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In target tracking, the measurement noise is usually assumed 

to be Gaussian However, the Gaussian modeling of the noise 

m a y  not be true. Noise can be non-Gaussian The non-Gaussian 

noise arising in a radar system is known as glint noise. The 

distribution of glint noise is long tailed and will seriously affect 

the tracking performance. We develop a new algorithm that can 

effectively track a maneuvering target in the glint environment 

The algorithm incorporates the nonlinear Masreliez tiller into 

the interactive multiple model (IMM) method. Simulations 

demonstrate the superiority of the new algorithm 
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The Kalman filter is widely used in the tracking 
problem. It can optimally estimate the target motion 
from noisy radar data. The optimality of the Kalman 
filter is based on the assumption of the Gaussian noise. 
If the assumption is violated, the Kalman filter is no 
longer the optimal filter. 

In a radar system, due to the target glint, the 
measurement noise may present non-Gaussian 
behavior. This is referred to as the glint noise. 
Hewer, Martin, and Zeh analyzed the glint noise 
in [lo] and concluded that the distribution of the 
glint noise is long tailed. It is well known that the 
conventional minimum mean square estimate can 
be seriously degraded if noise is non-Gaussian [ l q .  
Unfortunately, very few results have been reported 
regarding this problem and the standard Kalman filter 
is continuously used in tracking applications. Hewer, 
et al. [lo] approximated the glint noise by a mixture 
of a Gaussian noise and outliers and employed robust 
estimation techniques to preprocess (clean) the radar 
data. Wu [20] used a nonlinear filter that was originally 
proposed by Masreliez [15, 161 to track a target 
maneuvering in a Markov fashion. The Masreliez filter 
employs a nonlinear score function as the correction 
term in the state estimate and the results are often 
nearly optimal. 

The implementation of score function is difficult 
except for simple cases. Wu and Kundu developed an 
efficient approximation method in [19]. This method 
employed an adaptive normal expansion to expand the 
score function and truncates the higher order terms in 
the expanded series. Consequently, the score function 
can be approximated by a few central moments of the 
observation prediction density. The normal expansion 
is made adaptive by using the concept of conjugate 
reentering and the saddle point method. This method 
was used in [20]. 

Here we develop a new algorithm, which is an 
extension of [20], to track a maneuvering target in 
the glint environment. There exist many maneuvering 
targets tracking algorithms [l-91. Among them, 
the interactive multiple model (IMM) method [4] 
provides good performance with efficient computation. 
However, if the observation noise is non-Gaussian, 
the IMM method degrades. This degradation is due 
to the nonoptimal Kalman filter used in the IMM 
and the miscalculation of the model probabilities. To 
remedy the problem, we propose to use the Masrelize 
filter in place of the Kalman filter and correct the 
model probabilities. This results in a nonlinear IMM 
algorithm (NIMM). We show that the NIMM can 
significantly improve the tracking performance. 

The organization of the paper is as follows. 
In Section 11, the Masreliez's approach and the 
implementation issue of the score function is briefly 
reviewed. In Section 111, we describe the IMM method 
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and the new algorithm. In Section IV, we present 
some simulation results and draw the conclusion in 
Section V. 

I I .  SCORE FUNCTION APPROACH 

A. General Filtering Problem 

The general filtering problem can be formulated 
as the estimation of the state given all the history of 
the observations. Consider a linear system described as 
follows: 

xk+l = $kXk  + wk (1) 

(2) zk = HkXk + vk 

where x k  is the state vector, wk and vk represent 
white noise sequences and are assumed to be mutually 
independent. The basic problem is to estimate the 
state x k  from the noisy observations (21,. . . ,zk).  The 
probability density of the state conditioned on all the 
available observation data is called the a posteriori 
density. If this density is known, an estimation for any 
type of performance criterion can be found. Thus, the 
estimation problem can be viewed as the problem of 
determining the a posteriori density. For computational 
efficiency, one is frequently interested in performing 
the filtering recursively. The recursive determination 
of the aposteriori density is generally referred to as 
the Bayesian approach [12]. Denote f(.) as a density 
and Z k  = { zo,z1,. . . , zk}.  The Bayesian approach is 
described by the following relations [12] 

(3)  

f ( X k  I Zk- ' )  = / f ( x k - 1  1 z k - ' ) f ( X k  I Xk-1)dXk-1 
(4) 

where the normalizing constant f ( Z k  1 Zk- ' )  is given by 

f ( Z k  1 Zk- ' )  = / f ( x k  I zk- '>f (zk  I Xk)dXk- (5 )  

The f ( Z k  I xk) in (3 )  is determined by the observation 
noise density f ( v k )  and (2).  Similarly, f ( X k  I x k - 1 )  
in (4) is determined by the state noise density f ( W k )  
and (1). Theoretically, knowing these densities, we can 
determine the a posteriori density f ( X k  1 Z k ) .  However, 
it is generally impossible to carry out the integration 
in (4) for every instant. Consequently, the a posteriori 
density cannot be determined for most applications. 
There is only one exception, i.e., when the initial state 
and all the noise sequences are Gaussian. In this case, 
(3)  and (4) are reduced to the standard Kalman filter 
equations. 

B. Score Function Approach 

In this section, we briefly review Masreliez's 
algorithm. Consider a linear system described in 

(I)+). Wk and vk can be non-Gaussian. f(Zk zk-') 
denote the density of zk conditioned on the pr ior  
observations. we name f ( Z k  I Zk- ' )  the Observation 
prediction density and assume that it is twice 
differentiable. Similarly, f ( X k  I Zk-')  is the density of 
x k  conditioned on prior  observations and is named 
the state prediction density. The filtering problem 
is to estimate the state vector X k  from the noisy 
observations Z k .  Assuming that f ( X k  I zk-') is a 
Gaussian density with mean y k  , and covariance 
matrix Mk, Masreliez has shown that the minimum 
variance state estimation &, and its covariance matrix 
Pk = E{ ( X k  - i k ) ( x k  - &)' I zk} can be recursively 
calculated as follows [15] 

(9) 

where & ( . )  is a column vector with components: 

and G k ( Z k )  is a matrix with elements 

The function & ( ' )  is called the score function of 

the Kalman filter in the non-Gaussian noise. Assuming 
that Wk is Gaussian and Vk is non-Gaussian, we can see 
that the score function g(.) operating on the residual 
z k  - HkYk will deemphasize the influence of large 
residuals when the observation prediction density is 
long tailed, and, on the other hand, emphasize the 
large residuals when the observation density is short 
tailed. This is intuitively appealing. It is easy to check 
that the filter is reduced to the standard Kalman 
filter if the initial state, wk, and V k  (for all ks) are 
Gaussian. The following procedure summarizes the 
implementation of the filter. 

are known. 

f ( Z k  I Zk- ' ) .  It iS & ( . )  that Suggests how to m o d e  

Step 0 Assume that at stage k - 1, Rk-1 and Pk-1 

step I Calculate Mk = $k-1Pk-1$;-1 + Q k - 1 .  
Step 2 Approximate the state prediction density 

f ( X k  I Zk- ' )  by a Gaussian distribution with mean 

Step 3 Find the observation prediction density 

step 4 Find gk(Zk) and G k ( Z k ) .  

Step 5 Apply (6) and (7) to find i k  and Pk. 
Step 6 Let k ---f k + 1 and start all over from 

- X k  = $ k - l R k - l  and covariance matrix Mk. 

f ( Z k  1 Zk- ' )  by COnVOlVing f ( & X k  I Zk-')  with fv,(.). 

Step 1. 
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The procedure outlined above is straightforward 
in principle. However, the convolution operation in 
Step 3 is difficult to implement in general except for 
very simple cases. Also, in Step 4, the differentiation 
operations involved in the evaluation of the score 
function and its derivative are not trivial. In the 
following, we briefly describe the score function 
approximation method developed in [19]. 

C. Evaluation of Score Function 

It has been shown [25] that under certain regularity 
conditions, a distribution can be expanded by the 
normal distribution and its associated orthogonal 
polynomials. Let g ( . )  be a distribution with zero mean 
and unit variance, M ( t )  be its moment generating 
function (MGF), and K ( T )  = ln[M(T)]. The normal 
expansion is described as follows [22] 

(12) 

where pn is the standardized cumulant that is defined 
as K(")(0)/K(2)(0),  IC(")(.) denotes the nth derivative 
of IC(.), and Ifn(.) is the Hermite polynomials. An 
approximation can be made by retaining several terms 
in the expanded series given by (12). This is called the 
normal approximation. The basic idea of the adaptive 
normal expansion is to use a low-order expansion at 
each point of the distribution rather than to use a 
high-order expansion for the whole distribution at a 
single point. Suppose that we want to approximate 
the distribution at a point, say, xo. We first transform 
the original distribution to a distribution that has its 
mean at xo. Then, we apply the normal approximation 
on the transformed distribution and evaluate it at xo. 
Since the normal approximation is good around the 
mean, this approach will yield a better result than the 
straightforward normal approximation. The procedure 
for the transformation is called recentering [23] and the 
transformed distribution is called the conjugate density 
[24]. We now formally state the definition. 

DEFINITION A density g(z) is called the conjugate 
density of f (x)  at a point xg if there are constants Q 

and TO such that 

(1) z = x - x o  (13) 

g(z) can be normalized and expanded as in (12). If we 
only retain the first term, we have 

where 0, is the standard deviation of g(z) .  From [20], 
it is known that if we choose TO and a such that 

K'(T0) - xo = 0 (17) 

(18) = eK(To)-Toxo 

then, g(s) = cweTOSf(s + xo) is the conjugate density. 

saddlepoint of e -TxoM(T) .  It is shown in [21] that 
under some regularity condition a unique real saddle 
point exists. 

The MGT of a distribution is nothing but the 
Laplace transform of the distribution. One of the most 
important properties of Laplace transform is that the 
convolution in time domain or spatial domain can be 
transformed into multiplication in frequency domain. 
This property is directly applicable to the MGFs. 
This is also the key concept that we can avoid the 
convolution operation in the estimation of the score 
function as required in Masreliez's approach. 

above can be extended to find the approximation of 
score function. The idea is to find the expansion of 
f(.) and f'(.) via the conjugate recentering. From that, 
we find the expansion of f'(.)/f(.) and truncate it to 
obtain the approximation. Thus (detailed derivation, 
see [20]) 

The solution of K' (T)  - xo = 0 is referred to as the 

The distribution approximation technique discussed 

where p,,; stands for the ith central moment of g ( z )  
and TO is obtained from (17). To implement Masreliez's 
filter, we also need the derivative of the score function. 
One can show that 

In the above derivation, we assume that the 
distribution under consideration is univariate. It turns 
out that the score function approximation scheme is 
simple and computationally efficient. It is not difficult 
to extend the result to the multivariate distributions. 
However, in this case, the approximation formula 
becomes very complicated. For the target tracking 
problem, the distribution of the observation noise 
is usually not univariate. However, it is possible to 
decouple the distribution into univariate ones by some 
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coordinate transformation [20]. By doing so, the scalar 19; = zk - H(ei)% (35) 

= H(ei)FLH(ei)T 4- Rk (36) 
score function approximation method can be applied. 

Ill. MANEUVERING TARGET TRACKING where Rk = E { v ~ v ~ } .  
4) The output 2k and 8, are computed according 

A. IMM Algorithm to 

Let a system be described by 

xk = @(ek)xk-l + B ( e k ) W k  

zk = H(6k))Xk + vk 

(22) 

(23) 
where €Jk is a finite state Markov process taking values 
in {e ' ,  . . . ,eN} according to a transition probability 
matrix A ,  and wk, vk are mutually independent of 
white Gaussian processes. For notation simplicity, we 
define 

{ek = e i }  as { e i }  (24) 

= p,(ei I ei-,) (25) 

= f(el-, I zk-l) (26) 

(27) 

(28) 

(29) 

(30) 

p; = f(e; I zk-'). 

f @ k - 1  I e i - , ,Zk- ' )  - N(ai-,,Pi-,) 

f ( x k - '  1 e i , z k - l )  - ~(ni_, ,P;- , )  

f ( X k  I ei,zk-') - N V ~ , F ; ) .  

Assume that 

The IMM algorithm cycle can be summarized in the 
following four steps. 

1) Starting with the N weights p i - , ,  the N means 
and the N associated covariances pi- , ,  we 

compute the mixed initial condition for the filter 
matched to 8; 

(37) 
I 

B. Nonlinear IMM Algorithm 

The standard IMM algorithm assumes that the 
measurement noise is Gaussian. When this assumption 
is violated, the performance is degraded. This 
degradation is mainly due to Step 2) and 3) in the 
IMM cycle. In Step 2), the standard Kalman filter 
is used to perform the estimation. However, as we 
mentioned above, when the measurement noise is 
non-Gaussian, the performance of the Kalman filter 
can be greatly affected. To remedy this problem, we 
propose to replace the Kalman filter by the Masreliez 
filter and use the score function approximation method 
mentioned in Section 11. Let zk be scalar and the 
MGF of V k  be known. In the following, we summarize 
the filtering procedure. 

1) Find the MGF of f(zk I 8i ,Zk-'):  
Since f ( x k  I 6i ,Zk- ' )  is Gaussian with mean 

~ and covariance FL, we can find the MGF of 
f ( H ( 6 i ) x k  I Bi,Zk-')  easily. Let the MGF of f ( V k )  
and f (H(Bi )xk  I Bi,Zk-')  be M,,(T) and M,(T), 
respectively. We can obtain f ( z k  1 8 i ,Zk- ' )  by the 
convolution of f ( v k )  and f ( H ( 6 i ) x k  I 8i ,Zk-') .  Thus, 
the MGF of f(zk I $,Zk- ' )  is M,,(T)M,(T). 

2) Find the conjugate density of f ( z k  I f9i,Zk-') 
at zk: 

Let K ( T )  = ln[Mv(T)M,(T)]. The conjugate 
density of f(zk 1 B ~ , z ~ - ' )  at zk is constructed as 
g(s) = akeTksf(s + zk) where Tk is chosen as the 
saddle point of {MV(T)Mx(T)e-Tzk}, i.e, 

\ - - /  

3) Find the second, third, and the fourth moment 

These moments can be found by 
of g(s>: 2) Each pair of 2;-l,Pi-l is used as input to 

a Kalman filter to obtain the predicted Ti,F; and 
measurement updated 2 i ,  p i .  

3) The N weights 7; are updated from the 
innovations of the N Kalman filters 

.,' = K'Z'(Tk), 

ps,3 = K'3'(Tk), (41) 

ps.4 = K'4'(Tk) p i  = c . p i  . I l ~ ~ ( l - ' / 2 e ~ { - 1 / 2 ~ ~ < ~ ~ ) - ' ~ ~ }  (34) 
where c is a nomenclature constant. where K(')(T) denotes the ith derivative of K(T) .  
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4) Approximate the score function of f ( z k  I 8i,zk-') 
and irs derivative: 

9Mx) 

8ooo 

f 7000 

6ooo- 

SOOO. 
/ 

L 

5)  Perform the filtering: 
Use (6)-(9) to obtain the filtered value of i i  and 

pL for i = 1,. . . , N  and put the results into IMM. 
In Step 3) of the IMM cycle, we use (34) to 

compute the updated model probabilities. Equation 
(34) is obtained by using the Bayes' formula. 

(44) 
the distribution f(Zk I 8i ,Zk- ' )  is obtained by the 
convolution of f ( H ( 8 i ) X k  I 8 i , z k - l )  with f ( vk ) .  When 
the measurement noise is Gaussian, (44) is reduced 
to (34). However, when f ( v k )  is non-Gaussian, (34) is 
not valid. It is difficult to implement the convolution 
exactly. Here, we propose to use the distribution 
approximation method described in (16) to evaluate 
the convoluted distribution. 

(45) 

where @(O) = l/&, (Yk and us are same as those in 
(40)+41)- 

C. Non-Gaussian Glint Noise 

As we have described before the glint noise 
is clearly non-Gaussian and long tailed. Now, the 
problem is how to model it. Borden and Mumford 
[26] consider the distribution of the glint as a student's 
t distribution with two degrees of freedom and 
develop a method to produce glint-like signals. From 
the empirical studies, Hewer, Martin, and Zeh [lo] 
argue that the glint can be modeled as a mixture of a 
Gaussian noise and outliers. Their results are based on 
the analysis of normal QQ-plots of glint noise records. 
Indeed, from [lo, Fig. 21, we can see that the QQ-plot 
is fairly linear around the origin. This indicates that 
the distribution is Gaussian-like around its mean. But, 
in the tail region, the plot deviates the linearity and 
indicates a non-Gaussian long-tailed character. The 
data in the tail region is essentially associated with 
the glint spikes and are considered to be outliers. 
They are modeled as a Gaussian noise with large 
variance. This leads to the Gaussian-mixture noise 
model. Although this model is simple, it is not suitable 
for our use. It is easy to see that the score function of 

"m 

the Gaussian mixture is not robust. The score function 
of a Gaussian mixture will increase without bound as 
the measurement goes to infinity. Here, we propose 
to model the glint as a mixture of a Gaussian and a 
Laplacian noise, i.e., 

f t ( x >  = (1 -E)fg(X) + e f i ( x )  (46) 

where fi(.), fg(.), and fi(.) represent the glint, the 
Gaussian, and the Laplacian distribution, respectively. 
The E is a small positive number less than one. The 
variance of fi(.) is larger than that of f g ( x ) .  One can 
show that the score function of this distribution is 
robust. It is also interesting to note that this score 
function is very similar to some psi-function in the 
robust M-estimator. 

IV. SIMULATIONS 

In this section, we perform some simulations to 
evaluate our new algorithm. For simplicity, we assume 
that the target is in a 2-D space and its position is 
sampled every T = 10 s. The target is moving with a 
constant course with a process noise Q k  = 0.001 until 
k = 40 when it starts a 90 deg turn. This problem is 
similar with those in [6, 7, 91. The acceleration we use 
is 

Uc=U;=O, 0 5 k 1 3 9  and 4 4 < k < 1 0 0  

U; = U; = 0.3, 40 < k 5 44. 
The target trajectory is shown in Fig. 1. The initial 
condition with the state 

x = [ W , Y , Y l  (4) 
is 

X ( 0 )  = [0 m/s,2000 m,-15 m/s,lOOOO m]. (49) 

The IMM consists of a second order model and a third 
order model. 
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1) Second-order model (for x axis): 

xk = [k,X], Qk = 0 
IMMl 
IMMZ - NIMM 

i i 

(51) 

Xk = [X,k,X], Qk = 0.001 (52) 

2) Third-order model (for x axis): 

@; = [ :] , Bz = [ T'/2], H ,  = [0,0,1]. 
T2/2 T 1 T3/6 

(53) 
The probability transition matrix of two models is 14 

12 

10 

8 -  

6 -  

4 -  

2 -  

0.95 0.05 
A = [0.05 0.951 ' 

- 
- 
- 

- (54) 

The parameters for the glint noise generation are 
chosen as (according to (46)-(47)) 

E=0.1, a=" q=400.  (55) 
To illustrate the effect of the noise variance 

used in the Kalman filter, we consider two cases 
for IMM. In the first case, we ignore the Laplacian 
noise in the filtering process, i.e., the variance of 
the observation noise is just g* (the variance of 
the Gaussian component). The other case is that 
we count in the variance of the Laplacian noise. In 
other words, the variance of the observation noise is 
(1 - €)a2 + 2 q 2 .  A Monte Carlo simulation of 500 
runs is performed. Figs. 2-3 and 5 4  show the average 
rms errors of the position and the velocity estimate. 
Figs. 4 and 7 show the average probability estimates 
of model one. Figs. 8-11 illustrate the results of a 
sample run for x axis (the results in y axis is similar 
and therefore is omitted). For notational simplicity, we 
denote the first case of IMM as IMM1, the second 
case of IMM as IMM2, and the nonlinear IMM 
as NIMM. From these figures, we can see that the 
performance of our new NIMM is significantly better 
than those of IMMl and IMM2. The improvement is 
due to the nonlinear filtering and the model probability 
correction. Since the Kalman filter is not optimal in 
the non-Gaussian noise, when high variance Laplacian 
noise arises, it produces big error. In Fig. 8, we see 
that the Laplacian noise arises in steps around 38, 60, 
and 77. The estimation errors of both IMMs are then 
large in those places. On the contrary, the Masreliez 
filter in NIMM is nearly optimal and completely 
removes the Lapalcian noise. This is shown in Figs. 
9 and 10. Note that due to the larger noise variance 
in IMM2, the Kalman gain is smaller. Consequently, 
the estimation error of IMM2 is smaller than that of 
IMM1. However, when the Gaussian noise arises, the 
Kalman gain in IMM2 becomes too small. This results 

50; l o  io io 40 so 80 70 SO do 1 

'*P 
Fig. 2. RMS e m r  of position estimate in x axis. 

0 

ob io io i o  40 io  BO i o  SO do 1bo 

'WP 

Fig. 3. RMS error of velocity estimate in x axis. 

1.2 

1 

0 8  
* 1 0.6 
e 

0 4  

4 io io i o  40 i o  80 io ~b do iL 
*P 

Fig. 4. Probability estimate of model 1 in x axis. 

in an overfiltering problem. This effect is hidden by the 
model uncertainty and is not obvious in our results. 
Under the Gaussian noise, the filter gain of IMMl 
is optimal and that of NIMM is nearly optimal. We 
can say that the Masreliez filter uses a variable gain 
to approach the optimal performance in both noises. 
This may be best depicted by the score functions of 
the noise distributions. Though the score functions 
are not the real ones used in the filtering operation, 
the general shapes are similar. They are shown in 
Fig. 12 (the figure is normalized to U) .  We can clearly 
see that the score function in NIMM is nonlinear. It 
almost coincides with the score function in IMMl 
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Fig. 5. RMS error of position estimate in y axis. 
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Fig. 8. Noise in x axis. 
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Fig. 6. RMS error of velocity estimate in y axis. 
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I 
500 - I 
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300 - 
I '  
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Fig. 9. RMS ermr of position estimate in x axis. 

V 
a2t 
4 io i o  G 40 io i o  i d~ 1C 

step 

Fig. 7. Probability estimate of model 1 in y axis. 

in the central region. If the residual signal falls in 
this regions, the Masreliez filter considers noise to 
be Gaussian. However, the score function descents 
to a small constant value in the tail region where the 
Masreliez filter treats noise to be Laplacian. 

The estimate of model probability in IMM 
is based on (35), (36). We see that the residual 
signal and the noise variance play the main roles. 
Large residual signal can be caused by Lapalcian 
noise or target maneuvering and IMM cannot 
distinguish them. Increasing variance implies that 
the probability estimate favors model one. It is 
likely to treat large residual signal as the cause of 

0 

50, I 

IMMt 

-" IMMZ ! 

jzs 
8 20 30!1 

15 

10 

5 

'0 10 20 30 40 50 60 70 80 90 100 

Fig. 10. RMS error of velocity estimate in x axis. 

noise instead of maneuvering. Consequently, the 
capability of maneuvering detection is decreased. 
On the contrary, decreasing variance implies that 
the probability estimate favors model two. As shown 
in Figs. 4 and 7, the probability estimate of model 
one of IMM2 in unmaneuvering period is better 
than that of IMM1. However, in the maneuvering 
period, the results are opposite. From Fig. 11, we 
see that in the unmaneuvering period, the probability 
estimate is smooth for IMM2. However, it is more 
noise-like for IMM1. This reflects the maneuvering 
detection sensitivity of IMM1. The probability estimate 
of NIMM retains the high maneuvering detection 
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1.2 

1 

0.8 

a6 PI 
a4 

a2 

S k P  

Fig. 11. Probability estimate of model 1 in x axis. 

Fig. 12. Score functions of noise distributions. 

sensitivity of IMMl while reduces the effect of 
Laplacian noise. Through (45), NIMM can makes 
a proper decision that weather the residual signal is 
caused by noise or maneuvering. 

Since our glint model uses more parameters, 
it will be more difficult to identify. Therefore, it 
is informative to study the sensitivity of NIMM to 
the parameter variation. Our study is based on the 
simulation analysis. In our experiments, we purposely 
set the wrong parameters and observe the performance 
variation. From (46), we know that in our model, three 
parameters are involved namely, E ,  g, and q. There are 
numerous ways to set the parameters. To s i m p l e  the 
experiments, we make a constrain for the parameters, 
i.e., the variance is a constant, i.e., 

m2 + 2(1- e)q2 = constant. (56) 

The constrain is practically meaningful. Given 
noise records, the variance is the value most easily 
obtained. The other advantage is that in all cases, 
the performance of the standard IMM remains 
the same (since the variance is the same). This 
facilitates comparison. Here, we use the same 
parameters as those in previous experiments (55) 
to generate observations. Therefore, the variance is 
4.1 x 104, which is the one used in IMM2. Two sets of 
experiments are conducted. In the first one we fix 

and vary E and the other one we fix E and vary g. In 
both cases, due the constrain in (56), 7 is also varied. 
For each experiment, we perform four Monte Carlo 
simulations for four sets of parameters (each 500 runs). 
They are denoted as NIMMl,NIMM2,. . . ,NIMM8. 
The parameters for experiments are listed in n b l e  
I. Since the performance in two axes is similar, we 
only show the results in x-axis. The average rms 
errors (from Step 10 to 90) for position and velocity 
estimate in x-axis are listed in lhble 11. In the table, 
the average rms errors of IMM1, IMM2, and NIMM 
are also included. The third and the fifth column of the 
table show the performance variation (PV) which are 
defined as follows. 

Negative PV indicates the performance degradation 
(compare to NIMM). From the table, we surprisingly 
find that the rms errors of NIMM3, NIMM4, NIMM5, 
and NIMM6 are smaller than that of NIMM. Does 
this violate filtering theory? We will discuss this later. 
The performances of NIMM1, NIMM2, NIMM7 and 
NIMM 8 are degraded. The worst case is NIMM1. 
The rms error increases about 20% for the position 
estimate and 30% for the velocity estimate. However, 
note that in this case the variations of q and 6 are 
extremely large (from 0.1 to 0.01 and from 400 to 
1247). Even in this worst case, the performance of 
NIMM is still much better than that of IMM2. The 
other three cases, the degradation is small. In terms 
of rms error, we conclude that NIMM is not sensitive 
to the parameter variation. Figs. 13-18 show the rms 
errors of position estimate, the rms errors of velocity 
estimate, and the probability estimates of model 
one for NIMM1, NIMM4, NIMM5, and NIMMS. 
We also plot the results of IMM2 and NIMM for 
the comparison purpose. If we look at the figures 
carefully, we find that the behavior of the rms errors 
of NIMMs are different in the unmaneuvering and 
the maneuvering period (Figs. 13-14 and 16-17). 
For IMM4-5, the errors are smaller than those of 
NIMM in the unmaneuvering period and bigger in 
the maneuvering period. Also, the amount of error 
increased in the maneuvering period is bigger than 
that decreased in the unmaneuvering period. However, 
since the maneuvering period is short, the average rms 
errors of NIMM4 and NIMM5 are smaller. This is also 
true for NIMM3 and NIMM6. In (54), we implicitly 
assume that the maneuvering and the unmaneuvering 
period have same length. For the particular trajectory 
we used, it seems that the assumption is not valid. 
This is why wrong parameters produce better results. 
If the switching of two models is based on (54) and 
the trajectory is sufficiently long, the performance 
of NIMM will be better than those of NIMM3-6. 
Contract to NIMM4 and NIMM5, the errors of 
NIMMl and NIMM8 are bigger in the unmaneuvering 
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TABLE I 
Parameters Used in NIMMs 

r Position (m) P. V. Velocity (m/sec) 
IMMl 149.3 -91.71% 9.337 
M M 2  127.3 -63.46% 5.466 

TABLE I1 
RMS Errors of IMMs and NIMMs 

P. V. 
-1S8.2% 
-68.70% 

ZM) 

YO 
m - MMMl -- MMM4 ........ 

......... &Q& NIMMS -- M M M B  ......... 

7 

Fig. 14. RMS error of velocity estimate in x axis. 
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Fig. 15. Probability estimate of model 1 in x axis. 
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Fig. 13. RMS error of position estimate in x axis. 

period and smaller in the maneuvering period (Figs. 
13-14 and 16-17). The amount of error decreased in 
the maneuvering period is smaller than that increased 
in the unmaneuvering period. Thus, if the maneuvering 
condition described above is satisfied, the performance 
of NIMMl and NIMM8 will be better than their 
present results, but still worse than that of NIMM. 
Again, this is also true for NIMM2 and NIMM7. 

To understand why NIMM1-8 have different 
performance in the maneuvering and the 
unmaneuvering period, let’s take a look the score 
functions of the noise distributions that are shown in 
Figs. 19-20. In Fig. 19, we see that the linear regions of 
the score functions for NIMMl and NIMM2 are larger 
than that of NIMM while they are smaller for NIMM3 
and NIMMA In addition, the slopes of the score 
functions are all the same in the central region. This 

150 I /  

so; io io io  40 i o  io i o  ~b si 
$*P 

Fig. 16. RMS error of position estimate in x axis. 

means that less Laplacian noise is filtered in NIMMl 
and NIMM2 and that produces larger error in the 
unmaneuvering period. However, in the maneuvering 
period, due to the smaller E, large residual signal 
tends to be seen as the cause of maneuvering. The 
capability of maneuvering tracking is then better. On 
the contrary, more Laplacian noise is assumed in 
NIMM3 and NIMMA When maneuvering occurs, 
large residual signal tends to be seen as the cause 
of noise. This results in a poorer “catch up”. This 
argument can be verified by seeing the probability 
estimate of model one as shown in Fig. 15. Fig. 20 
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Fig. 17. RMS error of velocity estimate in x axis. 
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Fig. 18. Probability estimate of model 1 in x axis. 
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shows the score functions of the noise distribution for 
NIMMS-8. Here, the slopes in the central region are 
all different. This means that gains are different in 
the region. The gains for NIMMS and NIMM6 are 
smaller than those of NIMM while they are bigger 
for NIMM7 and NIMM8. As we discussed before, 
large gain is good for maneuvering detection but bad 
for noise filtering. Thus, NIMM7 and NIMM8 have 
better performance in the maneuvering period and 
worse performance in the unmaneuvering period. 
On the contrary, NIMMS and NIMM6 have the 
opposite results. This also can be verified by seeing the 
probability estimate of model one as shown in Fig. 18. 
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Fig. 20. Score functions of noise distributions. 

V. CONCLUSIONS 

Conventional tracking algorithms are all based on 
an idealized assumption, i.e., Gaussian observation 
noise. In real applications, however, the noise is not 
necessarily Gaussian. In those cases, the conventional 
algorithms are not sufficient. Due to the target glint, 
the observation noise that is called glint noise in a 
radar system, is non-Gaussian. Here, we extend the 
idea in [20] to develop a new maneuvering target 
tracking algorithm. The algorithm substitutes the 
Kalman filter in the IMM algorithm with the nonlinear 
Masreliez filter and modifies the estimate of model 
probabilities. Simulations show that our new algorithm 
not only can filter the glint noise efficiently, but also 
respond to maneuvering quickly. Conventional IMM 
algorithm performs poorly in the glint environment. 
To use our new algorithm, some parameters for 
the glint have to be known. We have shown that 
our new algorithm is not sensitive to the parameter 
variation. One set of parameters may be good for 
many situations. In fact, if the parameters are carefully 
chosen, the algorithm can perform in a "robust" way. 
The main computation cost of the Masreliez filter 
is to evaluate the score function. For a scalar case, 
this computation requirement is small. The practical 
implementation of our algorithm is then feasible. 
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