to compare the above two theorems with the zeta function of the finite regular
graph XΓ̃ in Section 1.2. The equivalence classes of primitive closed tailless geodesics
in XΓ̃ correspond bijectively to the conjugacy classes of primitive elements in Γ̃ such
that corresponding classes have the same length. Thus the zeta function of XΓ̃ can be
rewritten as

Z(XΓ̃ , u) =
∏
[γ̃]

1
1 − ul(γ̃) = exp

(∑
n�1

Nn(XΓ̃ )
n

un

)
, (1.4)

where [γ̃] runs through conjugacy classes of primitive elements in Γ̃ . The number Nn(XΓ̃ )
of tailless geodesic cycles in XΓ̃ with length n is equal to

Nn(XΓ̃ ) =
∑

[γ̃] primitive, l([γ̃])|n
l(γ̃).

All nontrivial elements in Γ̃ are hyperbolic, analogous to the “split” elements in Γ . One
has l(γ̃) = vol([γ̃]) = vol([γ̃m]) = max(ordπ a/b, ordπ b/a), where a and b are eigenvalues
of γ̃, and ω[γ̃] = ω[γ̃m] = 1 for all m �= 0. Therefore the formulas for Nn(XΓ ) and Mn(XΓ )
generalize that for Nn(XΓ̃ ). On the other hand, since both vol([γm]) and ω[γm] vary with
the exponent m in a complicated way, there are no simple expressions for the edge and
chamber zeta functions of XΓ as Euler products over conjugacy classes in Γ , similar to
(1.4) for graphs.

The zeta function of XΓ is defined as

Z(XΓ , u) = Z1,1(XΓ , u)Z1,2(XΓ , u).

The explicit expressions of the edge and chamber zeta functions above lead to a new ex-
pression for the zeta function Z(XΓ , u), which can be viewed as a 2-dimensional analogue
of Theorem 1.1.1.

Theorem C. The zeta function of the finite complex XΓ = Γ\B can be expressed as

Z(XΓ , u) = (1 − u3)χ(XΓ )

det(I −A1u + qA2u2 − q3u3I) det(I + LBu) , (1.5)

in which χ(XΓ ) is the Euler characteristic of XΓ , A1 and A2 are operators on vertices,
and LB is the operator on pointed chambers in XΓ introduced above.

Combining Theorems A and B, and noting that the transpose (LE)t of LE is the edge
adjacency operator of type 2 edges in XΓ , we rephrase the identity (1.5) in terms of the
operators on XΓ as
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(1 − u3)χ(XΓ )

det(I −A1u + qA2u2 − q3u3I) = det(I + LBu)
det(I − LEu) det(I − (LE)tu2) . (1.6)

Compared to the parallel identity of operators on a (q + 1)-regular graph X:

(1 − u2)χ(X)

det(I −Au + qu2I) = 1
det(I −Aeu) ,

the similarity is reminiscent of the zeta functions attached to a surface and a curve over
a finite field. It is likely that the identity (1.6) expressed in terms of the operators on the
finite complex is a prototype of complex zeta functions in general. Indeed, the identity
on zeta functions in [3] for the GSp4(F ) case is formulated after this. Theorem C was
proved in [10] from representation-theoretical viewpoint by comparing the eigenvalues
of the operators in (1.6), while the proof in this paper explores the combinatorial and
group-theoretic viewpoints of the identity.

1.5. Our Z(XΓ , u) clearly has properties (a) and (b). Now we discuss its con-
nection with the Riemann hypothesis. The trivial zeros of det(I − A1u + qA2u

2 −
q3u3I) arise from the trivial eigenvalues of A1 and A2 on XΓ ; they are the roots of
(1 − u3)(1 − q3u3)(1 − q6u3). We say that Z(XΓ , u) satisfies the Riemann hypothesis if
the nontrivial zeros of det(I −A1u+ qA2u

2 − q3u3I) have the same absolute value q−1,
which is equivalent to XΓ being Ramanujan (cf. [13]).

The zeros of each determinant in (1.6) are computed in [10]; they give rise to a
description of the Ramanujan condition in terms of the operators on each dimension.

Theorem 1.5.1. (See [10], Theorem 2.) The following four statements on XΓ are equiv-
alent.

(1) XΓ is a Ramanujan complex ;
(2) The nontrivial zeros of det(I −A1u + qA2u

2 − q3u3I) have absolute value q−1;
(3) The nontrivial zeros of det(I − LEu) have absolute values q−1 and q−1/2; and
(4) The nontrivial zeros of det(I + LBu) have absolute values 1, q−1/2 and q−1/4.

Thus the Riemann hypothesis for Z(XΓ , u) is actually a statement concerning the
nontrivial zeros of each determinant in (1.6), analogous to the Riemann hypothesis for
a surface zeta function.

When F is the completion of a function field M at a place v, as constructed in [13],
there are infinitely many Γ arising from a suitable central division algebra of dimen-
sion 9 over M unramified at v such that the polynomial det(I −A1u+ qA2u

2 − q3u3I)/
(1−u3)(1−q3u3)(1−q6u3) from XΓ agrees with the portion of the zeta function coming
from the second �-adic cohomology of a moduli surface studied in [12]. Computations
in [10] imply that

(
1 − u3)(1 − q6u3) det(I − LEu)/ det

(
I −A1u + qA2u

2 − q3u3I
)
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is a polynomial whose zeros have the same absolute value q−1/2. It would be interesting
to know whether there is any geometric interpretation for suitable choices of Γ .

1.6. We sketch the main ingredients of the proofs of Theorems A, B and C. Each
γ ∈ Γ has an associated rational form rγ , constructed from the eigenvalues of γ. The
base point free homotopy classes of closed 1-geodesics in XΓ are partitioned into sets
indexed by the conjugacy classes [γ] of Γ . Theorem 5.4.1 asserts that the 1-geodesics
in [γ] achieving minimal algebraic (resp. geometric) length, called algebraically (resp.
geometrically) minimal, have the same algebraic (resp. geometric) length as rγ . Further,
the set [γ] contains tailless geodesic cycles of type 1 or 2 if and only if rγ has type 1
or 2. In this case, by Proposition 5.7.1, there is no distinction among tailless geodesic,
geometrically minimal, and algebraically minimal cycles. Algebraically minimal cycles
in [γ] afford an explicit algebraic characterization, as shown in Section 7 for γ split
or irregular and in Section 8 for γ rank-one split, and hence are more amenable to
computation. In Section 7.2 and Section 8.4 we enumerate the number of cycles in [γ] with
given algebraic length, along with those of type 1. These numbers establish Theorem A,
and they are also used in the proof of Theorem C.

The chamber zeta function defined above counts closed tailless galleries in XΓ of
type 1. In Section 9 we first convert this to counting closed pointed galleries in XΓ

with respect to the adjacency defined by the operator LB (Proposition 9.3.1). Then we
characterize the closed pointed galleries in Section 9.4. Using this criterion we prove
Theorem B by comparing the logarithmic derivatives of the chamber zeta function and
the type 2 edge zeta function.

The proof of Theorem C given in Section 11 results from comparing the logarithmic
derivatives of both sides of (1.6). More precisely, that of the left hand side counts the
number of type 1 tailless closed geodesics in XΓ , as given by the logarithmic derivative
of 1/ det(I −LEu), and some extra terms arising from sets represented by irregular and
rank-one split γ’s. These extra terms are shown to equal to the logarithmic derivative
of det(I + LBu)/ det(I − Lt

Eu
2) by comparing Nn(XΓ ) in Theorem A and Mn(XΓ ) in

Theorem B. It should be pointed out that while the edge zeta functions count only
tailless cycles of types 1 and 2, to prove the identity, we actually consider all cycles, with
and without tails. This is similar in spirit to the proof of Theorem 1.1.1 given in [9].

2. Hecke operators on PGL3(F )

2.1. Hecke operators

By the elementary divisor theorem, the group G is equal to the disjoint union of the
KZ-double cosets

Tn,m = K diag
(
1, πm, πm+n

)
KZ
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as m,n run through all non-negative integers. We shall also regard each Tn,m as the
Hecke operator acting on functions f ∈ L2(G/KZ) via

Tn,mf(gKZ) =
∑

αKZ∈Tn,m/KZ

f(gαKZ).

In particular, set

A1 = T1,0 and A2 = T0,1.

2.2. Recursive relations

It is well-known that each Hecke operator is a polynomial in A1 and A2. Tamagawa
[21] obtained a recursive relation on Hecke operators for GLn(F ). We prove a different
recursive formula adapted for our needs.

Theorem 2.2.1.

q

∞∑
k=1

Tk,0u
k − (q − 1)

( ∞∑
k=1

∑
n+2m=k

Tn,muk

)
1 − q2u3

1 − u3

= u
d

du
log (1 − u3)rI

I −A1u + A2qu2 − q3u3I
, (2.1)

where r = (q+1)(q−1)2
3 .

Proof. The Hecke algebra for G/Z is isomorphic to the polynomial ring C[z1, z2, z3]S3/

〈z1z2z3 − 1〉, denoted by H, under the Satake isomorphism ψ (cf. [19]). Our strategy is
to show that the identity holds after applying the Satake isomorphism. For this, we need
to compute the values of ψ on {Tn,m}. Using z1, z2, z3 ∈ H we define a quasi-character
χ on the Borel subgroup P of G by

χ

⎛
⎝
⎡
⎣ b1 ∗ ∗

b2 ∗
b3

⎤
⎦
⎞
⎠ = z

ordπ(b1)
1 z

ordπ(b2)
2 z

ordπ(b3)
3 ,

and regard it as a map from P/Z to C[z1, z2, z3]/〈z1z2z3−1〉. Denote by δP the modular
character on P/Z. Let φ be the function on G/Z given by

φ(bk) = χ(b)δ1/2
P (b) (b ∈ P, k ∈ K).

Then the value of the Satake isomorphism at Tn,m is

ψ(Tn,m) =
∑

g∈In,m

φ(g),

where Tn,m =
⊔

g∈I gKZ.

n,m
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Direct computations give ψ(A1) = q(z1 + z2 + z3) and ψ(A2) = q(z1z2 + z2z3 + z3z1)
so that

ψ
(
I −A1u + qA2u

2 − q3u3I
)

= (1 − qz1u)(1 − qz2u)(1 − qz3u),

which allows us to get the value of the right hand side of the identity under ψ.
For k � 1, let Tk =

∑
n+2m=k Tn,m, and set

σk,1(z1, z2, z3) = zk1 + zk2 + zk3 ,

σk,2(z1, z2, z3) =
∑

1�a�k−1

za1z
k−a
2 + za2z

k−a
3 + za3z

k−a
1 ,

and

σk,3(z1, z2, z3) =
∑

a,b,c�1, a+b+c=k

za1z
b
2z

c
3.

For the left hand side of the identity, we compute the coefficient of za1
1 za2

2 za3
3 in ψ(Tk)

with a1 � a2 � a3 � 0 and a1 + a2 + a3 = k, then use symmetry to determine ψ(Tk).
It is straightforward to check that the number of cosets gKZ in

⊔
n+2m=k Tn,m

mapped to za1
1 za2

2 za3
3 by χ is equal to q2a1+a2 if a3 = 0, and (q3 − 1)q2a1+a2−3 if a3 > 0.

Moreover, for such gKZ we have δP (gKZ)1/2 = qa3−a1 . Therefore the coefficient of
za1
1 za2

2 za3
3 in ψ(Tk) is equal to qa1+a2+a3 or qa1+a2+a3−3(q3 − 1) according to a3 = 0 or

a3 > 0. By symmetry, this gives rise to

ψ(Tk) = qk
(
σk,1 + σk,2 + q3 − 1

q3 σk,3

)
.

Noting that

∞∑
k=1

σk,3u
k =

(
(z1z2z3)u3 + (z1z2z3)2u6 + · · ·

) ∞∑
k=0

(1 + σk,1 + σk,2)uk

= u3

1 − u3

∞∑
k=0

(1 + σk,1 + σk,2)uk,

we obtain

ψ

( ∞∑
k=1

Tku
k

)
=

∞∑
k=1

(
σk,1 + σk,2 + q3 − 1

q3 σk,3

)
(qu)k

= (q3 − 1)u3

1 − q3u3 + 1 − u3

1 − q3u3

∞∑
(σk,1 + σk,2)(qu)k.
k=1
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On the other hand, put G0 =
⊔∞

k=1 Tk,0. One verifies that the number of elements in
G0/KZ mapped to za1

1 za2
2 za3

3 by χ is q2a1 if a2 = a3 = 0, (q−1)q2a1+a2−1 if a2 > a3 = 0,
and (q − 1)2q2a1+a2−2 if a2 � a3 > 0. Therefore,

ψ

( ∞∑
k=1

Tk,0u
k

)
=

∞∑
k=1

(
σk,1 + q − 1

q
σk,2 + (q − 1)2

q2 σk,3

)
(qu)k

= q(q − 1)2u3

1 − q3u3 + 1 + qu3 − 2q2u3

1 − q3u3

∞∑
k=1

σk,1(qu)k

+ (q − 1)(1 − q2u3)
q(1 − q3u3)

∞∑
k=1

σk,2(qu)k.

Consequently,

ψ

(
q

( ∞∑
k=1

Tk,0u
k

)
− (q − 1)

( ∞∑
k=1

Tku
k

)
1 − q2u3

1 − u3

)

=
∞∑
k=0

σk,1(qu)k + (q − 1)(q2 − 1)u3

1 − u3

= z1qu

1 − z1qu
+ z2qu

1 − z2qu
+ z2qu

1 − z2qu
− 3ru3

1 − u3

= u
d

du
log (1 − u3)r

(1 − z1qu)(1 − z2qu)(1 − z3qu)

= ψ

(
u
d

du
log (1 − u3)r

I −A1u + A2qu2 − q3u3I

)
,

where r = (q+1)(q−1)2
3 . �

3. Parametrizations of simplices in B and operators

3.1. Simplicial complex structure on B

The vertices of B are homothety classes of rank-3 OF -lattices in F 3. Two distinct
vertices [L] and [L′] are adjacent if they are represented by lattices L and L′ such that
πL ⊂ L′ ⊂ L (and hence πL′ ⊂ πL ⊂ L′). Note that πL has index q3 in L, L′ has index qi

in L, and πL has index q3−i in L′, where i = 1 or 2. Call [L′] a type i out-neighbor of [L]
and the directed edge ([L], [L′]) of type i; its opposite ([L′], [L]) has type 3−i. An ordered
triple ([L], [L′], [L′′]) of three distinct vertices form a pointed chamber if the vertices are
represented by lattices L,L′, L′′ such that πL ⊂ L′′ ⊂ L′ ⊂ L. Thus ([L′], [L′′], [L]) and
([L′′], [L], [L′]) are also pointed chambers. The unordered triple 〈[L], [L′], [L′′]〉 is called
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a chamber. Hence a chamber yields three pointed chambers. This describes the simplices
in B.

3.2. Parametrization of simplices in B

Each element g ∈ G gives rise to a rank-3 lattice Lg with OF -basis the three columns
of g, and all rank-3 lattices over OF arise this way. Changing basis of Lg amounts to right
multiplication of g by elements in K, and lattices equivalent to Lg result from multiplying
g by the center Z. Thus the assignment gKZ → [Lg] yields a parametrization of the
vertices of B by G/KZ. Note that for each vertex gKZ, the number ordπ det g mod 3 is
well-defined, called the type of gKZ.

The group G acts transitively on vertices of B by left translations. It is straightforward
to verify that this action preserves adjacency, the type of edges, and pointed chambers.
Moreover, the actions on directed edges and pointed chambers are both transitive. Let
σ =

( 1
1

π

)
. It is easy to see that F0 := (KZ, σKZ, σ2KZ) is a pointed chamber

of B, whose boundary contains the directed type 1 edge E0 := (KZ, σKZ). Then E :=
K ∩ σKσ−1 is the standard parahoric subgroup and B := K ∩ σKσ−1 ∩ σ2Kσ−2 is the
standard Iwahori subgroup of K. As EZ is the stabilizer of E0 and BZ the stabilizer
of F0 in G, so G/EZ parametrizes all type 1 (and also all type 2) edges and G/BZ

parametrizes all pointed chambers of B.
Write Fq for the residue field of F . Counting the number of lines and planes in F

3
q,

we see that each vertex has q2 + q + 1 type 1 neighbors and q2 + q + 1 type 2 neighbors.
Further, the opposite of a type i directed edge has type 3 − i.

3.3. Operators on vertices G/KZ

The q2 + q + 1 type 1 neighbors of gKZ are gαKZ, where αKZ are the KZ-cosets
contained in the double coset of the Hecke operator

A1 = T1,0 = K

⎛
⎝ 1

1
π

⎞
⎠KZ

=
⋃

a,b∈OF /πOF

⎛
⎝π a b

1
1

⎞
⎠KZ

⋃
c∈OF /πOF

⎛
⎝ 1

π c

1

⎞
⎠KZ ∪

⎛
⎝ 1

1
π

⎞
⎠KZ.

This is because modulo πOF , the columns of these coset representatives generate the
distinct 2-dimensional subspaces of F3

q. The q2 + q + 1 type 2 neighbors of gKZ can be
similarly described using the KZ-coset representatives of A2 = T0,1:
⎛
⎝π b

π c

⎞
⎠ ,

⎛
⎝π a

1

⎞
⎠ and

⎛
⎝ 1

π

⎞
⎠ , where a, b, c ∈ OF /πOF .
1 π π
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3.4. Operator on type 1 edges G/EZ

Define the out-neighbors of a type 1 edge (g1KZ, g2KZ) to be the type 1 edges
(g2KZ, g3KZ) such that (g1KZ, g2KZ, g3KZ) is not a pointed chamber. Since each line
in F

3
q is contained in q+1 planes, among the q2 + q+1 type 1 neighbors g3KZ of g2KZ,

exactly q+1 of them will form a pointed chamber (g1KZ, g2KZ, g3KZ). Hence a type 1
edge has q2 out-neighbors. Expressed in terms of EZ-cosets, the out-neighbors of a type
1 edge gEZ are given by gαEZ, where αEZ are the EZ-cosets occurring in the double
coset

LE = E

⎛
⎝ 1

1
π

⎞
⎠EZ =

∐
x,y∈OF /πOF

⎛
⎝ 1

1
xπ yπ π

⎞
⎠EZ.

It suffices to check the out-neighbors of EZ; the rest will follow from the action by G.
For an EZ-coset representative α =

( 1
1

xπ yπ π

)
of LE , we have α = diag(1, 1, π)k for

some k ∈ K so that αKZ = σKZ. On the other hand, from σ−1ασ =
( π x y

1
1

)
=: β we

see that ασKZ = σβKZ is a type 1 neighbor of σKZ not adjacent to KZ and αEZ =
(αKZ,ασKZ) = (σKZ, σβKZ) runs through all out-neighbors of EZ = (KZ, σKZ) as
α varies.

Similar to A1 and A2, LE may be regarded as the parahoric operator on L2(G/EZ)
sending a function f ∈ L2(G/EZ) to the function LEf given by

LEf(gEZ) =
∑

x,y∈OF /πOF

f

⎛
⎝g

⎛
⎝ 1

1
xπ yπ π

⎞
⎠EZ

⎞
⎠ .

3.5. Operator on pointed chambers G/BZ

Define the out-neighbors of a pointed chamber (g1KZ, g2KZ, g3KZ) to be (g2KZ,

g3KZ, g4KZ) with g4KZ �= g1KZ. As remarked above, there are q+1 choices of vertices
g4KZ to make (g2KZ, g3KZ, g4KZ) a pointed chamber, so a pointed chamber has q

out-neighbors. In terms of BZ cosets, the out-neighbors of a pointed chamber gBZ are
gαBZ, where αBZ are the BZ-cosets occurring in the Iwahori–Hecke operator

LB = B

⎛
⎝ 1

1
π

⎞
⎠BZ =

∐
x∈OF /πOF

⎛
⎝ 1

1
πx π

⎞
⎠BZ.

To see this, given a BZ-coset representative α =
(

1
1

πx π

)
of LB , it is straightfor-

ward to check that left multiplication by α sends BZ = (KZ, σKZ, σ2KZ) to αBZ =
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(αKZ,ασKZ,ασ2KZ) = (σKZ, σ2KZ,ασ2KZ), where ασ2KZ =
( 1

π
π2 πx

)
KZ �=

KZ, so that αBZ runs through different out-neighbors of BZ as α varies.
Similar to the previous cases, LB may be interpreted as an operator on L2(G/BZ)

which sends a function f ∈ L2(G/BZ) to

LBf(gBZ) =
∑

x∈OF /πOF

f

⎛
⎝g

⎛
⎝ 1

1
πx π

⎞
⎠BZ

⎞
⎠ .

4. Finite quotients of B

4.1. The group Γ and the quotient XΓ

Let Γ be a discrete torsion-free subgroup of G such that Γ\G/Z is compact. Then Γ

intersects any compact subgroup of G trivially. Assume that Γ intersects any conjugate
of KZ trivially and ordπ detΓ ⊂ 3Z. For instance we may choose Γ to be a subgroup of
SL3(F ). See [18, §3] for some examples of such Γ . The action of Γ on B by left translation
is free of fixed points and preserves the types of vertices. The quotient XΓ = Γ\B is a
finite connected 2-dimensional simplicial complex, whose vertices are the double cosets
Γ\G/KZ. Since the vertices in an edge or a chamber of B have different types, each
edge or chamber of B in the quotient remains an edge or a chamber of XΓ . Therefore
the type 1 (and also type 2) edges in XΓ are parametrized by Γ\G/EZ, and pointed
chambers by Γ\G/BZ.

The operators A1 and A2 on G/KZ, LE on G/EZ and LB on G/BZ defined in
the previous section induce operators on vertices, types 1 edges and pointed chambers of
XΓ , respectively. They will be denoted by the same notation. Since XΓ has finitely many
vertices, edges and chambers, these operators can also be interpreted combinatorially.
More precisely, Ai, i = 1, 2, is the matrix parametrized by the vertices v of XΓ such that
the vv′ entry is the number of type i edges from v to v′. As such, A2 is the transpose
of A1. Similarly LE has its rows and columns parametrized by the type 1 edges e of
XΓ so that the ee′ entry denotes the number of times when e′ is an out-neighbor of e.
Since type 2 edges are the opposite of type 1 edges, the transpose Lt

E of LE describes
adjacency relation among type 2 edges of XΓ . Likewise, LB can be viewed as the matrix
recording the adjacency relation among the pointed chambers of XΓ .

4.2. Classification of elements in Γ

Observe that every element in Γ has an eigenvalue in F . Indeed, if γ ∈ Γ has no
eigenvalues in F , then the characteristic polynomial of γ is irreducible over F . As
ordπ(det γ) = 3m for some integer m, the eigenvalues of γ′ := π−mγ are units in a
cubic extension of F , which implies that γ lies in the intersection of Γ with a conjugate
of KZ, and hence is the identity element. Together with the fact that every element in a
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discrete cocompact-mod-center lattice is semisimple (see [17], Theorem 1.12), we arrive
at

Theorem 4.2.1 (Classification of elements in Γ ). Every element γ of Γ falls in one of
the following types:

1) γ is the identity;
2) γ is split, that is, it has three distinct eigenvalues in F×;
3) γ is ramified/unramified rank-one split, that is, γ has three distinct eigenvalues

and the field F 〈γ〉 obtained by F joining eigenvalues of γ is a ramified/unramified
quadratic extension of F ;

4) γ is irregular, that is, its eigenvalues are in F× and one eigenvalue has multiplicity
two.

The following conclusion on Γ shown in [10] results from the closed form expression
of the zeta function identity of XΓ .

Proposition 4.2.2. (See [10], Corollary 4.) Γ contains rank-one split elements.

4.3. Rational form

Let γ be a non-identity element in Γ and L = F 〈γ〉 be the field over F generated by
the eigenvalues of γ. If L = F , then there is a scalar z ∈ Z such that γz is conjugate
to rγ := diag(1, a, b) where 1, a, b ∈ F× satisfy ordπ b � ordπ a � 0. If L is a quadratic
extension of F , fix a generator λ so that it is a unit if L is unramified over F and it is a
uniformizing element if L is ramified over F . Let x2−bx−c be the irreducible polynomial
of λ over F and let λ̄ be the Galois conjugate of λ. Then ordπ c = 0 or 1 according as L

is unramified or ramified over F and ordπ b � 1
2 ordπ c. There are elements a, e, d ∈ OF

with at least one of them a unit such that a, e + dλ and e + dλ̄ are the eigenvalues
of γz for some scalar z ∈ Z. Consequently, up to a scalar multiple, γ is conjugate to
rγ :=

( a
e dc
d e+db

)
. Call rγ a rational form of γ. It is unique modulo scalars in O×

F , and
it depends only on the conjugacy class of γ.

4.4. Homotopy classes of closed paths in XΓ

A cycle in XΓ is a closed path starting at a vertex of XΓ and contained in the
1-skeleton of XΓ . Repetition of vertices is allowed. A 1-geodesic between two vertices of
B is a path in the 1-skeleton which uses the minimal number of edges. A cycle in XΓ

is called 1-geodesic (resp. geodesic) if it can be lifted to a path in B which is 1-geodesic
(resp. geodesic).

A 1-geodesic cycle in XΓ starting at the vertex ΓgKZ can be lifted to a 1-geodesic
in B starting at gKZ and ending at γgKZ for some γ ∈ Γ . Two such 1-geodesic cycles
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in XΓ are homotopic in XΓ if and only if their liftings in B to two 1-geodesics starting
at gKZ have the same ending vertex. Denote by κγ(gKZ) the homotopy class of the
1-geodesics from gKZ to γgKZ in B. When projected to XΓ , these 1-geodesics become
homotopic closed 1-geodesics which use least number of edges among all cycles in its
homotopy class in XΓ . By abuse of notation, κγ(gKZ) also denotes the homotopy class
of its projection in XΓ . Thus the fundamental group of XΓ based at ΓgKZ is

π1(XΓ , Γ gKZ) =
{
κγ(gKZ): γ ∈ Γ

}
.

Since Γ has no fixed points, all κγ(gKZ) are distinct and π1(XΓ , Γ gKZ) is isomorphic
to Γ .

We shall take all base points into account, but regroup the homotopy classes κγ(gKZ)
with respect to the conjugacy classes of Γ . For each conjugacy class of Γ fix a represen-
tative γ and denote that class by 〈γ〉Γ . Let [Γ ] = {γ} be the set of chosen representatives
of conjugacy classes. Denote by CΓ (γ) the centralizer of γ in Γ . Given γ ∈ Γ , the map
h �→ h−1γh is a bijection from CΓ (γ)\Γ to the conjugacy class 〈γ〉Γ . So Γ =

∐
γ∈[Γ ]〈γ〉Γ

corresponds bijectively to
∐

γ∈[Γ ] CΓ (γ)\Γ . Letting, for each γ ∈ [Γ ],

[γ] =
{
κγ(gKZ)

∣∣ g ∈ CΓ (γ)\G/KZ
}
, (4.1)

we obtain the following partition of all vertex-based homotopy classes of closed
1-geodesics in XΓ :

∐
ΓgKZ∈Γ\G/KZ

π1(XΓ , Γ gKZ)

=
{
κγ(gKZ): γ ∈ Γ, g ∈ Γ\G/KZ

}
=
{
κh−1γh(gKZ): γ ∈ [Γ ], h ∈ CΓ (γ)\Γ, g ∈ Γ\G/KZ

}
.

Note that κh−1γh(gKZ) consists of 1-geodesics from gKZ to h−1γhgKZ; left multi-
plication by h yields a bijection from κh−1γh(gKZ) to κγ(hgKZ). When h ∈ Γ , both
κγ(hgKZ) and κh−1γh(gKZ) project to the same homotopy class of 1-geodesic cycles
in XΓ . Hence we rewrite

∐
ΓgKZ∈Γ\G/KZ

π1(XΓ , Γ gKZ) =
{
κγ(gKZ): γ ∈ [Γ ], g ∈ CΓ (γ)\G/KZ

}

=
∐

γ∈[Γ ]

[γ]

since Γ intersects conjugates of KZ trivially.
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5. Type and lengths

5.1. Algebraic length and canonical algebraic length

Given g in G, there is a scalar z ∈ F× such that g′ = zg is a matrix in
M3(OF )� πM3(OF ); call g′ a minimally integral matrix associated to g. It is unique up
to multiplication by O×

F . Define the algebraic length of g to be

lA(g) = ordπ

(
det
(
g′
))
.

Thus we always have lA(g1g2) � lA(g1) + lA(g2) for g1, g2 ∈ G. Extend the definition of
algebraic length to elements g ∈ GL3(L) for any finite extension L over F by

lA(g) = 1
[L : F ] ordπ

(
NL/F ◦ det

(
g′
))
,

where g′ is a minimally integral matrix in M3(OL) associated to g. Note that lA(g) is
independent of the choice of the field L containing entries of g, and multiplication by
scalars. Analogous to canonical heights, define the canonical algebraic length of g to be

LA(g) = lim
n→∞

1
n
lA
(
gn
)

provided that the limit exists. We exhibit some properties of the canonical algebraic
length.

Proposition 5.1.1. Let g be a semisimple element in G and let dg be a minimally integral
diagonal matrix in GL3(L) conjugate to g up to a scalar multiple in a finite extension L

of F . Then

1. LA(g) exists and is equal to lA(dg) = LA(dg), hence it is invariant under conjugation;
2. LA(gn) = nLA(g) for all integers n � 1;
3. LA(g) � lA(g).

Proof. By assumption, there is a scalar z ∈ L× and h ∈ GL3(L) such that zg = hdgh
−1.

Since dg is a minimally integral diagonal matrix, so is dng and lA(dng ) = nlA(dg) for all
integers n > 0. Thus LA(dg) exists and is equal to lA(dg). The relation zngn = hdngh

−1

implies

lA
(
dng
)
− lA(h) − lA

(
h−1) � lA

(
gn
)
� lA

(
dng
)

+ lA(h) + lA
(
h−1)

for all n > 0. Thus LA(g) also exists and equals to LA(dg). The remaining assertions are
clear. �
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Note that for g ∈ Tn,m, its algebraic length is equal to lA(g) = n + 2m. In this case,
we say it has type (n,m) and geometric length lG(g) = n + m.

5.2. Geodesics and lengths in B

The building B is the union of its apartments, and each apartment is a Euclidean
plane. It can be shown that all 1-geodesics between two vertices g1KZ and g2KZ with
g−1
1 g2 ∈ Tn,m lie in the same apartment, and they use n type 1 edges and m type 2

edges. We say that they have type (n,m) (the same type as g−1
1 g2), geometric length

n+m = lG(g−1
1 g2) and algebraic length n+2m = lA(g−1

1 g2). When m = 0 (resp. n = 0),
the path is said to have type 1 (resp. type 2) for short. Note that the same path traveled
backwards is of type (m,n) and has algebraic length m+2n. Further, when the path has
type 1 or 2, there is only one 1-geodesic between the two vertices, and it is a geodesic in
the building B, called a geodesic of type 1 or 2 accordingly.

5.3. The type and lengths of a homotopy class

The type, geometric length and algebraic length of a homotopy class κγ(gKZ) of XΓ

are those of κγ(gKZ) in B. In other words, If g−1γg ∈ Tn,m, then κγ(gKZ) has algebraic
length lA(κγ(gKZ)) = n+2m, geometric length lG(κγ(gKZ)) = n+m, and type (n,m).
Moreover, κγ(gKZ) is of type 1 if m = 0 and type 2 if n = 0. By assumption, κγ(gKZ)
has positive length if and only if γ is not identity.

5.4. The type and lengths of [γ]

Let γ ∈ [Γ ] be non-identity, and let rγ be a rational form of γ defined in Section 4.3. Fix
a choice of Pγ ∈ G such that rγ = (Pγ)−1γPγzγ for some zγ ∈ Z. As the centralizers of γ
and rγ in G are related by CG(γ) = PγCG(rγ)P−1

γ , we have CΓ (γ)Pγ = PγCP−1
γ ΓPγ

(rγ),
and [γ] may be expressed in two ways:

[γ] =
{
κγ(gKZ)

∣∣ g ∈ CΓ (γ)\G/KZ
}

=
{
κγ(PγgKZ)

∣∣ g ∈ CP−1
γ ΓPγ

(rγ)\G/KZ
}
. (5.1)

The second expression will facilitate our computations later.
Suppose rγ ∈ Tn,m. We say that [γ] has type (n,m), algebraic length lA([γ]) = n+2m

and geometric length lG([γ]) = n + m. For brevity, call [γ] of type 1 or 2 according as
m = 0 or n = 0. We shall prove

Theorem 5.4.1. Let γ ∈ [Γ ] and γ �= id. Then

lA
(
[γ]
)

= min lA
(
κγ(gKZ)

)
and lG

(
[γ]
)

= min lG
(
κγ(gKZ)

)
.

κγ(gKZ)∈[γ] κγ(gKZ)∈[γ]
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Moreover, for g ∈ CG(rγ), we have lA(κγ(PγgKZ)) = lA([γ]), lG(κγ(PγgKZ)) = lG([γ])
and the type of κγ(PγgKZ) coincides with the type of [γ].

The second assertion is obvious because (Pγg)−1γPγgzγ = g−1rγg = rγ for g ∈
CG(rγ). The proof of the first assertion is contained in Theorem 7.1.1 for γ split or
irregular, and Theorem 8.3.1 for γ rank-one split.

Note that lA(κγ(gKZ)) ≡ ordπ det γ (mod 3), hence lA(κγ(gKZ)) = lA([γ]) + 3m for
some non-negative integer m.

5.5. Algebraically minimal and geometrically minimal cycles

In view of Theorem 5.4.1, a homotopy class κγ(gKZ) is called algebraically minimal
if its algebraic length agrees with lA([γ]). Likewise, it is called geometrically minimal if
its geometric length is lG([γ]).

Proposition 5.5.1. κγ(gKZ) is geometrically minimal if and only if κγ(gKZ) and [γ]
have the same type. Moreover, if κγ(gKZ) is geometrically minimal, then it is also
algebraically minimal.

Proof. Suppose [γ] is of type (n,m) and κγ(gKZ) is of type (i, j). Applying Theo-
rem 5.4.1 to both [γ] and [γ−1], we have

n + 2m � i + 2j and 2n + m � 2i + j.

If κγ(gKZ) is geometrically minimal, then n + m = i + j. Together with the above
inequalities, we conclude that (i, j) = (n,m). On the other hand, if κγ(gKZ) and [γ]
have the same type, then they obviously have the same algebraic and geometric lengths.
Therefore, κγ(gKZ) is both geometrically and algebraically minimal. �
Corollary 5.5.2. If LA(γ) = lA(κγ(gKZ)) and LA(γ−1) = lA(κγ−1(gKZ)), then
κγ(gKZ) and [γ] have the same type. Consequently κγ(gKZ) is geometrically and alge-
braically minimal.

Proof. Recall that lA(κγ(gKZ)) = lA(g−1γg) by definition. It follows from Theo-
rem 5.4.1 and Proposition 5.1.1 that, for γ ∈ Γ ,

LA(γ) = LA(rγ) � lA(rγ) = lA
(
[γ]
)
� lA

(
κγ(gKZ)

)
= LA(γ). (5.2)

Therefore lA([γ]) = lA(κγ(gKZ)). By the same argument, lA([γ−1]) = lA(κγ−1(gKZ)).
Suppose κγ(gKZ) is of type (m,n) and [γ] is of type (m′, n′), then we have 2m + n =
2m′ + n′ and m + 2n = m′ + 2n′, which implies (m,n) = (m′, n′). �
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5.6. Tailless cycles

Recall that a 1-geodesic cycle is tailless if it remains 1-geodesic when the starting
vertex is changed. We give useful criteria for 1-geodesic type 1 cycles to be tailless.

Proposition 5.6.1. Let κγ(gKZ) be a 1-geodesic cycle of type 1 and geometric length
n > 1 in XΓ . The following statements are equivalent:

1. κγ(gKZ) is tailless;
2. κγ(gKZ) repeated m-times is type 1 geodesic for all m > 0;
3. κγ(gKZ) is geometrically minimal.

Proof. (1 ⇒ 2) Suppose κγ(gKZ) is tailless. Let g0KZ → · · · → g2nKZ be a lifting
in B of κγ(gKZ) repeated 2 times. Then gn+iKZ = γgiKZ for 0 � i � n. The path
giKZ → gi+1KZ → · · · → gi+nKZ is a geodesic for i = 0, . . . , n − 1 by assumption.
Hence g0KZ → · · · → g2nKZ is a 1-geodesic in B and thus κγ(gKZ) repeated twice is
a type 1 geodesic cycle in XΓ , and so are κγ(gKZ) repeated m times for m > 0.

(2 ⇒ 3) Suppose κγ(gKZ) repeated m-times is a type 1 geodesic of length nm for all
m > 0. Then g−1γmg ∈ Tnm,0 for all m � 0 and, by Proposition 5.1.1,

LA(γ) = LA

(
g−1γg

)
= lim

m→∞
1
m
lA
(
g−1γmg

)
= lim

m→∞
1
m
mlA

(
g−1γg

)
= n = lA

(
κγ(gKZ)

)
.

As κγ−1(gKZ) is κγ(gKZ) traveled backwards, it is a 1-geodesic cycle of type 2 and
algebraic length 2n. Further κγ−1(gKZ) repeated m times is a type 2 geodesic for all
m > 0. A similar argument gives LA(γ−1) = 2n = lA(κγ−1(gKZ)). We conclude from
Corollary 5.5.2 that κγ(gKZ) is geometrically minimal.

(3 ⇒ 1) Suppose κγ(gKZ) is geometrically minimal. Let C : g0KZ → · · · → g2nKZ =
γ2g0KZ be a lifting in B of κγ(gKZ) repeated twice. If we change the starting vertex of
κγ(gKZ) to obtain a new cycle, then a lifting in B of this new cycle is contained in C.
Thus it suffices to show that C is a 1-geodesic. By Proposition 5.5.1 and the assumption
on κγ(gKZ), [γ] has type (n, 0) and rγ is of the form

⎛
⎝ 1

a

πnb

⎞
⎠ or

(
πn

M

)
,

where a, b ∈ O×
F and M ∈ GL2(OF ). In both cases we find [γ2] of type (2n, 0) and

lG([γ2]) = 2n. As C has geometric length 2n and it is homotopic to a 1-geodesic
from g0KZ to γ2g0KZ, combined with Theorem 5.4.1, we get 2n � lG(κγ2(gKZ)) �
lA([γ2]) = 2n. This shows that C is a 1-geodesic, as desired. �
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Corollary 5.6.2. If [γ] contains a tailless geodesic cycle of type i ∈ {1, 2}, then [γ] is of
type i. In this case the tailless geodesic cycles in [γ] are those which are geometrically
minimal.

5.7. The number of tailless cycles in [γ] and the volume of [γ]

Since XΓ is finite, it contains only finitely many 1-geodesic cycles with a given alge-
braic or geometric length. Hence for each γ ∈ [Γ ], there are only finitely many cycles
κγ(gKZ) in [γ] with given algebraic or geometric length. Let

ΔA

(
[γ]
)

=
{
gKZ ∈ G/KZ

∣∣ lA(κγ(PγgKZ)
)

= lA
(
[γ]
)}

. (5.3)

As noted before, ΔA([γ]) ⊃ CG(rγ)K/KZ and is invariant under left multiplication by
CP−1

γ ΓPγ
(rγ). Define the volume of [γ] to be

vol
(
[γ]
)

= #
(
CP−1

γ ΓPγ
(rγ)\CG(rγ)/

(
CG(rγ) ∩KZ

))
. (5.4)

It follows from (5.1) and Theorem 5.4.1 that the number of algebraically minimal cycles in
[γ] is the cardinality of CP−1

γ ΓPγ
(rγ)\ΔA([γ]), which is at least vol([γ]). This in particular

implies the finiteness of vol([γ]).
Set

ΔG

(
[γ]
)

=
{
gKZ ∈ G/KZ

∣∣ lG(κγ(PγgKZ)
)

= lG
(
[γ]
)}

. (5.5)

By Theorem 5.4.1 and Proposition 5.5.1, geometrically minimal cycles in [γ] have the
same type as [γ], and they are also algebraically minimal. Thus ΔG([γ]) ⊆ ΔA([γ]). The
cardinality of CP−1

γ ΓPγ
(rγ)\ΔG([γ]) counts the number of geometrically minimal cycles

in [γ]. The first statement below for γ of type 1 follows from Corollary 7.1.2 for γ split
or irregular and Corollary 8.3.2 for γ rank-one split, hence it also holds for γ of type 2.
The second statement is from Corollary 5.6.2.

Proposition 5.7.1. Suppose γ ∈ [Γ ] has type 1 or 2. Then ΔA([γ]) = ΔG([γ]), i.e., in [γ]
there is no distinction among algebraically minimal, geometrically minimal, and tailless
cycles.

6. Edge zeta functions of XΓ

6.1. Type 1 and type 2 edge zeta functions of XΓ

Recall that a type 1 or 2 tailless 1-geodesic is a geodesic in XΓ . A cycle is primitive if
it is not a repetition of a shorter cycle. Note that every 1-geodesic cycle C is a repetition
of a primitive 1-geodesic cycle C ′ and the number of 1-geodesic cycles equivalent to C is
the geometric length of C ′, which is equal to the algebraic length of C ′ if C is of type 1.
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Denote by Nn(XΓ ) the number of geodesic type 1 tailless cycles in XΓ of length n.
In terms of the operator LE described in Section 4.1, we have Nn(XΓ ) = TrLn

E for all
integers n � 1. For i = 1, 2, define the type i edge zeta function of XΓ to be

Z1,i(XΓ , u) =
∏
[C]

(
1 − ulA([C]))−1

, (6.1)

where [C] runs through the equivalence classes of tailless primitive geodesic cycles of type
i in XΓ , and lA([C]) is the algebraic length of any cycle in [C]. Similar to Hashimoto’s
result [6] for graphs, we have

Proposition 6.1.1. For i ∈ {1, 2} the type i edge zeta function has the following expres-
sions:

Z1,i(XΓ , u) = exp
(∑

n�1

Nn(XΓ )
n

uin

)
= 1

det(I − LEui) .

Proof. Since type 2 edges are the opposite of type 1 edges but with twice algebraic
length, the number Nn(XΓ ) also counts tailless geodesic cycles in XΓ using only type
2 edges and with algebraic length 2n. It suffices to prove the case i = 1. Taking the
logarithmic derivative of (6.1) yields

u
d

du
logZ1,1(XΓ , u) =

∑
[C]

∑
m�1

lA
(
[C]
)
ulA([C])m =

∑
C

∑
m�1

ulA(C)m

since each primitive class [C] consists of lA([C]) cycles. Here C runs through all tailless
primitive geodesic cycles in XΓ of type 1. Clearly any such C repeated m times is a
tailless geodesic cycle with algebraic length lA([C])m, and we obtain all tailless geodesic
cycles of type 1 this way. So the last sum can be rewritten as

∑
n�1

Nn(XΓ )un =
∑
n�1

TrLn
Eu

n,

which, by Lemma 3 of [20], is equal to

u
d

du
det(I − LEu)−1.

This proves the proposition up to constant multiples. Finally noting that, as formal
power series in u, all three expressions have the same constant term, we conclude the
equality. �

In the next two sections, we shall enumerate Nn(XΓ ) by relating them to conjugacy
classes of Γ .
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7. Homotopy cycles in [γ] for γ split or irregular

Let | | be the valuation on F such that |π| = q−1. In this section we fix a split or
irregular γ ∈ [Γ ] with rational form rγ = diag(1, a, b), where ordπ b � ordπ a � 0.

7.1. Minimal lengths of homotopy cycles in [γ]

We begin by proving the first assertion of Theorem 5.4.1 for the split and irregular
cases.

Theorem 7.1.1. Suppose γ ∈ Γ is split or irregular with rγ = diag(1, a, b), where ordπ b �
ordπ a � 0. Then

(1) lA([γ]) = ordπ a + ordπ b = minκγ(gKZ)∈[γ] lA(κγ(gKZ)), and
(2) lG([γ]) = ordπ b = minκγ(gKZ)∈[γ] lG(κγ(gKZ)).

Proof. For γ split, the centralizer CG(rγ) consists of the diagonal matrices in G so that,
by Iwasawa decomposition, G = CG(rγ)UK, where

U =

⎧⎨
⎩
⎛
⎝ 1 x y

1 z

1

⎞
⎠ ∣∣∣ x, y, z ∈ F modulo OF

⎫⎬
⎭ .

It suffices to consider the lengths of κγ(PγgKZ) with g ∈ U . Write g =
( 1 x y

1 z
1

)
. Then

(Pγg)−1γPγgzγ = g−1rγg =

⎛
⎝ 1 x y

1 z

1

⎞
⎠

−1⎛
⎝ 1

a

b

⎞
⎠
⎛
⎝ 1 x y

1 z

1

⎞
⎠

=

⎛
⎝ 1 x(1 − a) y(1 − b) + xz(b− a)

a z(a− b)
b

⎞
⎠

∈ K

⎛
⎝πe1

πe2

πe3

⎞
⎠K

for some integers e1 � e2 � e3. In fact, for 1 � i � 3, e1 + · · ·+ ei = miny{ordπ y} where
y runs through the determinant of all i× i minors of g−1rγg. Consequently,

e1 = min
{
0, ordπ x(1 − a), ordπ z(a− b), ordπ

(
y(1 − b) + xz(b− a)

)}
� 0, (7.1)

e1 + e2 = min
{
ordπ a, ordπ

[
x(1 − a)z(a− b) − a

(
y(1 − b) + xz(b− a)

)]}
� ordπ a, (7.2)
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and

e1 + e2 + e3 = ordπ a + ordπ b. (7.3)

In particular, e3 � ordπ b from the last two inequalities. Moreover, we have, for any
g ∈ G,

lA
(
κγ(PγgKZ)

)
= e3 + e2 + e1 − 3e1 = ordπ a + ordπ b− 3e1

� ordπ a + ordπ b = lA
(
[γ]
)

(7.4)

and

lG
(
κγ(PγgKZ)

)
= e3 − e1 � ordπ b− e1 � ordπ b = lG

(
[γ]
)
. (7.5)

As noted before, the equalities in (7.4) and (7.5) hold for g ∈ CG(rγ). Therefore

lA
(
[γ]
)

= min
κγ(gKZ)∈[γ]

lA
(
κγ(gKZ)

)
and lG

(
[γ]
)

= min
κγ(gKZ)∈[γ]

lG
(
κγ(gKZ)

)
.

For γ irregular, we have either a = b or a = 1, and the centralizer CG(rγ) is isomorphic
to GL2(F )×Z and G = CG(rγ)U0K, where U0 consists of the elements in U with z = 0
(when a = b) or x = 0 (when a = 1). The above argument still holds. This proves the
theorem. �

The proof above shows that if κγ(PγgKZ) is algebraically minimal, then e1 = 0; and
it is geometrically minimal if the additional condition e1 + e2 = ordπ a is satisfied. By
(7.2), this obviously holds when ordπ a = 0, i.e., γ has type 1. The proof above also
shows that for γ irregular of type 1, a tailless κγ(PγgKZ) has g ∈ CG(rγ)K. We record
this in

Corollary 7.1.2. Suppose [γ] has type 1. Then algebraically minimal cycles in [γ] are
geometrically minimal, hence they agree with the tailless cycles in [γ]. Moreover, if γ is
irregular and has type 1, then the tailless cycles in [γ] are κγ(PγgKZ) with g ∈ CG(rγ)K.

7.2. Counting homotopy cycles in [γ] in algebraic length

As discuss in Section 5.7, the number of algebraically minimal cycles in [γ] is the
cardinality of CP−1

γ ΓPγ
(rγ)\ΔA([γ]) with ΔA([γ]) defined by (5.3). We showed in the

previous section that for γ irregular, ΔA([γ]) = CG(rγ)K/KZ so that the number of
algebraically tailless cycles in [γ] is equal to vol([γ]) given by (5.4).

The following theorem, stated in terms of a formal power series, counts the number
of homotopy cycles in [γ] with given algebraic length.
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Theorem 7.2.1. Suppose γ ∈ [Γ ] is split or irregular with rγ = diag(1, a, b). Then

#
(
CP−1

γ ΓPγ
(rγ)\ΔA

(
[γ]
))

= vol
(
[γ]
)
ω[γ]

and

∑
κγ(gKZ)∈[γ]

ulA(κγ(gKZ)) =
{

vol([γ]) · ω[γ] · ulA([γ]) 1−u3

1−q3u3 if γ splits,
vol([γ]) · ω[γ] · ulA([γ]) 1−u3

1−q2u3 if γis irregular.

Here vol([γ]) is given by (5.4), ω[γ] = (|1 − a||a − b||b − 1|)−1 for γ split, and ω[γ] = 1
for γ irregular.

Proof. If γ is split, the stabilizer CG(rγ) is the diagonal subgroup of G and G =
CG(rγ)UKZ; while if γ is irregular, the stabilizer CG(rγ) is GL2(F )Z, where GL2(F ) is
imbedded in G as diagonal block GL2(F ) × {1} (when a = 1) or {1} × GL2(F ) (when
a = b), and G = CG(rγ)U0KZ. Here U and U0 are as in the proof of Theorem 7.1.1. Put
W = U or U0 according as γ split or irregular. Then (CG(rγ) ∩ KZ)WKZ = WKZ.
Suppose S represents the double cosets in CP−1

γ ΓPγ
(rγ)\CG(rγ)/(CG(rγ)∩KZ), then S

has cardinality vol([γ]) by (5.4), and

G =
⋃
h∈S

CP−1
γ ΓPγ

(rγ)h
(
CG(rγ) ∩KZ

)
WKZ =

⋃
h∈S

CP−1
γ ΓPγ

(rγ)hWKZ.

Lemma 7.2.2. For γ ∈ Γ split or irregular, the elements hu with h ∈ S and u ∈ W , where
S and W are defined above, are double coset representatives of CP−1

γ ΓPγ
(rγ)\G/KZ.

Proof. Suppose CP−1
γ ΓPγ

(rγ)huKZ = CP−1
γ ΓPγ

(rγ)h′u′KZ for h, h′ ∈ S and u, u′ ∈ W .
Then there is some c ∈ CP−1

γ ΓPγ
(rγ) such that huKZ = ch′u′KZ, i.e., u−1h−1ch′u′ ∈

KZ. This together with the definition of W implies that h−1ch′ ∈ CG(rγ)∩KZ. There-
fore h and h′ in S represent the same double coset of CG(rγ), hence h = h′. On the other
hand, since Γ intersects gZKg−1 trivially for all g ∈ G by assumption, the same holds
for its conjugate h−1P−1

γ ΓPγh. Now h−1ch ∈ (h−1P−1
γ ΓPγh) ∩ KZ, hence is equal to

the identity in G. So c = id and consequently uKZ = u′KZ. This implies u = u′ by
definition of W , as desired. �

Since κγ(PγhgKZ) and κγ(PγgKZ) have the same algebraic length for h ∈ CG(rγ)
and g ∈ G, we get

∑
κγ(PγgKZ)∈[γ]

ulA(κγ(PγgKZ)) = vol
(
[γ]
) ∑
v∈W

ulA(κγ(PγvKZ)),

where W = U or U0 according to γ split or irregular.
To proceed, we compute the sum on the right hand side. First assume γ split so that

W = U . Given v ∈ U , write v =
( 1 x y

1 z

)
. As computed in the proof of Theorem 7.1.1,
1
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(Pγv)−1γPγvzγ = v−1rγv =

⎛
⎝ 1 x(1 − a) y(1 − b) + xz(b− a)

a z(a− b)
b

⎞
⎠ = (vi,j).

For fixed m � 0, we count the number of v’s such that lA(κγ(PγvKZ)) � lA([γ]) + 3m.
By (7.4), the constraints are |vij | � qm for all 1 � i, j � 3. In other words,

∣∣x(1 − a)
∣∣ � qm,

∣∣z(a− b)
∣∣ � qm and

∣∣y(1 − b) + xz(b− a)
∣∣ � qm. (7.6)

This implies

|x| � qm|1 − a|−1 and |z| � qm|a− b|−1

so that the numbers of x and z in F/OF are qm|1 − a|−1 and qm|a− b|−1, respectively.
Further, for chosen x and z, there are qm|1 − b|−1 choices of y satisfying the above
constraint. We have shown

#
{
v ∈ U

∣∣ lA(κγ(PγvKZ)
)

= lA
(
[γ]
)}

=
(
|1 − a||a− b||b− 1|

)−1 = ω[γ] (7.7)

and, for m > 0,

#
{
v ∈ U

∣∣ lA(κγ(PγvKZ)
)

= lA
(
[γ]
)

+ 3m
}

=
(
q3m − q3m−3)ω[γ]. (7.8)

Put together, this gives

∑
v∈U

ulA(κγ(PγvKZ)) = ω[γ]u
lA([γ])

(
1 +

∑
m�1

(
q3m − q3m−3)u3m

)

= ω[γ]u
lA([γ])

(
1 − u3

1 − q3u3

)
.

Next consider the case γ irregular so that W = U0. Recall that U0 consists of elements
in U with z = 0 (when a = b) or x = 0 (when a = 1). Note that ordπ b > 0, for otherwise
γ would lie in the intersection of Γ with a conjugate of K, which is trivial. Consequently,
1 − b is a unit in OF so that |1 − b| = 1. The argument above restricted to elements in
U0 goes through as before, but the three inequalities in (7.6) are reduced to two with
either x(1 − a) = 0 or z(a− b) = 0. This then shows that the number of nonzero x or z

is qm − 1 and the number of y is qm. Hence we obtain

#
{
v ∈ U0

∣∣ lA(κγ(PγvKZ)
)

= lA
(
[γ]
)

+ 3m
}

= q2m − q2m−2, (7.9)

which in turn gives
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∑
v∈U0

ulA(κγ(PγvKZ)) = ulA([γ])
(

1 +
∑
m�1

(
q2m − q2m−2)u3m

)

= ω[γ]u
lA([γ])

(
1 − u3

1 − q2u3

)
. �

7.3. Counting homotopy cycles of type 1 in [γ]

The theorem below gives the number of type 1 homotopy cycles in [γ] of given algebraic
length. The result depends on the type of [γ].

Theorem 7.3.1. With the same notation as in Theorem 7.2.1, we have:

(A) If [γ] splits and is not of type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ)) = vol
(
[γ]
)
ω[γ]u

lA([γ])(1 − q−1)(1 − q2u3

1 − q3u3

)
.

Moreover, no type 1 cycles in [γ] are geometrically minimal.
(B) If [γ] splits and has type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ)) = vol
(
[γ]
)
ω[γ]u

lA([γ])
(
q−1 +

(
1 − q−1)(1 − q2u3

1 − q3u3

))
.

(C) Suppose γ ∈ Γ is irregular. Then [γ] contains no cycles of type 1 if [γ] is not of
type 1; while if [γ] has type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ)) = vol
(
[γ]
)
ω[γ]u

lA([γ]).

Proof. For γ ∈ Γ split or irregular, we have rγ = diag(1, a, b), so [γ] has type (ordπ b−
ordπ a, ordπ a) and lA([γ]) = ordπ b+ordπ a. It has type 1 if and only of ordπ a = 0. The
argument is similar to the proof of Theorem 7.2.1; the difference is that we only need to
consider those v ∈ W such that κγ(PγvKZ) has type 1. Here W = U or U0 according
as γ split or irregular. So we determine the cardinality of the set

{
v ∈ W

∣∣ lG(κγ(PγvKZ)
)

= lA
(
κγ(PγvKZ)

)
= lA

(
[γ]
)

+ 3m = ordπ b + ordπ a + 3m
}

for each m � 0. As before, writing v as
( 1 x y

1 z
1

)
and following the proofs of Theorem 7.2.1

and Theorem 7.1.1, we arrive at the following constraints on x, y, z ∈ F/OF :

(1) min{0, ordπ x(1 − a), ordπ z(a− b), ordπ(y(1 − b) + xz(b− a))} = −m, and
(2) min{ordπ a, ordπ[x(1 − a)z(a− b) − a(y(1 − b) + xz(b− a))]} = −2m.
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For m > 0, the two constraints are equivalent to

(3) ordπ x(1 − a) = −m = ordπ z(a− b) and ordπ(y(1 − b) + xz(b− a)) � −m.

First assume γ splits. The number of x is (1 − q−1)qm|1 − a|−1, the number of z is
(1 − q−1)qm|a− b|−1, and the number of y is qm|1 − b|−1 so that the total number of v
is (1 − q−1)2q3mω[γ]. For m = 0 and ordπ a > 0, the same constraint (3) holds. In this
case the number of x is |1 − a|−1 = 1, the number of y is |1 − b|−1 = 1 and the number
of z is (1 − q−1)|a − b|−1 so that the total number of v is (1 − q−1)ω[γ]. Finally, when
m = ordπ a = 0, the constraints (1) and (2) are equivalent to

(4) ordπ x(1 − a) � 0, ordπ z(a− b) � 0 and ordπ(y(1 − b) + xz(b− a)) � 0.

Hence the numbers of x, y and z are |1 − a|−1, |1 − b|−1 and |a − b|−1, respectively, so
that the number of v is ω[γ]. Note that y = z = 0 in this case.

Since vol([γ])ω[γ] is present in all cases, it suffices to compute

1
vol([γ])ω[γ]

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ)).

In case ordπ a > 0, namely [γ] does not have type 1, this sum is equal to

ulA([γ])
(

1 − q−1 +
∑
m�1

(
1 − q−1)2q3mu3m

)
= ulA([γ])(1 − q−1)(1 − q2u3

1 − q3u3

)
,

and in case ordπ a = 0, namely [γ] has type 1, it is equal to

ulA([γ])
(

1 +
∑
m�1

(
1 − q−1)2q3mu3m

)
= ulA([γ])

(
q−1 +

(
1 − q−1)(1 − q2u3

1 − q3u3

))
.

This proves (A) and (B).
When γ is irregular, either a = 1 or a = b, so (3) never holds and there are no cycles

in [γ] of type 1 and algebraic length > lA([γ]). Further, there are vol([γ]) cycles in [γ]
with algebraic length equal to lA([γ]) and they have the same type as [γ]. This proves
the assertion (C). �

Contained in the proof above is the following statement.

Corollary 7.3.2. Suppose γ ∈ Γ is split or irregular with rγ = diag(1, a, b). Assume that
γ has type 1, a ∈ O×

F and n = ordπ b. Let δ = δ([γ]) = ordπ(1− a) for γ split, and δ = 0
for γ irregular. Then
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ΔA

(
[γ]
)

=

⎧⎨
⎩hvxKZ

∣∣∣

h ∈ CG(rγ)/
(
CG(rγ) ∩KZ

)
, vx =

⎛
⎝ 1 x

1
1

⎞
⎠ with x ∈ π−δOF /OF

⎫⎬
⎭ .

8. Homotopy cycles in [γ] for γ rank-one split

In this section we fix a rank-one split γ ∈ [Γ ] whose eigenvalues generate a quadratic
extension L = F (λ) of F . Here λ is a unit or uniformizer in L according as L is unramified
or ramified over F , i.e., γ is unramified or ramified rank-one split. Let rγ =

( a
e dc
d e+db

)
be a rational form of γ as in Section 4.3. Fix a matrix Pγ so that P−1

γ γPγzγ = rγ for
some zγ ∈ Z.

8.1. The centralizers of rγ for γ rank-one split

Embed L× in GL2(F ) as the subgroup

{(
u vc

v u + vb

) ∣∣∣ u, v ∈ F, not both zero
}
, (8.1)

which is further imbedded in GL3(F ) as
{( 1

u vc
v u+vb

)}
. Note that CG(rγ) = L×Z.

Further CP−1
γ ΓPγ

(rγ)\CG(rγ)/(CG(rγ) ∩KZ) has cardinality vol([γ]) by (5.4).
The group of units UL of L× is contained in K. If L is unramified over F , then

L× = 〈π〉UL so that CG(rγ)K/KZ is represented by the vertices diag(πn, 1, 1)KZ, n ∈ Z,
on a line in B, and CP−1

γ ΓPγ
(rγ)\CG(rγ)/(CG(rγ)∩KZ) represented by diag(πn, 1, 1)KZ,

n mod vol([γ]). If L is ramified over F , then L× = 〈πL〉UL, where the uniformizer πL

does not lie in F and π2
L differs from π by a unit multiple. In this case CG(rγ)K/KZ

is represented by the vertices diag(πn, 1, 1)KZ and diag(πn, 1, 1)πLKZ, n ∈ Z, lying on
two lines in B. There are two possibilities for CP−1

γ ΓPγ
(rγ):

Case (i). The vertices in CP−1
γ ΓPγ

(rγ)KZ/KZ are contained in the line
diag(πn, 1, 1)KZ, n ∈ Z. Then vol([γ]) is even so that CP−1

γ ΓPγ
(rγ)\CG(rγ)/(CG(rγ) ∩

KZ) is represented by the vertices diag(πn, 1, 1)KZ and diag(πn, 1, 1)πLKZ,
n mod vol([γ])/2.

Case (ii). CP−1
γ ΓPγ

(rγ)KZ/KZ contains a vertex on the line diag(πn, 1, 1)πLKZ,
n ∈ Z. Let y ∈ CP−1

γ ΓPγ
(rγ) be such that yKZ = diag(πN , 1, 1)πLKZ has the least non-

negative N . Then y generates the group CP−1
γ ΓPγ

(rγ), y2KZ = diag(π2N−1, 1, 1)KZ,
vol([γ]) = 2N−1 is odd, and CP−1

γ ΓPγ
(rγ)\CG(rγ)/(CG(rγ)∩KZ) is represented by the

vertices diag(πn, 1, 1)KZ, 0 � n � N − 1 = (vol([γ]) − 1)/2, and diag(πn, 1, 1)πLKZ,
0 � n � N − 2 = (vol([γ]) − 3)/2.
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8.2. Double coset representatives of CG(rγ)\G/KZ

Proposition 8.2.1. The double cosets in CG(rγ)\G/KZ are represented by elements in

S =

⎧⎨
⎩
⎛
⎝ 1 x y

1 0
πn

⎞
⎠ ∣∣∣ x, y ∈ F/OF , n � 0

⎫⎬
⎭ .

Proof. Write an element g ∈ G as wk for some upper triangular w and some k ∈ K.
Since CG(rγ) = L×Z, modulo the center Z, we may assume that w =

( 1 x y
1 z

πn

)
, where

x, y, z ∈ F/OF and n ∈ Z. We are reduced to proving

GL2(F ) =
∐
n�0

L×
(

1
πn

)
GL2(OF ), (8.2)

where L× is given by (8.1) (cf. [4], Lemma 1 on p. 30).
First we check the disjoint union. Suppose otherwise. Then there exist m �= n and g

satisfying

g ∈ L× ∩
(

1
πm

)
GL2(OF )

(
1

π−n

)
.

Replacing g by its inverse if necessary, we may assume m > n. Write g =
(

x yπ−n

πmz wπm−n

)
=( u vc

v u+vb

)
for some

( x y
z w

)
∈ GL2(OF ) and u, v ∈ F . Comparing entries, we find yπ−n =

czπm and wπm−n = x+ zbπm. Since x, y, z, w, b, c are all integral, we conclude that x is
a nonunit and hence z and y should both be units, but then yπ−n = czπm cannot hold
by checking the order of both sides.

Next we prove equality. Let w =
( 1 z

πm

)
∈ GL2(F ). Observe that for m � 0,

(
0 c

1 b

)(
1 0
0 πm

)
=
(

0 cπm

1 bπm

)
=
(
cπm 0
0 1

)(
0 1
1 bπm

)
,

showing that
( 1 0

0 πm

)
and

( 1 0
0 π−m−ordπ c

)
represent the same double coset. Since ordπ c = 0

or 1, only such diagonal matrices with m � 0 are needed as double coset representa-
tives. Thus we assume ordπ z < 0. It suffices to reduce w to a diagonal matrix via left
multiplication by elements in L× and right multiplication by elements in GL2(OF ).

Case (I). 0 > ordπ z � m+ordπ c. Choose v ∈ OF with ordπ v+m+ordπ c = ordπ z and
u a unit in OF satisfying uz = −cvπm. Then

( u vc
v u+vb

)
w =

(
u 0
v vz+(u+vb)πm

)
=
( 1 0

0 πm

)
k

for some k ∈ GL2(OF ). Here we used the fact that u(u+vb)−v2c is a unit. It is obvious
if v or c (and hence b) is not a unit; when v and c are both units, this results from the
irreducibility of x2 − bx− c.



76 M.-H. Kang, W.-C.W. Li / Advances in Mathematics 256 (2014) 46–103
Case (II). m + ordπ c > ordπ z. Choose u ∈ OF with ordπ u + ordπ z = m + ordπ c

and v a unit such that uz = −vcπm. Then
( u vc
v u+vb

)
w =

(
u 0
v vz+(u+vb)πm

)
=
(
u 0
0 z

)
k for

some k ∈ GL2(OF ).
In both cases we have shown that w lies in the right hand side of (8.2), therefore (8.2)

holds. This proves the proposition. �
8.3. Minimal lengths of cycles in [γ]

The type of [γ], as defined in Section 5.4, is (n,m) such that rγ ∈ Tn,m =
K diag(1, πm, πn+m)KZ. Observe that ordπ det γ ≡ ordπ det rγ ≡ ordπ a(e + dλ)(e +
dλ̄) ≡ 0 mod 3 by the assumption on Γ . Hence if e + dλ is a unit in L, then at least
one of e, d is a unit and a is not a unit. Consequently, [γ] has type (ordπ a, 0). Next
assume e + dλ is not a unit. We distinguish two cases. If L is unramified over F (hence
λ is a unit), then both e and d are non-units and a is a unit; in this case [γ] has type
(0,min(ordπ e, ordπ d)). If L is ramified over F (hence λ is a uniformizer of L), then there
are two possibilities:

(i) ordπ(e + dλ)(e + dλ̄) = 1. This happens if and only if e is a non-unit, d is a unit,
and ordπ a � 2; in this case [γ] has type (ordπ a− 1, 1).

(ii) ordπ(e + dλ)(e + dλ̄) > 1. This happens if and only if both e and d are non-units
and a is a unit; in this case [γ] has type (0, ordπ e) if ordπ e � ordπ d, and type (1, ordπ d)
if ordπ e > ordπ d.

This proves the first assertion of

Theorem 8.3.1. Let γ be a rank-one split element in [Γ ] with rational form rγ =( a
e dc
d e+db

)
. Suppose that rγ ∈ K diag(1, πm, πm+n)KZ. Then

(1) The type (n,m) of [γ] is as follows.
(1.i) If ordπ c = 0, then (n,m) = (ordπ a,min{ordπ e, ordπ d}).
(1.ii) If ordπ c = 1, then (n,m) = (ordπ a, ordπ e) provided that ordπ e � ordπ d,

otherwise (n,m) = (max{ordπ a− 1, 1},max{ordπ d, 1}).
(2) lA([γ]) = minκγ(gKZ)∈[γ] lA(κγ(gKZ)) = ordπ a(e2 + edb− cd2) = n + 2m.
(3) lG([γ]) = minκγ(gKZ)∈[γ] lG(κγ(gKZ)) = n + m.

This theorem combined with Theorem 7.1.1 completes the proof of Theorem 5.4.1.

Remark. If γ is ramified rank-one split and [γ] has type (n, 1), then [γ2] has type
(2n + 1, 0).

Proof. It remains to show that the algebraic and geometric lengths of the cycles in [γ]
are at least those of [γ] since, as observed before, the cycles κγ(PγgKZ) with g ∈ CG(rγ)
have the same algebraic and geometric lengths as [γ]. By Proposition 8.2.1, it suffices to
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compute (Pγg)−1γPγgzγ = g−1rγg for g ∈ S. Let g =
( 1 x y

1 0
πi

)
, where x, y ∈ F/OF and

i � 0. Then

g−1rγg =

⎛
⎝ 1 −x −yπ−i

1 0
π−i

⎞
⎠
⎛
⎝ a

e dc

d e + db

⎞
⎠
⎛
⎝ 1 x y

1 0
πi

⎞
⎠

=

⎛
⎝ a (a− e)x− dyπ−i (a− e− db)y − cdxπi

e dcπi

dπ−i e + db

⎞
⎠

∈ K

⎛
⎝πe1

πe2

πe3

⎞
⎠K.

Here e1 � e2 � e3, and as in the proof of Theorem 7.1.1, we have

e1 � min{ordπ a,−i + ordπ d, ordπ e} � min{ordπ a, ordπ d, ordπ e} = 0, (8.3)

e1 + e2 � min
{
ordπ ae,−i + ordπ ad, ordπ

(
e2 + bed− cd2)}

� min
{
ordπ ae, ordπ ad, ordπ

(
e2 + bed− cd2)} = m, (8.4)

and

e1 + e2 + e3 = ordπ a
(
e2 + bed− cd2) = n + 2m, (8.5)

in which the last upper bound for e1+e2 can be verified using the statement (1). Therefore
lA(κγ(PγgKZ)) = e1 + e2 + e3 − 3e1 � e1 + e2 + e3 = n+2m = lA([γ]) since e1 � 0. The
inequalities (8.4) and (8.5) together give the lower bound e3 � n + 2m − m = n + m,
which in turn implies lG(κγ(PγgKZ)) = e3 − e1 � n + m. This proves the theorem. �

As shown in the proof above, if [γ] has type 1, i.e. m = 0, then an algebraically
minimal cycle in [γ] satisfies e1 = 0, which implies e1 + e2 � 0 and hence e1 + e2 = 0 by
(8.4) and e3 = n by (8.5). This proves

Corollary 8.3.2. Suppose γ ∈ [Γ ] is rank-one split. If [γ] has type 1, then the algebraically
minimal cycles in [γ] coincide with the geometrically minimal (hence tailless) cycles
in [γ].

8.4. Counting the number of cycles in [γ] in algebraic length

As observed before, given s ∈ S, the cycles κγ(PγgKZ) have the same algebraic length
for all gKZ ∈ CG(rγ)sK/KZ. Since S represents the double coset CG(rγ)\G/KZ, to
count the number of cycles in [γ] of a given length, we need to determine the cardinality
of CP−1ΓP (rγ)\CG(rγ)sK/KZ for s ∈ S. For this, we may take as representatives the
γ γ
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product of representatives of CP−1
γ ΓPγ

(rγ)\CG(rγ)/(CG(rγ)∩KZ) (independent of s) by
the representatives of (CG(rγ)∩KZ)sK/KZ. The number of the former representatives
is vol([γ]) by (5.4).

It remains to compute the cardinality of the latter. Recall that L×∩K consists of the
units in L×, which are identified with the matrices

UL =
{(

u vc

v u + vb

) ∣∣∣ u, v ∈ OF , u2 + uvb− cv2 is a unit
}
.

Denote by K ′ the group GL2(OF ). As analyzed in the proof of Proposition 8.2.1, we are
reduced to counting, for each m � 0, the cardinality of UL

( 1
πm

)
K ′/K ′.

Proposition 8.4.1.

#
[
UL

(
1

πm

)
K ′/K ′

]
=

⎧⎨
⎩

1 when m = 0,
qm when m � 1 and ordπ c = 1,
qm + qm−1 when m � 1 and ordπ c = 0.

Proof. It is clear that the cardinality is 1 when m = 0. Thus assume m � 1.
Case (I). ordπ c = 1. Then any

( u vc
v u+vb

)
∈ UL satisfies u ∈ O×

F . For n � 0, let

UL(n) =
{(

u vcπn

vπn u + vbπn

)
∈ UL

∣∣∣ u, v ∈ O×
F

}

so that

UL = UL(∞)
⋃
n�0

UL(n),

where

UL(∞) =
{(

u 0
0 u

) ∣∣∣ u ∈ O×
F

}
.

One verifies that

UL(n)
(

1
πm

)
K ′ =

⋃
u∈O×

F /πm−nOF

(
πm−n u

πn

)
K ′

for 0 � n < m, and

UL(n)
(

1
πm

)
K ′ =

(
1

πm

)
K ′

for n � m and n = ∞. Therefore
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#
[
UL

(
1

πm

)
K ′/K ′

]
= 1 +

∑
0�n<m

(
qm−n − qm−n−1) = qm.

Case (II). ordπ c = 0. Let

U ′
L =

{(
u vc

v u + vb

)
∈ UL

∣∣∣ u ∈ O×
F

}

and

U ′′
L =

{(
u vc

v u + vb

)
∈ UL

∣∣∣ u ∈ πOF

}

so that

UL = U ′
L ∪ U ′′

L.

As in Case (I), we have

U ′
L

(
1

πm

)
K ′ =

⋃
m�n�0

u∈O×
F /πm−nOF

(
πm−n u

πn

)
K ′.

One checks that

U ′′
L

(
1

πm

)
K ′ =

⋃
z∈πOF /πmOF

(
πm z

1

)
K ′.

Therefore

#
[
UL

(
1

πm

)
K ′/K ′

]
= qm + qm−1

for m � 1. �
We summarize the above discussion in

Corollary 8.4.2. For each s =
( 1 x y

1 0
πn

)
∈ S, the cardinality of CP−1

γ ΓPγ
(rγ)\

CG(rγ)sK/KZ is

vol
(
[γ]
)⎧⎨⎩

1 when n = 0,
qn when n � 1 and γ is ramified rank-one split,
qn + qn−1 when n � 1 and γ is unramified rank-one split.

Now we are ready to state the main result of this section.
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Theorem 8.4.3. Suppose γ ∈ [Γ ] is rank-one split with rational form rγ =
( a

e dc
d e+db

)
.

Set δ = δ([γ]) = ordπ d and μ = μ([γ]) = ordπ((a− e)2 − db(a− e) − cd2).

(A) If γ is unramified rank-one split, then the following hold.
(A1)

∑
κγ(gKZ)∈[γ]

ulA(κγ(gKZ))

= vol
(
[γ]
)
ulA([γ])

(
qδ+1 + qδ − 2

q − 1 + (q + 1)qδ+2u3

1 − q3u3

)(
1 − u3

1 − q2u3

)
.

(A2) If [γ] does not have type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ))

= vol
(
[γ]
)
ulA([γ])

(
qδ + qδ−1 + (q2 − 1)qδ+1u3

1 − q3u3

)
.

(A3) If [γ] has type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ))

= vol
(
[γ]
)
ulA([γ])

(
qδ+1 + qδ − 2

q − 1 + (q2 − 1)qδ+1u3

1 − q3u3

)
.

(B) If γ is ramified rank-one split, then the following hold.
(B1)

∑
κγ(gKZ)∈[γ]

ulA(κγ(gKZ)) = vol
(
[γ]
)
qμulA([γ])

(
qδ+1 − 1
q − 1 + qδ+3u3

1 − q3u3

)
1 − u3

1 − q2u3 .

(B2) If [γ] does not have type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ)) = vol
(
[γ]
)
ulA([γ])

(
qδ
(
qμ − μ

)
+ (q − 1)qδ+μ+2u3

1 − q3u3

)
.

(B3) If [γ] has type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ)) = vol
(
[γ]
)
ulA([γ])

(
qδ+1 − 1
q − 1 + (q − 1)qδ+2u3

1 − q3u3

)
.



M.-H. Kang, W.-C.W. Li / Advances in Mathematics 256 (2014) 46–103 81
Moreover, in each case, if [γ] does not have type 1, none of the type 1 cycles in [γ] are
geometrically minimal.

Remarks. 1. μ = 0 unless a, e, c are all nonunits, in which case it is 1 and δ = 0.
2. μ = 0 when [γ] has type 1.
3. δ > 0 in case (A2), while δ may be zero in case (A3).

Proof. Recall that the algebraic length of a cycle in [γ] is equal to lA([γ]) + 3m for
some m � 0. We shall follow the same notation and computation as in the proof of
Theorem 8.3.1, letting g run through all elements in the double coset representatives S

and computing, for each m � 0, the number of cycles κγ(PγgKZ) with lA(κγ(PγgKZ)) �
lA([γ]) + 3m using Corollary 8.4.2. As g =

( 1 x y
1 0

πi

)
, this amounts to computing the

number of x, y ∈ F/OF and i � 0 such that

e1 = min
{
ordπ

(
(a− e)x− dπ−iy

)
, ordπ

(
−cdπix + (a− e− db)y

)
,−i + ordπ d

}
� −m.

This is equivalent to 0 � i � m + ordπ d, (a − e)x − dπ−iy ∈ π−mOF and −cdπix +
(a − e − db)y ∈ π−mOF . Denote ordπ d by δ for short. So for each 0 � i � m + δ, we
solve the following system of linear equations

(
α

β

)
=
(

a− e −dπ−i

−cdπi a− e− db

)(
x

y

)
= M

(
x

y

)
(8.6)

for α, β ∈ π−mOF and count the distinct pairs (x, y) ∈ F/OF × F/OF . Recall that
a, e, d are integral, at least one of them is a unit, and a and e cannot be both units since
ordπ det rγ > 0. Let

μ := ordπ detM = ordπ

(
(a− e)2 − db(a− e) − cd2),

which is 0 unless a, e and c are all nonunits, in which case it is 1. Put

ε := min
{
ordπ(a− e),−i + δ, ordπ(a− e− bd)

}
,

which is equal to −i+ δ if δ � i � m+ δ, and 0 if 0 � i < δ. Then the coefficient matrix
M = k1 diag(πε, πμ−ε)k2 for some k1, k2 ∈ GL2(OF ). Thus system (8.6) has the same
number of solutions as the system

(
α

β

)
=
(
πε

πμ−ε

)(
x

y

)
(8.7)

for α, β ∈ π−mOF and (x, y) ∈ F/OF ×F/OF . We get the solutions x ∈ π−m−εOF /OF

and y ∈ π−m−μ+εOF /OF so that there are q2m+μ different pairs (x, y) for each 0 � i �
m + δ. To proceed, we distinguish two cases.
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Case (A) ordπ c = 0, that is, γ is unramified rank-one split. Then μ = 0. By Corol-
lary 8.4.2, the number of classes in [γ] with algebraic length at most lA([γ]) + 3m is

vol
(
[γ]
)
q2m
(

1 +
∑

1�n�m+δ

qn + qn−1
)

= vol
(
[γ]
)
q2m
(
qm+δ − 1
q − 1 + qm+δ+1 − 1

q − 1

)

= vol([γ])
q − 1

(
q3m+δ+1 + q3m+δ − 2q2m).

Therefore
∑

κγ(gKZ)∈[γ]

ulA(κγ(gKZ)) =
∑

κγ(PγgKZ)∈[γ]

ulA(κγ(PγgKZ))

= vol
(
[γ]
)
ulA([γ]) 1

q − 1

(
qδ+1 + qδ − 2

+
∑
m�1

(
q3m+δ+1 + q3m+δ − 2q2m − q3m+δ−2 − q3m+δ−3 + 2q2m−2)u3m

)

= vol
(
[γ]
)
ulA([γ]) 1

q − 1

(
qδ+1 + qδ

1 − q3u3 − 2
1 − q2u3

)(
1 − u3)

= vol
(
[γ]
)
ulA([γ])

(
qδ+1 + qδ − 2

q − 1 + (q + 1)qδ+2u3

1 − q3u3

)(
1 − u3

1 − q2u3

)
.

Among the cycles with lA(κγ(PγgKZ)) = lA([γ]) + 3m, we compute the number
of those with type 1. First consider the case m � 1. In order that lA(κγ(PγgKZ)) =
lA([γ]) + 3m and κγ(PγgKZ) has type 1, two conditions must be satisfied:

e1 = min
{
ordπ

(
(a− e)x− dπ−iy

)
, ordπ

(
−cdπix + (a− e− db)y

)
,−i + δ

}
= −m,

and

e1 + e2 = ordπ

[(
(a− e)x− dπ−iy

)
(e + db) − dπ−i

(
−cdπix + (a− e− db)y

)]
= −2m.

These two conditions are equivalent to i = δ + m, ordπ(−cdπix + (a − e − db)y) =
−m, and ordπ((a − e)x − dπ−iy) � −m. This amounts to solving system (8.6) with
α ∈ π−mOF and β ∈ π−mO×

F , hence we obtain (q − 1)q2m−1 distinct pairs (x, y).
Combined with Corollary 8.4.2, we see that the number of type 1 cycles κγ(PγgKZ)
with lA(κγ(PγgKZ)) = lA([γ]) + 3m is vol([γ])(q − 1)q2m−1(qδ+m + qδ+m−1).

Next consider the case m = 0. Under the assumption ordπ c = 0, we know from
Theorem 8.3.1 that [γ] has type (ordπ a,min{ordπ e, ordπ d}). Therefore it has type 1 if
and only if ordπ a > 0, in which case all cycles in [γ] with algebraic length equal to lA([γ])
have type 1, and the number of such cycles is vol([γ]) q

δ+1+qδ−2
q−1 , as computed above. If

[γ] does not have type 1, then δ = ordπ d > 0; the condition e1 = e2 = 0 implies i = δ
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and only one solution (x, y) = (0, 0). In this case the number of type 1 cycles in [γ] with
algebraic length equal to lA([γ]) is qδ + qδ−1 by Corollary 8.4.2. Put together, we have
shown the following:

If [γ] has type 1, then
∑

κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ))

= vol
(
[γ]
)
ulA([γ])

(
qδ+1 + qδ − 2

q − 1 +
∑
m�1

(q − 1)q2m−1(qδ+m + qδ+m−1)u3m
)

= vol
(
[γ]
)
ulA([γ])

(
qδ+1 + qδ − 2

q − 1 + (q2 − 1)qδ+1u3

1 − q3u3

)
,

while if [γ] does not have type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ)) = vol
(
[γ]
)
ulA([γ])

(
qδ + qδ−1 + (q2 − 1)qδ+1u3

1 − q3u3

)
.

Case (B) ordπ c = 1, that is, γ is ramified rank-one split. Then μ = 0 or 1. The same
computation as in Case (A) together with Corollary 8.4.2 shows that the number of
classes in [γ] with algebraic length at most lA([γ]) + 3m is

vol
(
[γ]
)
q2m+μ

∑
0�n�m+δ

qn = vol
(
[γ]
)
q2m+μ q

m+δ+1 − 1
q − 1

= vol
(
[γ]
) qμ

q − 1
(
q3m+δ+1 − q2m).

Therefore
∑

κγ(gKZ)∈[γ]

ulA(κγ(gKZ))

= vol
(
[γ]
) qμ

q − 1u
lA([γ])

(∑
m�0

(
q3m+δ+1 − q2m)u3m −

∑
m�1

(
q3m+δ−2 − q2m−2)u3m

)

= vol
(
[γ]
) qμ

q − 1u
lA([γ])

(
qδ+1

1 − q3u3 − 1
1 − q2u3

)(
1 − u3)

= vol
(
[γ]
)
qμulA([γ])

(
qδ+1 − 1
q − 1 + qδ+3u3

1 − q3u3

)
1 − u3

1 − q2u3 .

Now we compute the number of type 1 cycles κγ(PγgKZ) with algebraic length
lA(κγ(PγgKZ)) = lA([γ]) + 3m. First consider the case m � 1. Following the same
argument as in Case (A) and applying Corollary 8.4.2, we see that the number of such
cycles is vol([γ])(q − 1)q2m+μ−1qδ+m.
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Next we discuss the remaining case m = 0. By Theorem 8.3.1, [γ] has type 1 if and
only if ordπ a > 0 and ordπ e = 0, in which case all cycles in [γ] with algebraic length
equal to lA([γ]) are of type 1, and the number of such cycles is vol([γ])qμ qδ+1−1

q−1 . When
[γ] does not have type 1, we have ordπ e > 0; the condition e1 = e2 = 0 implies i = δ.
Moreover, if μ = 0, in which case a is a unit, then there is only one pair (x, y) = (0, 0);
while if μ = 1, in which case a is not a unit, then there are q−1 pairs (x, y) = (0, y) with
y ∈ π−1O×

F /OF so that ordπ(−cdπix+ (a− e− db)y) = 0. Consequently, when [γ] does
not have type 1, the number of type 1 cycles in [γ] with algebraic length equal to lA([γ])
is vol([γ])qδ if μ = 0, and vol([γ])(q−1)qδ if μ = 1. In other words, it is vol([γ])qδ(qμ−μ).
Summing up, we have proved the following:

If [γ] has type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ))

= vol
(
[γ]
)
ulA([γ])qμ

(
qδ+1 − 1
q − 1 +

∑
m�1

(q − 1)q3m+δ−1u3m
)

= vol
(
[γ]
)
ulA([γ])qμ

(
qδ+1 − 1
q − 1 + (q − 1)qδ+2u3

1 − q3u3

)
,

while if [γ] does not have type 1, then

∑
κγ(gKZ)∈[γ], type 1

ulA(κγ(gKZ)) = vol
(
[γ]
)
ulA([γ])

(
qδ
(
qμ − μ

)
+ (q − 1)qδ+μ+2u3

1 − q3u3

)
.

This completes the proof of the theorem. �
Contained in the proofs of Corollary 8.4.2 and Theorem 8.4.3 is the proposition below,

in which

gi,j,u =

⎛
⎝ 1

πi−j u

πj

⎞
⎠ and gi,z =

⎛
⎝ 1

πi z

1

⎞
⎠ . (8.8)

Proposition 8.4.4. Let γ ∈ [Γ ] be rank-one split with rγ =
( a

e dc
d e+db

)
. Set δ = δ([γ]) =

ordπ d. Suppose that [γ] has type 1 with n = ordπ a. If γ is ramified rank-one split, then

ΔA

(
[γ]
)

=
{
hgi,j,uKZ

∣∣ h ∈ CG(rγ)/
(
CG(rγ) ∩KZ

)
, 0 � j � i � δ,

u ∈ O×
F /π

i−jOF for j < i, and u = 0 for j = i
}
;

while if γ is unramified rank-one split, then
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ΔA

(
[γ]
)

= {hgi,j,uKZ | h and gi,j,u as above}
∪
{
hgi,zKZ

∣∣ h as above, 1 � i � δ, z ∈ πOF /π
iOF

}
.

Consequently, the number of algebraically minimal cycles in [γ] is

#
(
CP−1

γ ΓPγ
(rγ)\ΔA

(
[γ]
))

= vol
(
[γ]
)
ω[γ],

where

ω[γ] =
{

qδ+1+qδ−2
q−1 if [γ] is unramified rank-one split,

qδ+1−1
q−1 if [γ] is ramified rank-one split.

We end this subsection by comparing ΔG([γ]) and ΔG([γ2]), where ΔG([γ]) is defined
by (5.5). Suppose [γ] is of type (m,n). If [γ2] is of type (2m, 2n), then a geometri-
cally minimal 1-geodesic κγ(PγgKZ) repeated twice is still geometrically minimal, hence
ΔG([γ]) ⊆ ΔG([γ2]).

If [γ] is not of type (2m, 2n), then γ is ramified rank-one split of type (n, 1) or (1, n).
Assume first that γ is of type (n, 1) so that μ = 1 and δ = 0 in Theorem 8.4.3. In
this case, there are q · vol([γ]) algebraically minimal geodesics in [γ]. Among these,
(q − 1) vol([γ]) of them are of type 1, and vol([γ]) of them are of type (n, 1). The latter
ones are also geometrically minimal. On the other hand κγ(PγgKZ) is geometrically
minimal for all g ∈ CG(rγ). We conclude that κγ(PγgKZ) is geometrically minimal if
and only if g ∈ CG(rγ). As CG(rγ) ⊆ CG(r2

γ), any g ∈ CG(rγ) gives rise to a geometrically
minimal cycle κγ2(PγgKZ). This shows ΔG([γ]) ⊆ ΔG([γ2]) if γ is of type (n, 1).

Finally, note that κγ−1(PγgKZ) and κγ(PγgKZ) have the same geometric length but
opposite types, so the same conclusion holds for γ of type (1, n). We have shown

Proposition 8.4.5. For γ ∈ Γ we have ΔG([γ]) ⊆ ΔG([γ2]).

8.5. Counting the number of tailless cycles in XΓ of given algebraic length

Recall that Nn(XΓ ) counts the number of tailless cycles of type 1 in XΓ with algebraic
length n. These cycles fall in the disjoint union of [γ] as [γ] runs through type 1 conjugacy
classes of Γ , and Theorem 7.2.1 and Proposition 8.4.4 give the number of such cycles in
each [γ]. Combined with Proposition 6.1.1 we obtain the following explicit expressions
of the edge zeta functions.

Theorem 8.5.1. For i = 1, 2 we have

u
d

du
logZ1,i(XΓ , u) =

∑
γ∈[Γ ], [γ] of type 1

i vol
(
[γ]
)
ω[γ]u

ilA([γ]),

where vol([γ]) is defined by (5.4) and ω[γ] is as in Theorem 7.2.1 and Proposition 8.4.4.
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9. Galleries and pointed galleries in XΓ

9.1. Iwahori–Hecke algebra on B

Recall that the pointed chambers on B are parametrized by cosets in G/BZ with the
Iwahori subgroup B, admitting the action of G by left translation. The matrices

t1 =

⎛
⎝ π−1

1
π

⎞
⎠ , t2 =

⎛
⎝ 1

1
1

⎞
⎠ , and t3 =

⎛
⎝ 1

1
1

⎞
⎠

generate the Weyl group W of SL3(F ) subject to the relations t2i = Id and (titj)3 = Id

for i �= j.
The extended affine Weyl group of G is W �〈σ〉, where σ =

( 1
1

π

)
, as in Section 3.2,

so that

G =
∐

w∈W�〈σ〉
BwBZ.

Each element w ∈ W � 〈σ〉 defines an operator Lw on L2(G/BZ) by sending a function
f to Lwf given by

Lwf(gBZ) =
∑

wiBZ∈BwBZ/BZ

f(gwiBZ) for all gBZ.

They form a generalized Iwahori–Hecke algebra satisfying the following relations (cf. [5]):

1. Lti · Lti = (q − 1)Lti + qId,
2. Lti · Ltj = Ltitj for i �= j,
3. Lti · Lw = Ltiw if the length of tiw is 1 plus the length of w,
4. Lσ · Lti = Lσti = Lti+1σ for i = 1, 2, 3.

As explained in Section 3.5, the operator

LB = Lt1σ (9.1)

describes out-neighbors of a pointed chamber. The above relations imply (LB)n =
Lt1t2···tnσn for n � 1. Here the indices are read modulo 3.

9.2. Galleries in B

Two chambers are adjacent if they share a common edge. Paths formed by adja-
cent chambers are called galleries. A gallery between two chambers is called a geodesic
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gallery if it contains the least number of intermediate chambers. Let B̃ be the stabi-
lizer in G of the chamber with vertices KZ, σKZ and σ2KZ. Thus it is generated by
B,Z and σ. Since G acts transitively on all chambers, we can parametrize chambers by
G/B̃. Notice that a chamber gB̃ gives rise to three pointed chambers: gBZ, gσBZ and
gσ2BZ.

To get a geodesic gallery from g1B̃ to g2B̃, we find an element w ∈ W such that
g−1
1 g2 ∈ B̃wB̃ and write w = ti1 · · · tin as a word using the least number of reflections
t1, t2, t3; call n the length of the gallery. Note that w is unique up to conjugation by some
power of σ. Write g−1

1 g2 = bwb′ for some b, b′ ∈ B̃. Since g1B̃ = g1bB̃, we may assume b

is the identity so that

g1B̃ → g1ti1B̃ → · · · → g1ti1 · · · tinB̃ = g2B̃

represents a geodesic gallery from g1B̃ to g2B̃. Moreover, since σ ∈ B̃ and σtiσ
−1 = ti+1

for all i, replacing g1 by g1σ
1−i1 if necessary, we may assume that ti1 = t1.

All geodesic galleries from g1B̃ to g2B̃ have length n; different galleries arise from
different expressions of w as a product of generators, and they are regarded as homotopic.
Like the case of paths, given two distinct chambers g1B̃ and g2B̃, there is only one
homotopy class of geodesic galleries in B from g1B̃ to g2B̃.

Observe that a geodesic gallery arising from w = ti1 · · · tin is a straight strip if and
only if the difference ik+1 − ik remains the same mod 3 for 1 � k � n − 1. It is said
to have type 1 or 2 according to the common difference being 1 or 2. Note that the
homotopy class of a gallery of type 1 or 2 contains only one geodesic gallery, thus we
shall drop the word “homotopy” in this case. Further, a geodesic gallery of type 1 can
always be represented by

g1B̃ → g1t1B̃ → g1t1t2B̃ → · · · → g1t1 · · · tnB̃ = g2B̃.

9.3. Closed galleries and pointed galleries in XΓ

A closed gallery in XΓ starting at the chamber ΓgB̃ of XΓ can be lifted to a gallery
in B starting at gB̃ and ending at γgB̃ for some γ ∈ Γ . Denote by κγ(gB̃) the homotopy
class of geodesic galleries in B from gB̃ to γgB̃. By abuse of notation, it also represents
a homotopy class of closed geodesic galleries in XΓ starting at ΓgB̃. A closed geodesic
gallery is tailless if it remains a geodesic when the starting chamber is changed.

Recall that a pointed chamber g2BZ = (g2KZ, g2σKZ, g2σ
2KZ) is an out-neighbor

of g1BZ = (g1KZ, g1σKZ, g1σ
2KZ) if and only if g1σKZ = g2KZ, g1σ

2KZ = g2σKZ

and g1KZ �= g2σ
2KZ, or equivalently g−1

1 g2 ∈ LBZ.
A sequence Γg0BZ → Γg1BZ → · · · → ΓgnBZ = Γg0BZ of pointed chambers in

XΓ is called a closed pointed gallery of length n if there is a lifting g0BZ → · · · → gnBZ

in B so that gi+1BZ is an out-neighbor of giBZ for 0 � i � n− 1 and gnBZ = γg0BZ

for some γ in Γ . Denote this pointed gallery by κγ(g0BZ) for short. Note that there is a
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pointed gallery from g0BZ to γg0BZ in B of length n if and only if g−1
0 γg0 ∈ (LB)n. In

this case, Γg0B̃ → Γg1B̃ → · · · → ΓgnB̃ is the gallery κγ(g0B̃) and we say the gallery
κγ(g0B̃) admits the pointed gallery κγ(g0BZ). Note that if a gallery admits a pointed
gallery, then this pointed gallery is unique.

Analogous to the case of 1-geodesics, we have several descriptions of tailless gal-
leries:

Proposition 9.3.1. For a type 1 closed geodesic gallery κγ(gB̃), the following are equiva-
lent:

1. κγ(gB̃) is tailless.
2. κγ(gB̃) repeated m-times is a type 1 geodesic gallery for all m > 0.
3. κγ(gB̃) admits a closed pointed gallery κγ(g0BZ) for a unique g0BZ such that

g0B̃ = gB̃.

Consequently, the map sending κγ(gB̃) to κγ(g0BZ) is a length preserving bijection
from the set of tailless type 1 closed geodesic galleries to the set of closed pointed galleries
in XΓ .

Proof. (1 ⇒ 2) Suppose κγ(gB̃) is tailless. Let g0B̃ → · · · → gmnB̃ be a lifting of
κγ(gB̃) repeated m-times in B. Then there is a word w = ti1 · · · timn

so that g−1
j gk ∈

B̃tij+1tij+2 · · · tikB̃ for all 0 � j < k � mn. By the tailless assumption, gjB̃ → · · · →
gj+nB̃ is geodesic of type 1 for j = 0, . . . , n(m − 1), so we have ti(j+1) = tij+1 for
j = 0, . . . ,mn − 1. This shows that w is a reduced word and κγ(gB̃) repeated m-times
is a type 1 geodesic gallery.

(2 ⇒ 3) Let gB̃ = g0B̃ → · · · → g2nB̃ be a lifting of κγ(gB̃) repeated twice. Since
it is a type 1 geodesic gallery, as noted before, we may assume that giB̃ = gt1 · · · tiB̃
and gi = gt1 · · · tiσi for i = 0, . . . , 2n. Then giBZ is a pointed chamber of giB̃ and
g−1
i gi+1 = σ−iti+1σ

i+1 = t1σ ∈ LB . Therefore g0BZ → · · · → g2nBZ is a pointed
gallery. It remains to show that γg0BZ = gnBZ so that g0BZ → · · · → gnBZ is
a lifting of a closed pointed gallery of XΓ . From γg0B̃ = gnB̃ and ordπ detΓ ⊂ 3Z by
assumption we conclude n ∈ 3Z and γg0BZ = gnσ

iBZ for some i ∈ {0, 1, 2}. Comparing
determinants of both sides gives i = 0 since detσ = π. This proves γg0BZ = gnBZ.

(3 ⇒ 1) Let g0BZ → · · · → g2nBZ be a lifting in B of the pointed gallery admitted
by κγ(gB̃) repeated twice. Thus g−1

i gi+1 ∈ LBZ for i = 0, . . . , 2n − 1. Note that every
gallery obtained by changing the starting chamber of κγ(gB̃) has a lifting contained
in C : g0B̃ → · · · → g2nB̃, so it suffices to show that C is a geodesic gallery. This is
because

g−1
0 g2n =

(
g−1
0 g1

)
· · ·
(
g−1
2n−1g2n

)
∈ (LBZ)2n ⊂ B̃t1 · · · t2nB̃

and t1 · · · t2n is a reduced word of length 2n. �
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9.4. Characterizing closed pointed galleries in XΓ

We begin by extracting information on the starting vertex and the type of a closed
pointed gallery.

Proposition 9.4.1. Let γ ∈ Γ . Suppose κγ(gBZ) is a closed pointed gallery in XΓ of
length n. Then vertices gσiKZ for i = 0, 1, 2 all lie in ΔG([γ]) defined by (5.5). Moreover,
[γ] is of type (0, n/2) for n even, and (1, (n − 1)/2) for n odd. In the latter case, γ is
ramified rank-one split.

Proof. Observe that

(t1σ)2m =

⎛
⎝ 1

πm

πm

⎞
⎠ and (t1σ)2m+1 =

⎛
⎝ 1

πm

πm+1

⎞
⎠ .

Since κγ(gBZ) is a pointed gallery of length n, we have g−1γg ∈ (LB)n ⊂ K(t1σ)nKZ.
To find the type of κγ(gσiKZ), write σ =

( 1
1
π

)( 1
1

1

)
. Using the fact σB = Bσ, we

have

σ−1g−1γgσ ∈ σ−1(LB)nσ = Bσ−1(t1σ)nσBZ

⊂ K

⎛
⎝ 1

1
π−1

⎞
⎠ (t1σ)n

⎛
⎝ 1

1
π

⎞
⎠KZ

= K(t1σ)nKZ.

By the same argument, we also have σg−1γgσ−1 ∈ K(t1σ)nKZ. Therefore, if n = 2m,
κγ(gσiKZ) has type (0,m); if n = 2m + 1, κγ(gσiKZ) has type (1,m) for all i. It
remains to show that [γ] has the same type as κγ(gσiKZ), so that they have the same
geometric length.

Since g−1γ2kg ⊂ K(t1σ)2nkKZ = T0,nk, we have, by Proposition 5.1.1,

LA(γ) = LA

(
g−1γg

)
= lim

k→∞

1
k
lA
(
g−1γkg

)
= lim

2k→∞

2nk
2k = n.

The same argument gives LA(γ−1) = n
2 .

When n = 2m, we have LA(γ) = lA(κγ(gKZ)) = 2m and LA(γ−1) =
lA(κγ−1(gKZ)) = m. By Corollary 5.5.2, [γ] and κγ(gKZ) have the same type, which is
(0,m).

When n = 2m + 1, we have LA(γ−1) = 2m+1
2 , which implies that r−1

γ is ramified
rank-one split (and so is rγ). Now suppose [γ] is of type (i, j). Applying Eq. (5.2) to
g−1γg and g−1γ−1g, we obtain
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i + 2j = 2m + 1 and m + 1
2 � 2i + j � m + 2.

It is easy to see that (i, j) = (1,m) is the only non-negative integral solution. �
We now show that the conditions in the above proposition characterize closed pointed

galleries.

Proposition 9.4.2. Suppose γ ∈ Γ satisfies either (1) [γ] is of type (0, n), or (2) γ is
ramified rank-one split and [γ] is of type (1, n). If the three vertices gσiKZ of the chamber
gB̃ all lie in ΔG([γ]), then there is a unique i ∈ {0, 1, 2} such that κγ(gσiBZ) is a closed
pointed gallery.

Proof. The uniqueness of i follows from the third statement in Proposition 9.3.1; we
shall show it exists. Denote by gA the apartment containing the two chambers gB̃ and
γgB̃. Replacing g by gb for some b ∈ B̃ if necessary, we may assume that A is the
standard apartment whose pointed chambers are represented by DS3B̃, where D is the
group of diagonal matrices in G and S3 is the subgroup of permutation matrices in G.
Write g−1γg = Msb for some M ∈ D, s ∈ S3 and b ∈ BZ. Since the vertices of gBZ are
in ΔG([γ]), by Proposition 5.5.1, κγ(gσiKZ) has the same type as [γ] for all i.

Case (I). [γ] has type (0, n). Then g−1γg, σ−1g−1γgσ and σg−1γgσ−1 all lie in T0,n.
In this case,

M ∈

⎧⎨
⎩
⎛
⎝πn

πn

1

⎞
⎠ ,

⎛
⎝πn

1
πn

⎞
⎠ ,

⎛
⎝ 1

πn

πn

⎞
⎠
⎫⎬
⎭

=

⎧⎨
⎩σi

⎛
⎝ 1

πn

πn

⎞
⎠σ−i: i = 0, 1, 2

⎫⎬
⎭ .

In other words, M = σi
( 1

πn

πn

)
σ−i = σi(t1σ)2nσ−i for some i. We shall show that s

is the identity matrix. If so, then, since Bσ = σB, we have bσi = σib′ with b′ ∈ B and
(
gσi
)−1

γ
(
gσi
)

= σ−iMbσi = σ−iMσib′ ∈ (LB)2n.

Thus κγ(gσiBZ) is a closed pointed gallery.
It suffices to consider the case M =

( 1
πn

πn

)
as the other cases are similar. To

determine s, write σ =
( 1

1
π

)
s3 with s3 ∈ S3. Observe that

σ−1g−1γgσ = σ−1Msbσ = σ−1Msσb′′

= s−1
3

⎛
⎝ 1

1
−1

⎞
⎠
⎛
⎝ 1

πn

n

⎞
⎠ s

⎛
⎝ 1

1

⎞
⎠ s3b

′′
π π π
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and s
( 1

1
π

)
is
( π

1
1

)
s,
( 1

π
1

)
s, or

( 1
1
π

)
s according as the first, second, or third

row of s is (0 0 1). In order that σ−1g−1γgσ ∈ T0,n, the third row of s must be (0 0 1).
Similarly, σg−1γgσ−1 ∈ T0,n implies the first row of s should be (1 0 0). Therefore s is
the identity matrix.

Case (II). γ is ramified rank-one split and [γ] has type (1, n). Then g−1γg, σ−1g−1γgσ

and σg−1γgσ−1 all lie in T1,n. In this case,

M ∈

⎧⎨
⎩σi

⎛
⎝ 1

πn

πn+1

⎞
⎠σ−i, σi

⎛
⎝ 1

πn+1

πn

⎞
⎠σ−i: i = 0, 1, 2

⎫⎬
⎭ .

As before, it suffices to consider the cases M =
( 1

πn

πn+1

)
or
( 1

πn+1

πn

)
.

A similar argument as in Case (I) yields

Ms =

⎛
⎝ 1

πn

πn+1

⎞
⎠ ,

⎛
⎝ 1

πn

πn+1

⎞
⎠ , or

⎛
⎝ 1

πn+1

πn

⎞
⎠ .

Observe that [γ2] has type (0, 2n + 1). Since ΔG([γ]) ⊂ ΔG([γ2]) by Proposition 8.4.5,
we have (g−1γg)2 = (Msb)2 ∈ T0,2n+1. On the other hand, if Ms =

( 1
πn

πn+1

)
or( 1

πn+1

πn

)
, then a direct computation shows (Msb)2 ∈ T2,2n, which is a contradiction.

Therefore g−1γg = Msb =
( 1

πn

πn+1

)
b ∈ L2n+1

B . Thus κγ(gσiBZ) is a closed pointed
gallery for some i. �

The above two propositions and Proposition 9.3.1 together imply

Theorem 9.4.3. Given γ ∈ Γ , the number of closed pointed galleries in XΓ of the
form κγ(gBZ) is equal to the number of chambers with vertices PγgKZ, where gKZ ∈
CP−1

γ ΓPγ
(rγ)\ΔG([γ]).

10. Chamber zeta function of XΓ

10.1. Type 1 chamber zeta function of XΓ

Two closed galleries in XΓ are called equivalent if one is obtained from the other by
changing the starting chamber. A closed gallery is called primitive if it is not a repetition
of another closed gallery of shorter length. For a primitive tailless closed gallery C of
length n, denote by [C] the collection of the n closed galleries equivalent to C.

The type 1 chamber zeta function of XΓ is defined as an Euler product:

Z2,1(XΓ , u) =
∏(

1 − ul(C))−1
, (10.1)
[C]
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where [C] runs through the equivalence classes of primitive, tailless, type 1 closed galleries
in XΓ . Let Mn(XΓ ) denote the number of tailless, type 1 closed galleries in XΓ of
length n.

Proposition 10.1.1. The type 1 chamber zeta function of XΓ is a rational function with
the following expressions:

Z2,1(XΓ , u) = exp
(∑

n�1

Mn(XΓ )
n

un

)
= 1

det(I − LBu) . (10.2)

Proof. For n � 1, TrLn
B on XΓ counts the number of closed pointed galleries of length n,

which is equal to Mn(XΓ ) by Proposition 9.3.1. The equalities follow from the same
argument as the proof of Proposition 6.1.1. �
10.2. Comparing chamber zeta function and edge zeta function

In this subsection we give an explicit formula for Mn(XΓ ), the number of closed
pointed galleries in XΓ of length n, similar to Theorem 8.5.1. This is achieved by com-
puting the difference between logarithmic derivatives of edge zeta function and chamber
zeta function and applying Theorem 8.5.1.

Theorem 10.2.1.

u
d

du
logZ1,2(XΓ , u) − u

d

du
logZ2,1(XΓ ,−u)

=
∑
n�1

( ∑
γ∈[Γ ] irregular,
[γ] of type (0,n)

−(q − 1) vol
(
[γ]
)
ulA([γ])

+
∑

γ∈[Γ ] unramified rank-one split,
[γ] of type (0,n)

2 vol
(
[γ]
)
ulA([γ])

+
∑

γ∈[Γ ] ramified rank-one split,
[γ] of type (0,n) or (1,n)

vol
(
[γ]
)
ulA([γ])

)
,

where vol([γ]) is defined by (5.4).

Proof. Combining Theorem 9.4.3 and Proposition 10.1.1, we have

u
d

du
logZ2,1(XΓ ,−u)

=
∑
n�1

( ∑
γ∈[Γ ], [γ] of type (0,n)

NB(γ)u2n −
∑

γ∈[Γ ] ramified rank-one split,

NB(γ)u2n+1
)
,

[γ] of type (1,n)
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where NB(γ) is the number of chambers with vertices PγgKZ, where gKZ ∈
CP−1

γ ΓPγ
(rγ)\ΔG([γ]). From the definition of ΔG([γ]), it is clear that NB(γ) = NB(γ−1)

so that

u
d

du
logZ2,1(XΓ ,−u)

=
∑
n�1

( ∑
γ∈[Γ ], [γ] of type (n,0)

NB(γ)u2n −
∑

γ∈[Γ ] ramified rank-one split,
[γ] of type(n,1)

NB(γ)u2n+1
)
.

On the other hand, for type 2 edge zeta function we have

u
d

du
logZ1,2(XΓ , u) = u

d

du
logZ1,1

(
XΓ , u

2)
=
∑
γ∈[Γ ]

∑
κγ(gKZ) tailless, type 1

2u2lA(κγ(gKZ))

=
∑
n�1

∑
γ∈[Γ ], [γ] of type (n,0)

2NK(γ)u2lA([γ]),

where NK(γ) = vol([γ])ω[γ] is the number of tailless type 1 cycles in [γ] (cf. Theo-
rem 8.5.1). We shall compare this with the number NB(γ). Recall that for [γ] of type 1,
we have ΔG([γ]) = ΔA([γ]).

Case I. γ split with [γ] of type (n, 0). Then rγ = diag(1, a, b), where 1, a, b are distinct
with ordπ(a) = 0 and ordπ b = n. Let δ = ordπ(1 − a). The centralizer CG(rγ) consists
of diagonal elements in G. By Corollary 7.3.2, CP−1

γ ΓPγ
(rγ)\ΔA([γ]) has cardinality

NK(γ) = vol([γ])qδ, represented by vertices hi,jvxKZ, where hi,j = diag(1, πi, πj) ∈
CP−1

γ ΓPγ
(rγ)\CG(rγ)/(CG(rγ) ∩KZ) and vx =

( 1 x
1

1

)
with x ∈ π−δOF /OF .

There are q + 1 chambers sharing the type 1 edge E0 := (KZ, diag(1, 1, π)KZ) with
the third vertex ucKZ :=

( π c
1
π

)
KZ, c ∈ OF /πOF , and u∞KZ :=

( 1
π

π

)
KZ. Left

multiplication by hi,jvx sends E0 to (hi,jvxKZ, hi,j+1vxKZ) and the third vertex to

hi,jvxucKZ =
( 1 (c+x)/π

πi−1

πj

)
KZ and hi,jvxu∞KZ =

( 1 xπ
πi+1

πj+1

)
KZ, respectively.

We count the number of such vertices belonging to CP−1
γ ΓPγ

(rγ)\ΔA([γ]).
There is only one integral x, namely, x = 0. When δ = 0, each type 1 edge

(hi,jv0KZ, hi,j+1v0KZ) can be extended to a pointed chamber by adding only one of
the two vertices hi+1,j+1v0KZ and hi−1,jv0KZ in CP−1

γ ΓPγ
(rγ)\ΔA([γ]). Once the start-

ing pointed chamber gBZ is chosen, the closed pointed gallery κγ(gBZ) is determined.
Hence NB(γ) = 2#(CP−1

γ ΓPγ
(rγ)\ΔA([γ])) = 2NK(γ).

Next assume δ � 1. In this case, each type 1 edge (hi,jv0KZ, hi,j+1v0KZ) can be
extended to a pointed chamber by adding one of the q + 1 vertices hi,jv0ucKZ and
hi,jv0u∞KZ in CP−1

γ ΓPγ
(rγ)\ΔA([γ]). The same holds when hi,jv0 is replaced by hi,jvx

for −1 � ordπ x � −δ+1. This gives rise to (q+1)(qδ−1 − 1) pointed chambers. Finally,
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when ordπ x = −δ, each type 1 edge (hi,jvxKZ, hi,j+1vxKZ) can be extended to a
pointed chamber by adding only one vertex hi,jvxu∞KZ in CP−1

γ ΓPγ
(rγ)\ΔA([γ]), so

there are (q − 1)qδ−1 pointed chambers. Put together, we get NB(γ) = vol([γ])(q + 1 +
(q + 1)(qδ−1 − 1) + (q − 1)qδ−1) = vol([γ])2qδ = 2NK(γ).

Hence there is no contribution to u d
du logZ1,2(XΓ , u) − u d

du logZ2,1(XΓ ,−u) from γ

split and [γ] of type (n, 0).
Case II. γ irregular with [γ] of type (n, 0). Then rγ = diag(1, 1, b), where ordπ b = n.

By Corollary 7.3.2, CP−1
γ ΓPγ

(rγ)\ΔA([γ]) has cardinality NK(γ) = vol([γ]). By the same
method as in Case I, one checks that all q+1 chambers sharing an edge with two vertices
in ΔA([γ]) have the third vertex also lie in ΔA([γ]). Hence NB(γ) = (q + 1)NK(γ)
and the contribution of an irregular γ with [γ] of type (n, 0) to u d

du logZ1,2(XΓ , u) −
u d
du logZ2,1(XΓ ,−u) is −(q − 1) vol([γ])u2n.
Case III. γ unramified rank-one split with [γ] of type (n, 0). In this case rγ =( a
e dc
d e+db

)
, and the eigenvalues a, e + dλ and e + dλ̄ of rγ generate an unramified

quadratic extension L over F . The type assumption on γ implies that ordπ a = n and
min(ordπ e, ordπ d) = 0 so that e + dλ and e + dλ̄ are units in L. Let δ = ordπ d.

As discussed in Section 8.1, the double cosets CP−1
γ ΓPγ

(rγ)\CG(rγ)/CG(rγ) ∩ KZ

are represented by hm = diag(πm, 1, 1), m mod vol([γ]). By Proposition 8.4.4,
CP−1

γ ΓPγ
(rγ)\ΔA([γ]) has cardinality NK(γ) = vol([γ]) q

δ+qδ−1−2
q−1 and is represented by

hmgi,j,uKZ and hmgi,zKZ, where m mod vol([γ]), gi,j,u =
( 1

πi−j u
πj

)
with 0 � j �

i � δ, u ∈ O×
F /π

i−jOF for j < i and u = 0 for j = i, and gi,z =
( 1

πi z
1

)
with

1 � i � δ and z ∈ πOF /π
iOF .

It remains to count the number of pointed chambers with vertices in CP−1
γ ΓPγ

(rγ)\
ΔA([γ]) containing a type 1 edge (gKZ, g diag(π, 1, 1)KZ) for g = hmgi,j,u or hmgi,z.
When δ = 0, there are no gi,z and only one gi,j,u, equal to the identity matrix, hence the
vertices in CP−1

γ ΓPγ
(rγ)\ΔA([γ]) are hmKZ, m mod vol([γ]). It is clear that there are

no pointed chambers formed by these vertices. Hence NK(γ) = vol([γ]) and NB(γ) = 0
when δ = 0.

Next assume δ � 1. There are q + 1 chambers sharing the type 1 edge E1 :=
(KZ, diag(π, 1, 1)KZ) with the third vertex being wxKZ :=

( π
π x

1

)
KZ with x ∈

OF /πOF and w∞KZ := diag(1, π−1, 1)KZ, respectively. Left multiplication by g =
hmgi,j,u or hmgi,z sends the edge E1 to the type 1 edge (gKZ, g diag(π, 1, 1)KZ), so we
need to count the number of distinct vertices among gwxKZ and gw∞KZ which fall in
CP−1

γ ΓPγ
(rγ)\ΔA([γ]). Observe that

hmgi,j,uwxKZ =

⎛
⎝πm+1

πi−j+1 xπi−j + u

πj

⎞
⎠KZ,

hmgi,j,uw∞KZ =

⎛
⎝πm

πi−j−1 u
j

⎞
⎠KZ,
π
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hmgi,zwxKZ =

⎛
⎝πm+1

πi+1 xπi + z

1

⎞
⎠KZ, and

hmgi,zw∞KZ =

⎛
⎝πm

πi−1 z

1

⎞
⎠KZ.

It is straightforward to check that, for 0 � i � δ−1, all gwxKZ and gw∞KZ are distinct
vertices in CP−1

γ ΓPγ
(rγ)\ΔA([γ]), thus they give rise to are vol([γ])(q + 1) q

δ+qδ−1−2
q−1

pointed chambers. When i = δ, for each g above, only gw∞KZ lies in CP−1
γ ΓPγ

(rγ)\
ΔA([γ]), hence they yield vol([γ])(qδ + qδ−1) pointed chambers. Altogether, NB(γ) is
equal to 2NK(γ) − 2 vol([γ]) for δ � 0.

In conclusion, the contribution to u d
du logZ1,2(XΓ , u) − u d

du logZ2,1(XΓ ,−u) from γ

unramified rank-one split with [γ] of type (n, 0) is 2 vol([γ])u2n.
Case IV. γ ramified rank-one split with [γ] of type (n, 0). Then rγ =

( a
e dc
d e+db

)
and

the eigenvalues a, e+ dλ and e+ dλ̄ of γ generate a ramified quadratic extension L over
F . In this case, ordπ a = n and ordπ e = 0 so that e + dλ and e + dλ̄ are units in L. Let
δ = ordπ d.

As discussed in Section 8.1, CP−1
γ ΓPγ

(rγ)\CG(rγ)/CG(rγ) ∩ KZ has cardinality
vol([γ]), and it is represented by h = diag(πm, 1, 1) with 0 � m � (vol([γ]) − 1)/2 and
diag(πm, 1, 1)πL with 0 � m � (vol([γ])−3)/2 if vol([γ]) is odd, and by h = diag(πm, 1, 1)
and diag(πm, 1, 1)πL with m mod vol([γ])/2 if vol([γ]) is even. Here πL =

( 1
c

1 b

)
is

imbedded in G.
It follows from Proposition 8.4.4 that CP−1

γ ΓPγ
(rγ)\ΔA(γ) is represented by hgi,j,uKZ

for gi,j,u as in Case III and h as above, so the total number of vertices is vol([γ])(qδ+1−1)/
(q − 1) = NK(γ). To count the number of pointed chambers we proceed as in Case III
by counting, for each g = hgi,j,u, the number of gwxKZ and gw∞KZ which lie in
CP−1

γ ΓPγ
(rγ)\ΔA(γ).

We first discuss the case δ = 0. Then there is only one g0,0,u, equal to the iden-
tity matrix. All representatives are given by hKZ. Observe that diag(πm, 1, 1)πLKZ =( πm

π 0
1

)
KZ. So there is only one vertex gw0KZ which will form a chamber contain-

ing the type 1 edge (gKZ, g diag(π, 1, 1)KZ). Hence the number of pointed chambers is
NB(γ) = vol([γ]) = 2NK(γ) − vol([γ]) for δ = 0.

Now assume δ � 1. One sees from the explicit computation in Case III that
for g = hgi,j,u, all q + 1 vertices gwxKZ and gw∞KZ are distinct vertices in
CP−1

γ ΓPγ
(rγ)\ΔA([γ]) provided that 0 � i � δ−1; when i = δ, only one vertex, gw∞KZ,

lies in CP−1
γ ΓPγ

(rγ)\ΔA(γ). They give rise to vol([γ])((qδ − 1)(q + 1)/(q − 1) + qδ) =
vol([γ])(2(qδ+1−1)/(q−1)−1) pointed chambers. Therefore NB(γ) = 2NK(γ)−vol([γ])
for δ � 1.

This shows that the contribution to u d
du logZ1,2(XΓ , u) − u d

du logZ2,1(XΓ ,−u) from
a ramified rank-one split γ with [γ] of type (n, 0) is vol([γ])u2n.
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Case V. [γ] of type (n, 1). Then it has no contribution to the type 2 edge zeta function,
and it has contribution to the type 1 chamber zeta function only when γ is ramified
rank-one split. Then rγ has eigenvalues a, e+dλ, e+dλ̄, where a, e, d ∈ F , ordπ a = 2n−1,
ordπ e � 1 and δ = ordπ d = 0 by the analysis above Theorem 8.3.1. Its contribution
to u d

du logZ2,1(XΓ ,−u) is −NB(γ)u2n+1 with NB(γ) = #CP−1
γ ΓPγ

(rγ)\ΔG([γ]). Since
δ = 0 and μ = 0 by the remark following Theorem 8.4.3, we have ΔG([γ]) = ΔA([γ])
such that NB(γ) = vol([γ]) by Corollary 8.4.2.

This completes the proof of the theorem. �
An immediate consequence of the theorem above is a description of the number

Mn(XΓ ) of closed, type 1, tailless geodesic galleries of length n in XΓ , given below:

Corollary 10.2.2. (1) If n = 2m + 1 is odd, then

Mn(XΓ ) =
∑

γ∈[Γ ] ramified rank-one split,
[γ] of type (1,m)

vol
(
[γ]
)
;

(2) If n = 2m is even, then

Mn(XΓ ) =
∑

γ∈[Γ ] split,
[γ] of type (0,m)

vol
(
[γ]
)
ω[γ] +

∑
γ∈[Γ ] irregular,
[γ] of type (0,m)

vol
(
[γ]
)
q

+
∑

γ∈[Γ ] unramified rank-one split,
[γ] of type (0,m)

vol
(
[γ]
)
(ω[γ] − 2)

+
∑

γ∈[Γ ] ramified rank-one split,
[γ] of type (0,m)

vol
(
[γ]
)
(ω[γ] − 1).

Here vol([γ]) is defined by (5.4) and ω[γ] is as in Theorem 7.2.1 and Proposition 8.4.4.

11. A proof of Theorem C

11.1. Hecke operators on XΓ and cycle counting

The action of the Hecke operator Tn,m on L2(Γ\G/KZ) is represented by the matrix
Bn,m, whose rows and columns are indexed by vertices of XΓ such that the entry at the
row indexed by ΓgKZ and column indexed by Γg′KZ records the number of homotopy
classes of 1-geodesic paths of type (n,m) from ΓgKZ to Γg′KZ in XΓ . Alternatively,
this is the number of γ ∈ Γ such that the homotopy classes of the 1-geodesics in B from
gKZ to γg′KZ have type (n,m). The trace of Bn,m then gives the number of 1-geodesic
cycles of type (n,m) up to homotopy. In other words,

Tr(Bn,m) = #
{
κγ(gKZ)

∣∣ γ ∈ [Γ ], κγ(gKZ) ∈ [γ] has type (n,m)
}
.
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To facilitate our computations, form two kinds of formal power series:
∑

n,m�0
(n,m) 	=(0,0)

Tr(Bn,m)un+2m =
∑

γ∈[Γ ], γ 	=id

∑
κγ(gKZ)∈[γ]

ulA(κγ(gKZ)), (11.1)

and
∑
n>0

Tr(Bn,0)un =
∑

γ∈[Γ ], γ 	=id

∑
κγ(gKZ)∈[γ] has type 1

ulA(κγ(gKZ)). (11.2)

We can relate the left hand side of the zeta identity (1.6) to cycle counting:

Proposition 11.1.1.

u
d

du
log (1 − u3)χ(XΓ )

det(I −A1u + A2qu2 − q3u3I)

= q

(∑
n>0

Tr(Bn,0)un

)
− (q − 1)

( ∑
n,m�0

(n,m) 	=(0,0)

Tr(Bn,m)un+2m
)

1 − q2u3

1 − u3 , (11.3)

where the operators act on L2(Γ\G/KZ), χ(XΓ ) = (q+1)(q−1)2
3 V is the Euler character-

istic of XΓ , and V is the number of vertices in XΓ .

Proof. As Bn,m is Tn,m acting on the space L2(Γ\G/KZ), so (2.1) also holds with Tn,m

replaced by Bn,m. In other words,

u
d

du
Tr log (1 − u3)rI

(I −A1u + A2qu2 − q3u3I)

= q

(∑
n>0

Tr(Bn,0)un

)
− (q − 1)

( ∑
n,m�0

(n,m) 	=(0,0)

Tr(Bn,m)un+2m
)

1 − q2u3

1 − u3 ,

where r = (q+1)(q−1)2
3 . Recall that each vertex is incident to q2 + q + 1 type 1 edges and

q2 +q+1 type 2 edges so that the total number of undirected edges in XΓ is 2(q2+q+1)
2 V .

Since each edge is contained in (q + 1) chambers, the number of chambers in XΓ is
(q+1)

3 (q2 + q + 1)V . Therefore the Euler characteristic of XΓ is

χ(XΓ ) = V −
(
q2 + q + 1

)
V + (q + 1)

3
(
q2 + q + 1

)
V = (q − 1)2(q + 1)

3 V = rV.

Using the identity

log(detA) = Tr(logA)
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for a V × V matrix A, we have

u
d

du
Tr log (1 − u3)rI

(I −A1u + A2qu2 − q3u3I) = u
d

du
log (1 − u3)χ(XΓ )

det(I −A1u + A2qu2 − q3u3I) ,

which proves the proposition. �
11.2. Type 1 edge zeta function revisited

Although the type 1 edge zeta function only concerns type 1 tailless cycles, to prove
the theorem we shall involve all homotopy cycles. Denote by Pn,m,s, Pn,m,i, Qn,m, and
Rn,m the number of algebraically minimal homotopy cycles of type (n,m) contained in
the conjugacy classes of split, irregular, unramified rank-one split, and ramified rank-one
split γ’s, respectively. More precisely,

Pn,m,s =
∑

γ∈[Γ ] split
[γ] of type (n,m)

#
(
CP−1

γ ΓPγ
(rγ)\ΔA

(
[γ]
))

=
∑

γ∈[Γ ] split
[γ] of type (n,m)

vol
(
[γ]
)
ω[γ], (11.4)

and Pn,m,i, Qn,m, and Rn,m are similarly defined by changing the type of γ accordingly.
Recall that an irregular γ has type 1 or 2 so that Pn,m,i = 0 if nm �= 0. Further since γ has
type (n, 0) if and only if γ−1 has type (0, n), we have Pn,0,i = P0,n,,i. By Theorem 8.5.1,
the type 1 edge zeta function can be restated as

Proposition 11.2.1.

u
d

du
logZ1,1(XΓ , u) =

∑
n>0

(Pn,0,s + Pn,0,i + Qn,0 + Rn,0)un.

11.3. The number of homotopy cycles of type (n,m)

In order to gain information on Pn,0,s, Pn,0,i, Qn,0 and Rn,0, we extend the summation
to include homotopy cycles of type (n,m). Recall that the number of such cycles is
Tr(Bn,m), and cycles with tails are also included. Their relation with the number of
algebraically tailless cycles is given below.

Proposition 11.3.1. With the same notation as in Theorem 8.4.3, we have

∑
n,m�0

Tr(Bn,m)un+2m
(n,m) 	=(0,0)
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=
( ∑

n,m�0
(n,m) 	=(0,0)

Pn,m,su
n+2m

)
1 − u3

1 − q3u3 +
( ∑

n,m�0
(n,m) 	=(0,0)

Pn,m,iu
n+2m

)
1 − u3

1 − q2u3

+
∑
γ∈[Γ ]

[γ] unram. rank-one split

vol
(
[γ]
)
ulA([γ])

×
(
qδ([γ])+1 + qδ([γ]) − 2

q − 1 + (q + 1)qδ([γ])+2u3

1 − q3u3

)(
1 − u3

1 − q2u3

)

+
∑
γ∈[Γ ]

[γ] ram. rank-one split

vol
(
[γ]
)
qμ([γ])ulA([γ])

(
qδ([γ])+1 − 1

q − 1 + qδ([γ])+3u3

1 − q3u3

)
1 − u3

1 − q2u3 .

Proof. Break the right side of (11.1) into four parts, over split, irregular, unramified
rank-one split, and ramified rank-one split γ’s, respectively. Applying Theorem 7.2.1 to
the split and irregular part, Theorem 8.4.3 to the unramified and ramified rank-one split
parts, and using the definitions of Pn,m,s and Pn,m,i, we get the desired formula. �

Next we compute the number of type 1 homotopy cycles on XΓ .

Proposition 11.3.2. With the same notation as in Theorem 8.4.3, we have

∑
n>0

Tr(Bn,0)un

=
(
1 − q−1)( ∑

(n,m) 	=(0,0)

Pn,m,su
n+2m

)
1 − q2u3

1 − q3u3

+
∑
γ∈[Γ ]

[γ] unram. rank-one split

vol
(
[γ]
)
ulA([γ])

(
qδ([γ]) + qδ([γ])−1 + (q2 − 1)qδ([γ])+1u3

1 − q3u3

)

+
∑
γ∈[Γ ]

[γ] ram. rank-one split

vol
(
[γ]
)
ulA([γ])

(
qδ
(
qμ − μ

)
+ (q − 1)qδ+μ+2u3

1 − q3u3

)

+ q−1
∑
n>0

(Pn,0,s + qPn,0,i + Qn,0 + Rn,0)un − 2q−1

×
∑

γ∈[Γ ], type 1
[γ] unram. rank-one split

vol
(
[γ]
)
ulA([γ])

+
∑

γ∈[Γ ], type 1
[γ] ram. rank-one split

vol
(
[γ]
)
ulA([γ])(−qμ([γ])−1 + μ

(
[γ]
)
qδ([γ])).
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Proof. By definition,

∑
n>0

Tr(Bn,0)un =
∑
γ∈[Γ ]

∑
κγ(gK)∈[γ] type 1

ulA(κγ(gK)).

We split the sum over γ into four parts according to γ split, irregular, unramified rank-one
split, or ramified rank-one split. For the split part, we add (A) and (B) of Theorem 7.3.1
and use the definition of Pn,m,s to arrive at the sum

(
1 − q−1)( ∑

(n,m) 	=(0,0)

Pn,m,su
n+2m

)
1 − q2u3

1 − q3u3 + q−1
(∑

n>0
Pn,0,su

n

)
.

For the irregular part, Theorem 7.3.1, (C) gives the contribution
∑

n>0 Pn,0,iu
n. For the

unramified (resp. ramified) rank-one split part, we add (A2) and (A3) (resp. (B2) and
(B3)) of Theorem 8.4.3 to get

∑
γ∈[Γ ]

[γ] unram. rank-one split

vol
(
[γ]
)
ulA([γ])

(
qδ([γ]) + qδ([γ])−1 + (q2 − 1)qδ([γ])+1u3

1 − q3u3

)

+
∑

γ∈[Γ ], type 1
[γ] unram. rank-one split

vol
(
[γ]
)
ulA([γ]) q

δ([γ]) + qδ([γ])−1 − 2
q − 1

+
∑
γ∈[Γ ]

[γ] ram. rank-one split

vol
(
[γ]
)
ulA([γ])

×
(
qδ([γ])(qμ([γ]) − μ

(
[γ]
))

+ (q − 1)qδ([γ])+μ([γ])+2u3

1 − q3u3

)

+
∑

γ∈[Γ ], type 1
[γ] ram. rank-one split

vol
(
[γ]
)
ulA([γ])

(
qμ([γ]) q

δ([γ]) − 1
q − 1 + μ

(
[γ]
)
qδ([γ])

)
. (11.5)

It follows from Proposition 8.4.4 and the definitions of Qn,0 and Rn,0 that

∑
γ∈[Γ ], type 1

[γ] unram. rank-one split

vol
(
[γ]
)
ulA([γ]) q

δ([γ]) + qδ([γ])−1 − 2
q − 1

= q−1
∑
n>0

Qn,0u
n − 2q−1

∑
γ∈[Γ ], type 1

[γ] unram. rank-one split

vol
(
[γ]
)
ulA([γ]) (11.6)

and
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∑
γ∈[Γ ], type 1

[γ] ram. rank-one split

vol
(
[γ]
)
ulA([γ])

(
qμ([γ]) q

δ([γ]) − 1
q − 1 + μ

(
[γ]
)
qδ([γ])

)

= q−1
∑
n>0

Rn,0u
n

+
∑

γ∈[Γ ], type 1
[γ] ram. rank-one split

vol
(
[γ]
)
ulA([γ])(−qμ([γ])−1 + μ

(
[γ]
)
qδ([γ])). (11.7)

Finally, plug (11.6) and (11.7) into (11.5) to complete the proof. �
11.4. Proof of Theorem C

Combining Propositions 11.3.2 and 11.3.1, we obtain

q

(∑
n>0

Tr(Bn,0)un

)
− (q − 1)

( ∑
n,m�0

(n,m) 	=(0,0)

Tr(Bn,m)un+2m
)(

1 − q2u3

1 − u3

)

=
∑
n>0

(Pn,0,s + Pn,0,i + Qn,0 + Rn,0)un − (q − 1)
∑

γ∈[Γ ], irregular, type 2

vol
(
[γ]
)
ulA([γ])

+
∑

γ∈[Γ ], not type 1
[γ] unram. rank-one split

2 vol
(
[γ]
)
ulA([γ])

+
∑

γ∈[Γ ], not type 1
[γ] ram. rank-one split

vol
(
[γ]
)
ulA([γ])(qμ([γ]) − μ

(
[γ]
)
qδ([γ])+1)

since all irregular elements have type 1 or 2. As before, to a rank-one split γ, we associate
rγ =

( a
e dc
d e+db

)
. First assume γ is unramified rank-one split. By Theorem 8.3.1, [γ] has

type (n,m) = (ordπ a,min(ordπ e, ordπ d)), hence [γ] is not of type 1 if and only if a is
a unit, which is equivalent to its inverse [γ−1] having type (m, 0). Note that lA([γ]) =
2m = 2lA([γ−1]) by Theorem 8.3.1. Next assume that [γ] is ramified rank-one split.
Since μ([γ]) = 1 implies δ([γ]) = 0, we have qμ([γ]) − μ([γ])qδ([γ])+1 = 0 in this case.
Thus we need only consider the case μ([γ]) = 0 so that qμ([γ]) −μ([γ])qδ([γ])+1 = 1. Then
[γ] is not of type 1 if and only if a is a unit, in which case it has type (0, ordπ e) if
ordπ e � ordπ d, and type (1, ordπ d) if ordπ d < ordπ e by Theorem 8.3.1. Further, we
see that [γ−1] has type (ordπ e, 0) so that lA([γ]) = 2lA([γ−1]) = 2 ordπ e in the former
case, and in the latter case, [γ−1] has type (ordπ d, 1), [γ−2] has type (2 ordπ d+1, 0) and
lA([γ]) = 1 + 2 ordπ d = lA([γ−2]). Further, we have vol([γ]) = vol([γ−1]) = vol([γ−2])
for γ rank-one split. Consequently, we may replace γ by γ−1 and rewrite

∑
γ∈[Γ ], not type 1

2 vol
(
[γ]
)
ulA([γ])
[γ] unram. rank-one split
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+
∑

γ∈[Γ ], not type 1
[γ] ram. rank-one split

vol
(
[γ]
)
ulA([γ])(qμ([γ]) − μ

(
[γ]
)
qδ([γ])+1)

=
∑

γ∈[Γ ], type 1 unram. rank-one split

2 vol
(
[γ]
)
u2lA([γ])

+
∑

γ∈[Γ ], type 1 ram. rank-one split

vol
(
[γ]
)
u2lA([γ])

+
∑

γ∈[Γ ], [γ] of type (m,1), ram. rank-one split

vol
(
[γ]
)
ulA([γ2]).

Together with the term −(q−1)
∑

γ∈[Γ ], irregular, type 2 vol([γ])ulA([γ]), it gives the differ-
ence of the logarithmic derivatives of Z1(XΓ , u

2) and ZB(XΓ ,−u) by Theorem 10.2.1.
Here we used the fact that the inverse of a type 2 irregular element γ is type 1 irregular,
and vol([γ]) = vol([γ−1]).

Combined with Propositions 11.1.1 and 11.2.1, this proves

Proposition 11.4.1.

u
d

du
log
(

(1 − u3)χ(XΓ )

det(I −A1u + qA2u2 − q3Iu3)

)

= q

(∑
n>0

Tr(Bn,0)un

)
− (q − 1)

( ∑
n,m�0

(n,m) 	=(0,0)

Tr(Bn,m)un+2m
)(

1 − q2u3

1 − u3

)

= u
d

du
logZ1,1(XΓ , u) + u

d

du
logZ1,2(XΓ , u) − u

d

du
logZ2,1(XΓ ,−u).

Consequently, we have

(1 − u3)χ(XΓ )

det(I −A1u + qA2u2 − q3Iu3) = c
Z1,1(XΓ , u)Z1,2(XΓ , u)

Z2,1(XΓ ,−u)

= c
det(1 + LBu)

det(I − LEu) det(I − (LE)tu2)

for some constant c. Here the last equality comes from Propositions 10.1.1 and 6.1.1.
Since both sides are formal power series with constant term 1, we find c = 1. This
concludes the proof of Theorem C.
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