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Simplified Interval Type-2 Fuzzy Neural Networks
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Abstract—This paper describes a self-evolving interval type-2
fuzzy neural network (FNN) for various applications. As type-1
fuzzy systems cannot effectively handle uncertainties in informa-
tion within the knowledge base, we propose a simple interval
type-2 FNN, which uses interval type-2 fuzzy sets in the premise
and the Takagi-Sugeno—-Kang (TSK) type in the consequent
of the fuzzy rule. The TSK-type consequent of fuzzy rule
is a linear combination of exogenous input variables. Given
an initially empty the rule-base, all rules are generated with
on-line type-2 fuzzy clustering. Instead of the time-consuming
K-M iterative procedure, the design factors ¢; and ¢, are learned
to adaptively adjust the upper and lower positions on the left and
right limit outputs, using the parameter update rule based on a
gradient descent algorithm. Simulation results demonstrate that
our approach yields fewer test errors and less computational
complexity than other type-2 FNNs.

Index Terms—Fuzzy identification, on-line fuzzy clustering,
type-2 fuzzy neural networks (FNNs), type-2 fuzzy systems.

I. INTRODUCTION

HE MARRIAGE of fuzzy logic systems (FLSs) and

neural networks (NNs) has drawn considerable attention
in recent years. So-called fuzzy neural networks (FNNs)
[1]-[8], [40]-[42], [S1]-[53] inherit their learning ability from
NNs, and much of their inference technology from fuzzy
systems, which are widely used in robotics, temperature con-
trol, system identification, bioengineering, and many others.
Some FNNs, including, for example, the adaptive network-
based fuzzy inference system (ANFIS) [1], the fuzzy adaptive
learning control network [3] and the self-constructing neural
fuzzy inference network (SONFIN) [4], are well known.
ANFIS uses a fixed structure, with all parameters turned by
a hybrid learning algorithm. For the consequent part of their
fuzzy rule, ANFIS and SONFIN use the Takagi—Sugeno—Kang
(TSK) type and Mamdani-type, respectively. Many studies [1],
[2], [4], [5] indicate that TSK-type FNNs achieve superior
learning accuracy than Mamdani-type FNNs.
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In the real world, most plant operations are exposed to
a variety of internal and external disturbances, and so must
apply time-varying techniques to contend with uncertainty.
Unfortunately, the aforementioned FNNs are unable to directly
handle rule uncertainties, since type-1 fuzzy sets are precise.
To address this deficiency, Zadeh [9] introduced type-2 fuzzy
sets as an extension of the type-1 fuzzy set. Judging from
the relevant literature [10]-[21], [34], [36], [47], the use of
type-2 fuzzy sets in diverse applications shows that type-2
methods have more potential than type-1 methods in coping
with uncertainties, such as noisy measurements, variations in
word meanings, and so on. Specifically, type-2 FLSs allow
researchers to model and minimize the effect of uncertainties
associated with rule-base systems; this capability, however,
does incur the additional computational cost of performing
type reduction from type-2 to type-1. In an effort to reduce
this additional cost, in [10]-[15], a complete type-2 FLS theory
has been established, including a full formalization of type-
reduction. We consider this paper critical since, in the past few
years, most of the type-2 FNNs researchers [21]-[31], [33],
[36], [43]-[46], [48]-[50], [54] have focused exclusively on
interval type-2 fuzzy systems.

In [23], Lee et al. presented the design of type-2 FNN for
nonlinear system processing. In [25], Wang et al. provided
parameter learning algorithms for interval type-2 fuzzy sys-
tems using Gaussian primary membership functions (MFs)
with uncertain means as type-2 fuzzy sets. In a further
study [27], the self-evolving interval type-2 FNN (SEIT2FNN)
is applied to system identification and channel equaliza-
tion, using type-2 Gaussian MFs with uncertain means and
fixed standard deviation (STD) in the antecedent part, and
demonstrating simultaneous structure and parameter learning
capability. Abiyev and Kaynak [30] proposed a novel type-2
TSK-based fuzzy neural structure (FNS) that used the g
coefficient to adjust the proportion of the upper and lower
bound in terms of the final output. A recent study [29] shows
that the type-2 FNN uses two forms of interval type-2 fuzzy
sets, one with uncertain means but a fixed STDs and the
other with uncertain STDs but fixed mean, and compared
their performance. The structure of a discrete interval type-
2 fuzzy system by fuzzy c-means clustering was presented
in [32]. In [33], Lee et al. reported that the use of interval
asymmetric type-2 fuzzy sets to construct FNNs is effective
for identification of nonlinear dynamic systems.

In all of the aforementioned type-2 FNNs except the TSK
T2 FNS [30], the consequent weights need to be rearranged
in ascending order according to the K-M iterative procedure
for finding L and R end points. Thus, their execution time
will increase with the number of rules. This paper presents
a simplified interval type-2 neural fuzzy network (SIT2FNN)
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that can be formulated without incurring such computational
costs. The type-reduction process in the SIT2FNN capitalizes
control factors g/ and gr instead of K-M iterative method to
overcome time-consuming because of arranging consequent
part parameters. Using a gradient descent algorithm to adapt
systems, the control factors enable to adjust the proportion
of the upper and lower portions in terms of the left and
right bounds. The premise clause of fuzzy rule in SIT2FNN
is characterized by an interval type-2 fuzzy set, and the
consequent part is the TSK-type with an interval set. The
SIT2FNN possesses self-evolving in that it can automatically
grow the required network structure (rule number and initial
fuzzy set shape) and parameters according to their training
data. The SIT2FNN can also learn parameters using an algo-
rithm in which all free weights are derived using a gradient
descent algorithm. Several simulations are conducted to verify
SIT2FENN performance. These simulations are also compared
with other type-1 and type-2 systems, demonstrating that the
SIT2FNN could achieve superior performance for noise-free
or noisy environment.

The rest of this paper is organized as follows. Section II
gives a brief survey of some existing methods, Section III
introduces the overall SIT2FNN structure, and Section VI
describes the structure learning of the SIT2FNN and its
parameter update rules. Section V presents four simulation
examples, including system identification, and prediction of
chaotic and Santa Fe time-series. Section VI provides the
concluding remarks.

II. BRIEF SURVEY OF SOME EXISTING METHODS

In recent years, considerable research has been devoted
toward these developing interval type-2 FNNs (IT2FNNs)
[25]1-[29], [311, [33], [34], [36], [43]-[50], [54] for addressing
real world problems regarding uncertainty and imprecise.
In [25], Wang et al. present an IT2FNN for handling uncer-
tainty with dynamical optimal learning. However, a fixed
structure in the IT2FNN could not effectively address upon
time-varying systems. Afterward, many studies [4], [27]-[29],
[31], [34]-[36], [40]-[41], [49], [54] are presented using self-
evolving property that can automatically evolve the required
structure and parameters according to piece of training data to
time-varying systems. However, one of the well-known inter-
val type-2 FNN (SEIT2FNN) [27] is proposed for modeling
and identification of time-varying systems, and is useful for
noise tolerance in terms of the corrupt data. The consequent
part in the SEIT2FNN is of TSK-type fuzzy reasoning, which
is linear model of input variables with interval. Unlike the
consequent part of the SEIT2FNN, the functional-link interval
type-2 compensatory FNN [28] employs the functional-link
NN to construct then part to providing greater discrimination
capability in the input pattern space and uses compensatory
operation to adaptively adjust fuzzy inference between the
t-norm and z-conorm. Juang et al. [29] presented recurrent
structure in the IT2FNN for dynamic system processing. The
recurrent structure not only depends on the previous states but
on the current states, and thus, it seems to be more precise
than only considering the prior states. In [36], a self-organizing
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Fig. 1. Structure of SIT2FNN, where each node in layer 4 performs a linear
combination of input states with intervals.

neural fuzzy system with Mamdani-type fuzzy reasoning that
is insensitive to noisy environments is presented.

To update the consequent part parameters, several studies
[27], [29], [44] used the Kalman filter algorithm to strength
network performance and fostered the learning effort. In [43],
a novel homogeneous integration strategy of an interval type-
2 FIS (IT2FIS) with hybrid learning is presented. All of the
aforementioned IT2FNNs might lead to computational cost
in terms of the type reduction process. Therefore, Abiyev
and Kaynak [30] reported that the use of control factor g,
which can adjust the proportion of the upper and lower bounds
to reduce computational burden. TSK T2 FNS uses the g
factor to decrease the processing time, but its method seems
to reduce the degrees of freedom with more guided conse-
quent parameters. Biglarbegian er al. [50] demonstrated the
stability of interval type-2 TSK fuzzy logic control systems.
For the hybrid learning manner of IT2FIS [44], premise and
consequent parameters are tuned by a recursive least square
and a gradient descent algorithm, respectively. Recently, the
use of bioinspired optimization methods in the SIT2FNN has
presented for tackling the complex task of finding the optimal
parameters and structure of fuzzy systems. Castillo and Melin
[45] concisely introduced the optimization of type-2 fuzzy
systems based on bioinspired methods.

The bioinspired optimization algorithms, like GA [25],
[46], [47], PSO [48], and ACO [49], are less likely to be
stuck in a local minimum, but their execution time is time-
consuming. Thus, in this paper, the combination of self-
evolving property and control factors to simplify conventional
IT2FNNSs is presented.

III. SIT2FNN STRUCTURE

This section introduces the structure of a multiple-input-
single-output SIT2FNN. Fig. 1 shows the proposed six-layered
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SIT2FNN structure. The premise parts of the SIT2FNN engage
interval type-2 fuzzy sets characterized with uncertain means
and fixed STDs, and the consequent part of fuzzy rule is of a
TSK type that executes a linear combination of input variables
with an interval set. Each SIT2FNN rule can be denoted as

Rulei: IF x; is A} AND...AND x, is A’

n
THEN y is @)+ » apx;, i=1,....M (1)
j=1

where xi,...,x, are input variables, A’j represent interval
fuzzy sets and Ezj. represents interval sets, and where Ezj. =
[c; — sj., c; + sj.]. Hereafter, we detail the functions for each
layer.

Layer 1 (Input Layer): Each node in this layer is a crisp
input variable. Only input variables pass directly to layer 2,
meaning that there are no weights to be adjusted in this layer.

Layer 2 (Membership Function Layer): Each node in this
layer defines an interval type-2 MF to execute the fuzzifica-
tion operation. For defining the interval type-2 fuzzy sets, a
Gaussian primary MF, which has a fixed STD and an uncertain

mean that takes values (see Fig. 2), is used

i\ 2
- Lxi—m
i =expy—3 o

_ i i i i i
=N(mj,0j,x]), mje[mjl,mﬂ]. 2)

'Each MF of the premise part can be represented as an upper,
,&lj, and a lower MF, ﬁlj’ where

i iy, . i
N(mjl,aj,xj), xj<m
i ) )
i) =11, miy <xj<mi (3
i iy, . i
N(mjz,aj,xj), xj>mi,
and

N(mi-l,aj’:;xj) , Xj >
and thus, the output of this layer can be represented as an
interval [[13-, ﬁi,].

Layer 3 (Firing Layer): Each node in this layer represents
the antecedent part of a fuzzy rule and it computes the firing
strength. To compute the spatial firing strength F!, each node
performs a fuzzy meet operation on the inputs that it receives
from layer 2 using an algebraic product operation. The firing
strength is an interval type-1 fuzzy set [, f] and can be
computed using the following: -

#xj) = “)

i i
mjtn,

F=[ff] i=1....M (5)
=114 =11 (6)
j=1 j=1

where the index n represents the input dimension according to
different examples. In Section IV-A, we explain in detail how
these M rules are generated.

961

Layer 4 (Consequent Layer): Each node in this layer is a
TSK-type consequent node and functions as a linear model
with exogenous input variables. Each rule node in layer 3 has
a corresponding consequent node in layer 4. The output of a
consequent node is an interval type-1 set [w;, w'] and can be
expressed as

n
[wf, wi]z [66 - S(i), C(i) + s(’)] + Z [c; - sj-, cj- + sj-]xj. )
j=1
The output of this layer can be expressed, respectively, as

n n
wj =D cjxj = D s;lxjl ®
j=0 j=0
and
n n
wj:Zc’jxj—i-Zs}lle 9)
J=0 J=0

where xo = 1.

Layer 5 (Output Processing Layer): Nodes in this layer cor-
respond to one output linguistic variable. The output function
combines the output of layers 3 and 4, and the design factors
[q:1, g-] enables adaptive adjustment of the upper and the lower
values without using the K-M iterative procedure to find L
and R end points. The use of K-M iterative procedure is the
formalization, but in this case, we can use the g factors to
reduce the complexity of type-2 FLS when the number of rules
is larger. Thus, the output of [y;, y-] can be computed by

M . . M . .
(I—q) 2 flop+aq 2 flw
i=1 i=1

Y= o (10)
S rr
i=1
and
(=) > f'wl+ a3 f'of
i=1 i=1
Yr = (11

M . )
B

Layer 6 (Output Layer): The node in this layer computes the
output variable using a defuzzification operation. The output
of layer 5 is an interval set, and thus, node in layer 6 a sum
of y; and y,. Finally, the defuzzified output is given by

y =y +yr (12)

The above six-layer structure significantly reduces computa-
tional complexity, as will be verified through simulation results
in Section IV.

IV. SIT2FNN LEARNING

In this section, we introduce a two-phase (structure and
parameter) learning mechanism to enhance performance of
SIT2FNN. The rule-base in the SIT2FNN is initially empty;
all of the fuzzy rules are evolved from simultaneous structure
and parameter learning as each piece of training data is
received. The parameter learning phase uses a gradient descent
algorithm (Section I'V-B). The following sections introduce the
structure and parameter learning algorithms.
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A. Structure Learning

Rules are generated according to the structure learning
algorithm. A previous study [4] and [40] used the rule firing
strength as a criterion for type-1 fuzzy rule generation. This
idea was extended to type-2 fuzzy rule generation (called an
on-line type-2 fuzzy clustering) under SIT2FNN. The firing
strength F! in (5) was used to determine whether a new rule
must be generated. The input space is partitioned determines
the number of rules extracted from the piece of training data,
as well as the number of fuzzy sets in the universe of discourse
for each input variable. The type-2 rule firing strength is an
interval, and the center of the spatial firing interval

fo=5 (74 1) (13)
is used as the criterion for rule generation. The first incoming
data point x is used to generate the first fuzzy rule, and the
uncertain mean and width of the type-2 fuzzy MFs associated
with this rule is set as

[l = Ly — Ax.x; + Ax] 0= o

j=1,...,n (14)

where ofixeq 1 a predefined value (ofixeg = 0.3 in this paper)
that determines the width of the memberships associated with a
new rule. The initial consequent parameters are set as [c(l) —sé,
cé +sé] = [y4—0.1, y4+0.1], where y, is the desired output.
Hereafter, for each new incoming data x(¢), we find

I = argmax £ (1) (15)

1<i<M(1)

where M(t) is the number of existing rules at time z. If
FIt) < fin (fin is a prespecified threshold), a new fuzzy
rule is generated. If the present data point does not match any
of the existing rules effectively, a new rule is generated. The
same procedure as that for the first rule is used to assign the
uncertain mean; that is, for the new rule, the uncertain mean
of the corresponding type-2 fuzzy sets is defined as

1 1
[m%(t)+ , m%('H ] = [xj () — Ax,x;(t) + Ax]

j=1,...,n. (16)
The width of the new rule is defined as
I I
gMO+L _ B xXj— (%)‘ . (17)

Equations (14) and (16) show that, for the mean, the width of
the uncertain region is set according to different examples.
If the uncertainty associated with the mean is excessively
small, the type-2 fuzzy sets become similar to type-1 fuzzy
sets. Conversely, if the width of the uncertain region is
excessively large, the uncertain mean covers most of the input
domain. Equation (17) shows that the initial width is equal
to the Euclidean distance between current input data x and
the center of the optimal matching rule for this data point
times an overlapping parameter f. In this paper, f was set
to 0.5 so that the width of the new type-2 fuzzy set was half
of the Euclidean distance from the optimal matching center.

This ought to achieve a suitable overlap between the adja-
cent rules. The newly consequent parameters must be assigned
as follows:

C(I)Vl(t)+1 M+ _ 0.05, MO+1

= yd(t)» Cj j
= st 0002, j=1,...,n.
The entire on-line type-2 fuzzy clustering procedure for
generating fuzzy rules is as follows.
On-line Type-2 Fuzzy Clustering Procedure
IF the first data Yis coming THEN do

{Generate a new fuzzy rule and assign initial width and
uncertain mean of each premise fuzzy set by (14)

[ mla] =) = 0.0, 5, + 0.1 and 0 =03, j = 1,...,m
and also set initial consequent parameters of fuzzy rules
co=ya(t), ¢j =005, s;=55=0002,j=1,....n

J.
ELSE for a subsequent data X do
{Compute (15)
IF 1) < fu

{Generate a new fuzzy rule M(t + 1) = M(t) + 1 and
assign initial width and uncertain mean of new fuzzy set by
(16) and (17)

[mM(t)+1 m '2(1)+1] = [x;(r) — 0.1, x;(r) +0.1]

Jjl >
1 1
Y R TS
/ 2

and also set initial consequent parameters of fuzzy rules
M@)+1 _

) = yq(t)

MO = 0,05, 1O = YO = 0002, j=1,....n

1

B. Parameter Learning

O_M(t)+l — ﬁ .

In addition to the structure learning phase, all free parame-
ters in the SIT2FNN are learned, including current parameters
and those that were newly generated. For clarification, we
considered the single-output case and defined the objective
to minimize the error function as

1
E=Zlyt+1—yalt+ D1?

where y(r+ 1) and y; (¢t + 1) are the SIT2FNN output and the
desired output, respectively. According to the gradient descent
algorithm, the updated parameters can be denoted by

(18)

. . oE
it +1) = () - U (19)
i
. . oE
s;+1) =550 —n— (20)
os'
. . oE
mi(t +1) = mj (t) — n—; 1)
8mj1
i i oF
6mj2
i i oE
oit+1)=0;@)—1n (23)

i
60j
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where 7 is the learning rate, n is the number of input variables,
and M is the number of rules, j = 1,...,n,i =1,...,M
As can be observed in (24), if x; is set to 1, then the equation
updates the consequent parameter cé. The derivation in (19)
and (20) can be expressed by the following:

0E aE(ay dy, ow} 8y dy, 6w£)
GC; oy \ oy wa GC; oy, owt. c;
(I—a)f +af (l—qr)f’+q f!
= —ya) I xj+ X
> fi+f! Zﬂ+ﬂ
i=1 i=1
= (y—ya) (=g +a) f+(U—gr+a) f)
> i+
i=1 -
(24)
O0E OE [ oy oy ow)  dy dy, ow!
a5t~ oy \ v ow] a5t | oy, owf 51
j 195 r oWy s;
(—a)fi+aqf (I—g) f+qr f'
=yl = bl
2 [+ f! > fi+ f
i=1 i=1
X . _.
=(y—ya) M‘*” ((I=gr—aqn f'=(1=qr—aqn [").
S+ S
i=1
(25)

The derivation of the premise part in (21)—(23) can be
expressed by the following:

oE
am;1=(y—yd)

. 5 i
x((ay_’_+ay.’.) of +(6y1.+6yr) 1 )(26)
oft oft)omly \of o of i

oE
— ==y
6mj2
X((ay_,*ay_,.) o +(ay1_+ayr) of )(27)
oft " oft)emt, \ofl  of i
oE
. 56
x (6y_l_+ay_’,)af.+ 6yl.+ay’. i. (28)
oft oft) esi \of' of' ) ool
oy _ A—glor—yi Oy _ quwi—y (29)
of SF+f Teft Xi+f
Ovr _ drtor =yr Oyr _ (1=g)wr =y 30)
oft X f+fof Xr+f

963

Interval type-2 fuzzy set with uncertain mean.

- X; .
afl _ aft aﬂj _ Fi x /(U );u, xj < ,jl an
6mlj1 8,u] 8m 0, otherwise
i i oul . xj—mt mt +mi.
OF _OL B _ I mheni > T ay
omf, O om', 0, otherwise
_. —. — _. X;
of' zﬁfl o1 _ ]/ x /( )2 ,)c]>m]2 3
om',  om'; om' G
Mja Hjomiy 0, otherwise
i i oul . xj—ml mt +mi,
oF oL NI ST g
om'yy  Op; om'y 0, ‘ otherwise
[ . (x;— )2 .
ofi  of om fix= ’)/*I R
o) (w—mb) o (35)
do;  Ou 0o; Shx G N <My,
J
0, otherwise
. . . [ (Xj—m".z)2 m’:1+m’:2
! A P . gl g2
oft _oftowy | L Ten s 6
i i i ; (xj—m')? mt 4m’;
oot 8&]. 80'j il J(Jl:)él LX) > ./12 2
J

As mentioned above, the factors [g;, ¢-] can be learned to
adaptively adjust the upper and the lower portions of y; and y,
in the final output. Therefore, the optimum of the factors can
be derived by the following:

alt+1) = q@) — 2L

37
2 37
gt +1)=gq(t P (38)
qr
where
oFE Swi(ff - 1
— = (y - = = 39
o (y — ya) Sitr (39)
O S (= f)
=0 - Vi) ——=—. 40
o0 (y = ya) S (40)

For the convergence, the learning rate must be carefully
selected, as a too high rate will lead to extreme oscillation
in the learning process and a too low rate will result in slow
learning convergence.
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Fig. 3. Identification result of the SIT2FNN.
TABLE I
TRAINED PARAMETERS WITH THREE RULES
Rule 1 Rule 2 Rule 3
(mlil , mél , O_]i) (-0.1202, (0.5332, (-0.8895,
0.1995, 0.9237, -0.4371,
0.5838) 0.8398) 0.9355)
i i i (-0.1969, (0.5073, (-0.7029,
(mlz My - 0y ) 0.2905, 0.8690, -0.4914,
1.0777) 0.5774) 0.5654)
Ci C‘i Ci (0.0228, (0.7215, (-0.5828,
(Cp.€1.6) -0.5466, 0.3270, 0.2735,
0.0387) 0.1291) 0.1886)
Si Si Si (0.0036, (0.0109, (0.0367,
(8p.51.5;) 0.0091, 0.00081, 0.0126,
0.0367) 0.1752) 0.2578)
V. SIMULATION RESULT
This section presents an evaluation of the perfor-

mance of the SIT2FNN through four example simulations.
These simulations include two types of system identifi-
cation, and two kinds of forecasting problems, including
Mackey—Glass and Santa Fe time series.

A. Example 1 (System Identification)

The SIT2FNN is applied to the identification of a nonlinear
system, where the data set is generated by the difference
equation

ya(t)
1+ yﬁ ®
The variables u(t) and y,(t) are fed as inputs to the SIT2FNN
input layer, and the desired output is y4(¢+1). The training sig-
nal is generated with u(¢) = sin(2z¢/100). As a performance

criterion, we evaluate the root mean square error (RMSE) as
shown by the following:

ya(t +1) = +17(1). 1)

200

RMSE = Dy +1) = yalt + DI (42)
t=1

200

The training procedure minimizes the square error between the
output of the system y(¢ 4+ 1) and the target output y;(t + 1).
As described in [4], [27], [30], [34], and [35], we follow
the same computational protocols that have been used for
500 epochs with 200 samples. The structure threshold fi,
is set to 0.01, where it influences and decides the number
of fuzzy rules to be generated. The learning rate is set to
0.01. After the training process, four rules are generated
and the RMSE obtained is 0.0234. Fig. 3 shows that the
curve has a perfect match between the actual output of the

TABLE 11
PERFORMANCE COMPARISON IN EXAMPLE 1

Models No. of No. of Test
Rules | Parameters | RMSE
SONFIN [4] 7 35 0.0085
SaFIN [35] 8 - 0.012
Feedforward 3 36 0.0281
Type-2 FNN
T2 TSK FNS 4 24 0.0324
[30]
eT2FIS[34] 14 70 0.053
SEIT2FNN[27] 3 36 0.0062
SIT2FNN 3 36 0.0241

SIT2FNN and the desired output of the system. After the
whole learning process, the trained parameters are shown in
Table I. As can be observed in Table II, the performance of the
SIT2FNN is compared with the existing models, including an
SONFIN [4], the self-adaptive FIN (SaFIN) [35], the TSK-type
type-2 FNS (TSK T2FNS) [30], feedforward type-2 FNN
and the SEIT2FNN. The SONFIN possesses simultaneous
structure and parameter learning abilities, so for the type-1
models, it predictably outperforms SaFIN. The TSK T2 FNS
just uses a design factor g to share the upper and lower values
in the final output and consequent part is composed by a crisp
TSK-type not an interval set. The consequent part of eT2FIS
is of Mamdani-type reasoning. Like the SIT2FNN, the con-
sequent of feedforward type-2 FNN and SEIT2FNN is of
TSK-type with an interval set.

For a meaningful comparison, the total number of parame-
ters in type-2 models is kept similar to that of parameters in
type-1 models, and thus, the number of rules used in type-1
models is larger than that in type-2 models. Type-2 models
achieved consistently better performance than type-1 models.
As observed in Table II, the SIT2FNN outperformed all but
the SEIT2FNN. This is because the SEIT2FNN has a few
performance advantages, including the ability to self-evolve
ability and the use of a rule-ordered Kalman filter algorithm
to tune interval weights in the consequent part. However, the
SEIT2FNN will result in a larger computational cost as rule-
base grows.

In general, the K-M iterative type-reduction process in
type-2 systems is time-consuming. The SIT2FNN uses two
design factors [g;, g-] to replace the K-M iterative proce-
dure and economize computational costs. Running simulations
written in Visual C++ on an Intel 2.53 GHz dual central
processing unit, the learning times of the feedforward type-2
FNN, SEIT2FNN, and SIT2FNN were 1.53, 1.42, and 1.00 s,
respectively. These results indicate a significant performance
benefit for SIT2FNN. We then compare our approach with the
TSK-type T2FNS, which similarly uses a g factor to adjust
the portion of the upper and lower values, and a gradient
descent algorithm for learning. Again, the results indicate a
clear performance advantage for SIT2FNN.

We also used simulations to assess the noise resistance
capabilities of SIT2FNN, by adding artificially generated noise
(uniformly distributed between [—0.1, 0.1] and [—0.5, 0.5])
to the input signal. There are a total of 20 Monte Carlo
realizations. On average, three rules are generated for the
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Fig. 4. One of corresponding curve of on-line learning when noise generated
in the ranges [—0.5, 0.5] and appeared in the measured data.
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Fig. 5. One of corresponding result when measured output containing noise
level in the ranges [—0.5, 0.5] for test.

TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT NOISE
LEVELS IN EXAMPLE 1

Models No. of | Noise Test No. of | Noise Test
Rules RMSE Rules RMSE
SONFIN[4] 6 0.041 6 0.170
Feedforward 3 [-0.1, 0.038 3 [-0.5, 0.145
Type-2 FNN 0.1] 0.5]
eT2FIS[34] 10 0.033 11 0.140
SEIT2FNN[27] 3 0.035 3 0.142
T2SONFS[36] 6 0.034 6 0.138
SIT2FNN 3 0.039 3 0.136

SIT2FENN. Fig. 4 shows one learning result of the 20
realizations, demonstrating that the SIT2FNN output does
not vary as widely as the noisy output. Fig. 5 shows a single
result when for the measured output containing noise within
[—-0.5, 0.5] to demonstrate superior noise tolerance of
SIT2FENN. Table III shows the performance of SIT2FNN with
noise. For comparison, the SONFIN [4] and the feedforward
type-2 FNN were compared using the inputs. Both the
SONFIN and feedforward type-2 FNN use a gradient descent
algorithm to update free parameters. As can be observed
in Table II, the Mamdani-type T2 models, eT2FIS [34] and
T2SONEFS [36], have a better performance than the TSK-type
T2 models, SEIT2FNN and SIT2FNN. This is because
the noise in y(¢f) fed as inputs influences the TSK-type
consequent part of each rule. Therefore, Mamdani-type fuzzy
reasoning that is not a function of input variables can be less
sensitive to noise than TSK-type fuzzy reasoning. For a fair
comparison with TSK-type T2 models, the SIT2FNN could
achieve better performance than feedforward type-2 FNN and
SEIT2FNN. Obviously, type-2 models are able to effectively
contend with noise conditions.
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]
Time Step

Fig. 6. Plot of corresponding time-varying signals, a(t) (solid line),
b(t) (dashed line), and c(t) (dotted line).

B. Example 2 (Second-Order System Identification)

The SIT2FNN is applied to assess the performance of a
second-order time-varying system. The dynamic system is
introduced in [30] and is given by the following difference
equation:

ypt+1) = f(yp@), yp(t = 1), yp(t —2), u(t), u(t — 1))
(43)
where
xX1X2X3x5(x3 — b) + cx4
a +x% +x32

and where the parameters, a(t), b(t), and c(t) are expressed by

fx1, x2, x3, x4, X5) = (44)

a(t)=12—-0.2cosrnt/T) (45)
b(t) = 1.0 — 0.4sin2rt/T) (46)
c(t)=1.04+0.4sinRxt/T) 47)

where T is the maximum time step. Fig. 6 shows the system
signals of a(r), b(t), and c(t).

The structure threshold and learning rate are set to be 0.2
and 0.01, respectively. After 100 epochs with 1000 time steps,
four rules are generated to cover the entire input domain. To
test the identification result, the following signal is used for
the test:

sin(32), 1 <250
1.0, 250 <t < 500
ut) =1-1.0, 500 <t < 750 (48)

0.3sin(5£) 4 0.1sin(§%)
+0.6 Sin(T—é), 750 <t < 1000.

Fig. 7 shows the identification result of SIT2FNN. Table IV
shows the performance of SIT2FNN, including the number
of rules and epochs as well as the training and test RMSEs.
Apparently, type-2 models use fewer rules compared with
type-1 TSK FNS, but their performance can achieve the lower
RMSE. The consequent part of the compared type-2 models
except for the T2 TSK FNS consists of TSK-type with interval
sets. When compared with T2 TSK ENS, SIT2FNN, which
also uses a gradient descent algorithm and design factors
[q1, g»]1 (to replace the K-M iterative procedure), achieves
notably better performance and a smaller RMSE than all
other type-2 models. As in Example 1, we also consider the
execution time of training process among feedforward type-2
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Fig. 7.
(dashed line).

Time Step

TABLE IV

PERFORMANCE COMPARISON IN EXAMPLE 2

Models No. of | No. of Training | Test
Rules | Parameters | RMSE RMSE

T1 TSK FNS 9 63 0.0282 0.0598

[30]

T2 TSK FNS 4 24 0.0284 0.0601

[30]

Feedforward 4 36 0.0339 0.0587

Type-2 FNN

SEIT2FNN 4 36 0.0344 0.0577

[27]

SIT2FNN 4 36 0.0351 0.0560

1000

Simulation result between ideal output (solid line) and SIT2FNN

NO. 5, MAY 2014

SIT2FNN

Tima Step

Fig. 8. Prediction results of SIT2FNN, trained with noise level STD = 0.1
and noise-free for test.

Fig. 9. Prediction results of SIT2FNN, trained with noise level STD = 0.1
and noise level STD = 0.1 for test.

TABLE V
PERFORMANCE COMPARISON WITH NOISE LEVEL
STD = 0.1 IN EXAMPLE 3

FNN, SEIT2FNN, and SIT2FNN, and their execution times
take 2.52, 2.55, and 0.9 s, respectively. The training process
of SIT2FNN is much faster than its rivals.

C. Example 3 (Noisy Chaotic Time Series Prediction)

This example is meant to predict the Mackey Glass time
series, which is generated using the following delay differen-
tial equation:

dx(t) 0.2x(t — 1)

dt 14+x10¢—1)
where 7 > 17. As in [4], [27], [31], and [34], the systems
response was chaotic, and simulation data were obtained using
initial conditions x(0) = 1.2 and r = 30. Four past values
are used to predict x(¢), and the input—output data format is
[x(r—24), x(r —18), x(r —12), x(t — 6); x(¢)]. A total of 1000
data pairs were obtained from the interval t € [124, 1123]. The
first 500 patterns are used for training and the remaining 500
for testing. The structure threshold and learning coefficient are
set to 0.2 and 0.07, respectively. After 500 epochs of training
process, seven rules are generated. For noise-free conditions,
the training and test RMSEs of SIT2FNN are 0.00479 and
0.00722, respectively, again demonstrating costs of the K-M
iterative procedure in type-2 models.

As in Example 1, we also investigated the computational
advantage of SIT2FNN, and found that the learning time for
SIT2FNN was 6.0 s, compared with 93.4 s (15.5 times slower)
for SEIT2FNN and 37.3 s (6.21times slower) for feedforward
type-2 FNN. Again, the proposed model significantly reduces
computational cost as rule-base is larger.

—0.1x(t) (49)

Models SONFIN | SEIT2FNN | IT2FNN- | eT2FIS | SIT2FNN
[4] [27] SVR [31] [34]

No. of 10 5 6 -- 5

Rules

No. of 130 110 103 110

Parameters

Training 0.113 0.123 0.127 0.120 0.088

RMSE

(STD=0.1)

Test 0.054 0.049 0.046 0.059 0.041

RMSE

(Clean)

Test 0.108 0.097 0.088 0.107 0.087

RMSE

(STD=0.1)

Test 0.256 0.212 0.215 0.214 0.215

RMSE

(STD=0.3)

The SIT2FNN has also shown more robust with respect
to measurement noise as shown below. Assume two levels
of Gaussian noise with STDs 0.1 and 0.3 are added to x(t)
for training, and a total of 10 Monte Carlo realizations for
the statistical analysis of the results. Figs. 8 and 9 show the
prediction result of the SIT2FNN for test in terms of noise-free
and noise level STD = 0.1. Tables V and VI together show
the performance of SIT2FNN for different noise environments,
including training for STD = 0.1 with respect to the test
for noise-free, STD = 0.1 and STD = 0.3, respectively; and
training for STD = 0.3 with respect to the test for noise-free,
STD = 0.1 and STD = 0.3, respectively. For the purpose of
comparison, we also use the same noisy environment to assess
the noise tolerance of the other networks, including the SON-
FIN and SEIT2FNN, IT2ENN-SVR [31], and eT2FIS [34].
Obviously, the type-2 models, namely SEIT2FNN, IT2FNN-
SVR, eT2FIS, and SIT2FNN, are superior to the SONFIN
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TABLE VI
PERFORMANCE COMPARISON WITH NOISE LEVEL
STD = 0.3 IN EXAMPLE 3

Models SONFIN SEIT2FNN | IT2FNN- | eT2FIS | SIT2FNN
[4] [27] SVR [31] [34]

No. of 10 5 6 - 5
Rules
No. of 130 110 103 - 110
Parameters
Training 0.302 0.319 0.347 0.327 0.166
RMSE
(STD=0.3)
Test 0.195 0.196 0.121 0.102 0.121
RMSE
(Clean)
Test 0.208 0.197 0.131 0.152 0.130
RMSE
(STD=0.1)
Test 0.305 0.254 0.184 0.278 0.176
RMSE
(STD=0.3)

ik ' . el
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g ; | ‘ _‘ ! I I
£ i " 1 VY
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Fig. 10. Prediction results of the SIT2FNN for the Series-E of Santa Fe

data set.

TABLE VII
PERFORMANCE COMPARISON IN EXAMPLE 4

Models No. of No. of Test RMSE
Rules | Parameters

NN -- -- 0.279

ES -- - 0.182

PMRS [39] -- -- 0.123

Feedforward 12 96 0.064
type-1 FNN

Feedforward 7 105 0.069
type-2 FNN

SIT2FNN 3 45 0.056

when training data contains the higher noise level with
STD = 0.3.

As can be observed in Tables V and VI, the performance
of IT2FNN-SVR is similar to that of SIT2FNN, but its
computational is quite intensive. In other words, the SIT2FNN
can achieve similar performance with less computational com-
plexity. These results indicate type-2 sets possess considerably
better noise tolerance compared than type-1 sets. In compar-
ison with K-M iterative procedure, the IT2FNN-SVR seems
to be approximately better than other type-2 models. Finally,
the SIT2FNN achieves the best performance over the other
compared FNNs for noise-free and noisy cases.
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D. Example 4 (Practical Time Series Prediction)

In this paper, we conduct to assess the performance
of SIT2FNN for a real-world series database [38] that is
the Santa Fe Time series downloaded from the website
www.psych.stanford.edu/~andreas/Time-Series/. This is a set
of measurements of the light curve (time variation of the
intensity) of the variable white dwarf star PG1159-035 and it is
very noisy and discontinuous. As in [29] and [39], the aim is to
predict the intensity of the star y,(z41) based on its past inten-
sities. We only use the intensity y,(¢) as input to the SIT2FNN
input layer. For a total of 2048 observations, we use 90% and
10% of the total samples for training and test process. The
structure threshold and learning rate are set to 0.3 and 0.01,
respectively. After 100 epochs of training, there are three rules
generated to cover the entire input domain. Fig. 10 shows the
actual and SIT2FNN predicted intensities. As can be observed
in Table VI, the performance of SIT2FNN is compared with
that of NN, PMRS, ES, and feedforward type-1 and type-2
FNN. All comparison models use the same input variables
but for NN. The NN uses the past five intensities as inputs.
The PMRS [39], namely pattern modeling and recognition
system, was reported for addressing the same series. The ES,
namely statistical exponential smoothing, was also reported in
this paper. The numbers of rules in the feedforward type-1
and type-2 FNN are 12 and 7, respectively. The parameter
learning of feedforward type-1 and type-2 FNN is based on
a gradient descent algorithm. It seems that Type-1 models for
addressing considerable noise are insufficient compared with
the SIT2FNN. The computational cost in the SIT2FNN takes
0.86 s with rule number equal to three, and feedforward type-2
FNN and SIT2FNN, respectively, takes 51.0 and 1.65 s when
number of rules is equal to seven. Apparently, our approach is
able to vastly reduce computational complexity. Cleary from
Table VII, the SIT2FNN with a fewer rules could yield smaller
error than its competitors.

VI. CONCLUSION

In this paper, a simplified TSK-type IT2FNN with simulta-
neous structure and parameter learning online is proposed. The
premise clause of type-2 fuzzy sets is shown to be sufficient
to address numerical uncertainty as well as uncertain informa-
tion. The structure learning algorithm enables the network to
efficiently generate the required network structure, obviating
the need for any initial network structure. All free updated
weights are derived using a gradient descent algorithm. This
is especially useful for dealing with problems with time-
varying characteristics. Using factors [q;, g,] to replace K-
M iterative procedure, the SIT2FNN can significantly reduce
computational cost. Simulations of identification and practical
time series prediction showed that the SIT2FNN outperforms
competing FNNs under a variety of realistic conditions.
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