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Abstract. The binary diffusion coefficients of two low lying isomers of (Al2O3)n, n = 1 . . . 4, clusters
in different bath gases, that most frequently met in the nature and in the technical applications: H2,
N2, O2, CO, H2O as well as their self-diffusion coefficients have been calculated on the basis of kinetic
theory and dipole reduced formalism. The parameters of interaction potential have been determined taking
into account the contributions of a dispersion, dipole-dipole and dipole-induced dipole interactions between
alumina clusters and bath molecules. The dipole moments, polarizabilities and collision diameters of clusters
have been obtained by using quantum chemical calculations of cluster structure. The approximations for
temperature dependencies of diffusion coefficients for two low-lying isomers of each considered alumina
clusters are reported. It is demonstrated that an account for the contributions of the second for each type
of clusters does not affect substantially the value of net diffusion coefficient. The diffusion coefficients of the
isomers of small (Al2O3)n clusters can differ notably in the case when their dipole moments are distinct
and they interact with strongly dipole molecules.

1 Introduction

For past decade an explosion of interest in the investiga-
tion of structure and physical properties of nanoclusters
has been driven by the fact that clusters form in vari-
ous nature phenomena and that they have wide-range ap-
plications for the fabrication of novel nanomaterials for
electronics, catalysis, medicine, aerospace vehicles, energy
conversion, etc. So, nanoclusters are observed in the up-
per atmosphere of different planets [1], they participate in
the astrophysical dust formation processes [1,2] and form
during the combustion of hydrocarbon and metallized fu-
els [3–6] and energetic materials [7,8]. As well, nanoclus-
ters play an important role in plasma etching [9], plasma-
based technologies [10,11] and chemical vapor deposition
upon laser ablation [10,12,13]. Simulations of these pro-
cesses require the data on thermodynamic and transport
properties of such clusters.

Today, there are no appropriate experimental ap-
proaches and diagnostic systems allowing one to measure
directly the thermodynamic and transport properties of
nanoclusters. At the same time, the modern theoretical
approaches make it possible to estimate the needed pa-
rameters on the basis of quantum chemical calculations.
Such calculations allow one to build the potential energy
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surfaces (PESs) for atomic system relevant to clusters and
to find the minima on the PESs corresponding to possi-
ble isomers of clusters. Therefore, one can determine their
electronic energy, frequencies of normal vibrations, rota-
tional constants, electronic degeneracy, geometric struc-
ture and collision diameter. This information enables to
estimate thermodynamic properties such as temperature-
dependent enthalpy, entropy, specific heat capacity and
Gibbs energy.

In order to estimate the transport properties, such as
diffusion, thermal conductivity and viscosity coefficients,
it is necessary to find the potential energy of the inter-
action of clusters with bath gases or other clusters. In
common case, the special efforts are needed to determine
the interaction potential for a given type of cluster. How-
ever, frequently, it is supposed that nanoclusters inter-
act as ordinary molecules via the Stockmayer (SM) 12-6-3
potential for the case of polar clusters and well-known
Lennard-Jones (LJ) 12-6 potential for the interaction of
nonpolar ones [14,15]. Usually, the parameters of these
types of potential are obtained via fitting the predictions
and experimental data on such macroscopic parameters as
second virial coefficient, coefficients of viscosity and ther-
mal conductivity [14].

On the other hand, the parameters of intermolecular
potential can be derived from the extensive ab initio cal-
culations of the potential energy surface on a large grid of
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molecular geometries [16,17]. However, the adequate ab
initio description of long-range intermolecular forces re-
quires the use of rather expensive post-Hartree-Fock meth-
ods for solving the Schrödinger equation with large and
flexible basis sets, that makes the whole procedure com-
putationally expensive, especially, for large molecules and
molecular clusters [18]. That is why, the usage of analytic
and empiric approaches for finding the PES to estimate
interaction potential is desirable even for small clusters.

The present paper addresses the evaluation of diffusion
coefficients of (Al2O3)n, n = 1 . . . 4, clusters with differ-
ent bath gases most frequently occurring in the applica-
tions, such as H2, N2, O2, CO and H2O, on the basis of
quantum-chemical calculations of cluster physical prop-
erties. It is worth noting that aluminum oxide is one of
the most important and widespread oxygen-bearing com-
pounds. Alumina is a constituent in a number of ceramic
materials. Alumina clusters and particles are formed dur-
ing the combustion of Al powder in various environments:
air [4], steam [19], carbon dioxide [19,20] as well as dur-
ing the combustion of different energetic materials [21]. In
addition, (Al2O3)n clusters were observed in astrophysi-
cal dust [22]. In order to model these processes and phe-
nomena the diffusion coefficients for (Al2O3)n clusters are
strongly needed. However, until now there is no informa-
tion about transport properties of small alumina clusters.

2 Methodology

2.1 Binary diffusion coefficient and collision integrals

In principle, the traditional kinetic theory allows one to
estimate the transport properties of individual species, if
the potential energy of particle interaction is known. The
binary diffusion coefficients Dij can be calculated with the
use of known equation obtained on the basis of Chapman-
Enskog theory [14,23] and applicable at low and moderate
pressures

Dij =
3
8

√
2πMijkT/NA

πσ2
ij

1
Ω(1,1)∗

RT

P02Mij
,

Mij =
MiMj

Mi + Mj
. (1)

Here Mi(j) is the molar mass of particles of i(j) sort, T is
the temperature, k is the Boltzmann constant, NA is the
Avogadro number, σij is the collision diameter of colliding
particles, P0 is the normal atmospheric pressure, Ω(1,1)∗ is
the reduced collision integral normalized by the cross sec-
tions for rigid spheres of diameter σij . In fact, the prod-
uct f = σ2

ijΩ
(1,1)∗(T ) is the energy-averaged cross-section

that depends on the temperature and interparticle poten-
tial ϕij(r). Therefore, in order to estimate the value of Dij

one needs to know the parameters of potential ϕij(r).
As is known, for non-polar molecules the intermolecu-

lar interaction can be described by the LJ (12-6) potential

ϕLJ
ij (r) = 4εij

((σij

r

)12

−
(σij

r

)6
)

, (2)

where the potential well depth can be expressed as

εij =
Cdisp

6

4σ6
ij

. (3)

The dispersion part of potential ϕdisp is governed by the
Slater-Kirkwood equation [24] in the spherically symmet-
ric form:

ϕdisp (r) = −Cdisp
6

r6
, Cdisp

6 =
3
2
Eata

3/2
0

αAαB√
αA
NA

+
√

αB
NB

.

(4)
Here Eat = 27.211 eV, a0 is the Bohr radius, αA and αB

are the polarizabilities, NA and NB are the numbers of
valence electrons (the number of electrons in the outer
sub-shell of particle) of particles of A and B sorts, r is the
distance between interacting particles.

The collision integrals for LJ potential depend on
the reduced temperature T ∗

ij = kT/εij, and the val-
ues of Ω(1,1)∗(T ∗

ij) were calculated and tabulated else-
where [14,25–28]. Note that earlier the phenomenological
approach based on the usage of Pirani’s potential [29] was
extensively used for the estimation of collision integrals
relevant to the transport properties of atmospheric gases
for the extremely broad temperature range (T = 102–
105 K) [30,31]. However, in the present work, we used
the approximations of collision integrals reported in ref-
erence [25] for LJ potential and applicable at the reduced
temperature range 0.3 � T ∗ � 100 (T � 104 K).

Note, that the Slater-Kirkwood equation commonly
overestimates slightly the value of the dispersion term
Cdisp

6 with respect to well-known London one [15]. How-
ever, equations (2)–(4) give, strictly speaking, only the es-
timates for long-range attractive potential. The exchange
effects also should be taken into account at interparticle
distance smaller than 15a0 [15], and, therefore, the poten-
tial well depth εij can be potentially larger in this case.
One can suppose that slight overestimation of dispersion
term by the Slater-Kirkwood equation can be effectively
compensated by neglecting the exchange forces.

In the case when molecules or clusters are polar, the
angle-dependent dipole-induced dipole and dipole-dipole
interactions also must be taken into account [14]. When
these contributions are averaged over possible orientations
of dipole moments of particles, the attractive potential
between neutral species can be expressed as [15,28]

ϕ (r) = −Csumm
6

r6
, (5)

where Csumm
6 coefficient is the sum of the terms:

Csumm
6 = Cel

6 + Cind
6 + Cdisp

6 . (6)

Here Cel
6 and Cind

6 specify the orientation-averaged poten-
tial of electrostatic interaction of dipoles and the poten-
tial of polarization interaction. They are governed by the
relationships

Cel
6 =

2
3kT

μ2
Aμ2

B, (7)

Cind
6 = μ2

AαB + μ2
BαA. (8)
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Thus, the contributions of orientation-dependent dipole-
induced dipole and dipole-dipole interactions to the values
of collision integrals can be approximately estimated if the
effective potential well depth is taken in the form

εij =
Cel

6 + Cind
6 + Cdisp

6

4σ6
ij

. (9)

It is worth noting, that the procedure of direct summation
of orientation-averaged terms responsible for the dipole-
induced dipole and dipole-dipole interactions in the man-
ner of equation (6) seems to be somewhat questionable.
In practice, SM (12-6-3) potential is frequently used for
the approximation of real interaction between two polar
molecules of i and j sorts

ϕSM
ij (r) = 4εij

( (σij

r

)12

− [
1 + ξ∗ijζd−id (ωij)

] (σij

r

)6

− δ∗ijζd−d (ωij)
(σij

r

)3
)

. (10)

Here ζd−id and ζd−d are the angle-dependent functions
for dipole-induced dipole and dipole-dipole types of inter-
action, ξ∗ij and δ∗ij = μiμj/2εijσ

3
ij are the mean reduced

polarizability and mean reduced dipole moments of inter-
acting particles. In terms of the method of dipole reduced
formalism (DRFM) developed by Paul and Warnatz [32],
the potential ϕSM

ij subjected to thermally orientation-
averaged procedure can be reduced to the effective LJ
potential. This allows one to incorporate the dipole-
dipole and dipole-induced dipole interaction terms into
the methodology of reduced collision integrals developed
originally for van der Waals potential. In this case, for the
determination of effective potential parameters Ceff

6 and
σeff

ij the following equations are valid:
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6 = Cdisp

6

(
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6

Cdisp
6

+
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6

4Cdisp
6
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, (11)
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ij = σij

(
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6
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6

+
Cel

6

4Cdisp
6

)− 1
6

. (12)

Note that for the realistic values of Cel
6 and Cind

6 coef-
ficients, the effective Ceff

6 coefficient is smaller than the
Csumm

6 one, whereas the relation σeff
ij � σij is valid in any

case.

2.2 Collision diameter of clusters

The collision diameter σij , that specifies the range of re-
pulsive valence forces for the LJ potential, is an impor-
tant parameter which used for estimating the collision fre-
quency, characteristic time of rotational relaxation, diffu-
sion and viscosity coefficients, etc. In view of the absence
of data on σij for (Al2O3)n clusters in various bath gases,
it is necessary to estimate the values of σij theoretically.

Table 1. The values of static polarizability of atoms reported
in reference [39] and used for estimating the LJ potential pa-
rameter σii as well as the σii values estimated with the formula
of Cambi et al. [37].

Atom α, Å3 [39] σii, Å
Ar 1.66 3.33
H 0.67 2.68
O 0.80 2.80
N 1.10 3.02
C 1.76 3.37
F 0.56 2.56

It is worth noting that, today, there is no common ap-
proach for determining the collision diameter for molecules
and clusters. The first approach is based on the assignment
of effective radius for atoms that correlate with the mean
radius of the outermost electronic orbitals [33,34]. Conven-
tionally, the values of the radius are selected empirically.
Note, that this methodology was applied to polyatomic
Al-containing species in reference [35].

The second approach is based on the usage of funda-
mental physical properties of colliding particles that are
mainly responsible for van der Waals intermolecular in-
teraction. It is supposed that the linear scale of electron
density of atom is roughly proportional to α1/3 [36]. So,
Cambi et al. [37] used this supposition to obtain semi-
empirical correlation formula connecting directly the pa-
rameter σij with the values of the static average polar-
izability αi and αj of colliding particles. For the general
case of two species i and j, the following relationship for
σij was recommended (polarizabilities are in Å3):

σij = 1.767
α

1/3
i + α

1/3
j

(αi + αj)
0.095

1
6
√

2

[
Å

]
. (13)

However, it should be mentioned that equation (13) was
proposed for atoms and small radicals and it can hardly
be applied even to Al2O3 monomer.

The approaches mentioned above [33,35,37] do not
take into account the specific spatial structure of molecules
and clusters and treat them as structureless particles. In
our previous study [38], the other approach for estima-
tion of the radius of (Al2O3)n clusters was suggested. It
was proposed that the collision diameter of particle i with
identical particle is equal to the length of cube edge with
a volume of a rectangular parallelepiped of minimal vol-
ume circumscribing the aggregate of the van der Waals
spheres of atoms, i.e. σii = 3

√
dxdydz, where dx, dy and dz

are the dimensions of this rectangular parallelepiped. In
doing so the diameters of van der Waals spheres, centred
on all atoms, are calculated with the use of formula (13)
on the basis of experimental values of atomic polarizability
reported in reference [39] (see Tab. 1).

To validate the prediction ability of proposed method,
we compared the collision diameters for a set of some
stable species predicted by the approach [38] with the
reliable and generally accepted data tabulated else-
where [32,40–42]. In addition, the effective diameters σeff

ij
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 , 

A

Fig. 1. The values of collision diameter σii for various in-
dividual species i = Ar, H2, O2, N2, NO, CO, H2O, HO2,
CO2, H2O2, CF4, CH4, C2H4, C2H6, C3H8, C6H6 and pol-
yaromatic hydrocarbons (azulene, naphthalene, biphenyl, an-
thracene, phenanthrene, pyrene, coronene) determined in the
present work (dotted line) as well as the effective diameters in
terms of DRFM (solid lines) and the available data given in
references [32,40–42] (symbols).

were also calculated in line with equation (12). The com-
parison of the estimated values of σij and σeff

ij with the
tabulated data is given in Figure 1. One can see an ad-
vance of the methodology proposed in reference [38] and
applied in the present work for the adequate predictions
of the collision diameters of different species (the relative
mean deviation does not exceed 6%). Notable discrepancy
is observed only for the σii values for the H2O, H2O2

and CF4 molecules and for two polyaromatic hydrocar-
bon molecules C12H10 and C24H12. The account for the
dipole-dipole and dipole-induced dipole interactions in the
manner of Paul and Warnatz (DRFM) [32] makes it possi-
ble to improve the agreement between predicted and com-
monly accepted values of σii for dipole molecules H2O and
H2O2.

Note that, when calculating the binary diffusion coef-
ficient Dij , a few combining rules for the collision diam-
eter σij of different molecules can be applicable. One of
the combining rules, commonly used for the calculation of
collision diameter, is the arithmetic mean

σij = 0.5 (σii + σjj) . (14)

This rule is exactly valid if the interacting particles are
hard spheres. More sophisticated rule of Kong [43] was
proposed originally assuming LJ potential for noble gases.
However, as it was found from fitting the transport prop-
erties for binary mixtures [44], both the arithmetic mean
and Kong’s rule overpredicts the collision diameter for the
particles with considerably distinguishing sizes. This issue
is essential for the cases under study, because we consider
binary diffusion of rather large clusters in diatomic gases.

Therefore, we used the empirical combining rule suggested
by Bastien et al. [44]

σij = 0.43 (σii + σjj) + 0.49. (15)

This rule provides accurate values of σij for the cases
of substantially distinguishing diameters of molecules (all
values in Eq. (15) are in Å).

2.3 Electric properties of clusters

In recent study [38] the main electric properties such as
dipole moments and static polarizabilities for (Al2O3)n,
n = 1 . . . 4, clusters were reported for structures optimized
in terms of density functional theory (DFT) with the use
of Becke three parameter hybrid functional (B3LYP) [45]
combined with the correlation functional [46] with the use
of 6-31+G(d) basis set. However, this method does not
provide highly accurate values of electric properties [47].
Therefore, in the present work, in accordance with the
recommendations [48], the following calculation procedure
was applied. At first, the estimations of dipole moments
μ and static polarizabilities 〈α〉 were performed by using
the UB3LYP/6-311+G(2d) level of theory for the geome-
tries of cluster structures reported in reference [38]. The
commonly applied notation for this kind of calculations
is UB3LYP/6-311+G(2d)//UB3LYP/6-31+G(d)method.
Then, the values of static isotropic polarizability 〈α〉 esti-
mated with this method were scaled by a factor of 1.11,
that provides the best coincidence with the known exper-
imental data [39] for a test set composed of 21 species
(He, Ar, Ne, H, O, N, C, B, Al, Na, H2, O2, N2, CO,
CO2, CH4, C2H2, C2H4, C2H6, C3H8, C6H6). Note that
all DFT computations were performed by using Firefly
QC program package [49] which is partially based on the
GAMESS(US) source code [50].

3 Results

We considered each two most stable (Al2O3)n, n = 1 . . . 4
isomers of each type of clusters (monomer, dimer, trimer,
tetramer) identified in reference [38]. Their configurations
are shown in Figure 2.

The calculated values of collision diameter σii,
isotropic polarizability 〈α〉 and dipole moment μ as well
as symmetry type and multiplicity for the most stable
(Al2O3)n isomers are given in Table 2. The values of 〈α〉
scaled by factor 1.11 are given also in the parentheses.
One can see that the majority of the considered clusters
are non-polar. Only triplet monomer of C2v symmetry and
singlet trimer of C1 symmetry have substantial dipole mo-
ments. For comparison the values of 〈α〉 (non-scaled and
scaled) calculated in the present work for the most stable
clusters are given in Figure 3. The 〈α〉 value for Al2O3 de-
rived by using the Clausius-Mossotti relation from the di-
electric constant for sapphire (>99.9% Al2O3) [51] is also
given there. Note, though the Clausius-Mosotti equation is

http://www.epj.org
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monomers 

a. C2v b. D∞h (Te=0.31 eV) 
dimers 

a. Td b. C2h (Te=0.42 eV) 
trimers 

a. C1 b. D3h (Te=0.07 eV) 
tetramers 

a. D3d b. Oh (Te=0.20 eV) 

Fig. 2. Considered structures of (Al2O3)n, n = 1 . . . 4, clusters
(Al and O atoms are depicted by grey and red colour). The type
of symmetry and electronic energy values of isomers Te are also
indicated.

Table 2. Collision diameter and electric properties of consid-
ered (Al2O3)n clusters.

n Symmetry Multiplicity σii, Å 〈α〉, Å3 μ, D

1 C2v 3 5.77 8.60 (9.55) 2.47

1 D∞h 1 6.08 9.14 (10.15) 0.0

2 Td 1 6.91 12.91 (14.33) 0.0

2 C2h 1 6.71 12.99 (14.42) 0.0

3 C1 1 8.02 18.15 (20.14) 1.32

3 D3h 1 7.65 18.85 (20.92) 0.0

4 D3d 1 8.71 24.33 (27.00) 0.02

4 Oh 1 8.20 24.87 (27.60) 0.0

1 2 3 4
0

5

10

15

20

25

30
 calculated values
 scaled values
 Kim et al. [51]

<α
>,

 A
3

n

Fig. 3. The values of 〈α〉 for the most stable (Al2O3)n,
n = 1 . . . 4, clusters estimated in the present work as well as
the 〈α〉 value for Al2O3 derived from the dielectric constant of
sapphire [51].

strictly valid only for crystals with cubic lattice, the agree-
ment of 〈α〉 values, estimated in this work for the monomer
and derived from the data for sapphire [51], is rather good.
In addition, one can observe from Figure 3 that the vari-
ation of polarizability of alumina clusters with increas-
ing n number is not absolutely linear. There exists small
quadratic dependence: 〈α〉 (n) = 5.81 + 3.22n + 0.519n2.

The analogous data for cluster colliding partners con-
sidered in the present study: H2, N2, O2, CO and H2O that
were calculated with the use of the methodology of this
work are presented in Table 3. Comparing the predicted
〈α〉 values with experimental data, one can conclude that
the usage of scaling parameter of 1.11 allows one to com-
pensate the effect of underestimation of the polarizability
caused by using the limited basis set in quantum chemi-
cal computations. The coincidence of predicted dipole mo-
ments with experimental data can be also considered as
acceptable.

From the plot shown in Figure 4 it also follows that
the applied methodology allows us to predict binary diffu-
sion coefficients for pairs of nonpolar-nonpolar and polar-
nonpolar molecules at T = 298 K [52,53] with reasonable
accuracy.

One of the most crucial issues important for the
problem under study is the temperature dependence of
diffusion coefficient for pairs of polar-nonpolar and polar-
polar particles. In order to elucidate this topic we com-
pared our predictions with the experimental data on
self-diffusion coefficient for strongly polar molecule H2O
reported in the review [54] and on diffusion coefficient of
slightly polar molecule CO in O2 given in reference [53].
Figure 5 depicts the dependencies of diffusion coefficients
calculated both with DRFM approach and using the ad-
ditive scheme (Eq. (6)). One can see that the applied
methodology predicts diffusion coefficient for polar gas
in non-polar ones very well, irrespectively on the way
of account for the orientation-dependent contributions.
However, for the H2O self-diffusion coefficient the DRFM
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Table 3. The collision diameter and electric properties of considered bath gas molecules.

Molecule
Multiplicity σii, 〈α〉, Å3, 〈α〉, Å3 〈α〉, Å3, μ, Debye, μ, Debye,

2s + 1 Å calculations scaled experiment [39] calculations experiment [39]

H2 1 2.91 0.60 0.67 0.79 0.0 0.0
N2 1 3.35 1.63 1.81 1.71 0.0 0.0
O2 3 3.16 1.35 1.50 1.56 0.0 0.0
CO 1 3.63 1.84 2.05 1.95 0.06 0.11
H2O 1 3.40 1.23 1.37 1.45 1.95 1.85
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Fig. 4. Measured [52,53] and estimated binary diffusion coef-
ficients for different pairs of bath gases considered in this work
at the temperature T = 298 K and pressure P = 1 atm.
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Fig. 5. Diffusion coefficients for H2O-H2O and CO-O2 molec-
ular pairs vs. temperature calculated in line with DRFM ap-
proach and using the additive scheme (Eqs. (5) and (6))
(curves) and the experimental data [53,54] at P = 1 atm
(symbols).

approach, at high temperatures, provides a slightly bet-
ter agreement of predicted Dij values with measurements.
Therefore, the DRFM approach was applied for the eval-
uation of Dij values for (Al2O3)n clusters.

In Table 4 the dispersion potential well depths εdisp
ij for

pairs “cluster-bath gas molecule” as well as the effective

potential well depth values εeff
ij at T = 298 K are summa-

rized. One can see that, as was expected, the values of
εdisp

ij and εeff
ij differ only for the strongly polar molecules

(H2O) and clusters possessing the dipole moment.
It is worth noting that preliminary quantum chem-

ical calculations of interaction potential for two Al2O3

monomers with the use of unrestricted second order
Møller-Plesset perturbation theory (UMP2) method [55]
revealed that this potential is highly attractive, and the
interaction of monomers leads to the direct formation of
highly stable dimer rather than van der Waals complex.
That is why the collisions of Al2O3 monomers cannot be
treated as elastic. Therefore, the procedure of the deter-
mination of self-diffusion and viscosity coefficients for the
monomers is meaningless.

The binary diffusion coefficients of (Al2O3)n clusters
at atmospheric pressure in various bath gases as well as
self-diffusion coefficients for clusters with n = 2 . . . 4 were
calculated with the usage of εeff

ij values. The temperature-
dependent diffusion coefficients for (Al2O3)n clusters were
approximated by following formula

Dij (T ) = D0
ij

[(
T

273

)a

− b exp
(
−c

273
T

)]
(16)

with an accuracy not worse than ±2% over the tempera-
ture range T = 300–6000 K. The D0

ij , a, b, and c param-
eters are presented in Table 5. The Dij(T ) dependencies
for j = N2 (non-polar molecule gas), CO (weakly polar
molecule gas) and H2O (polar molecule with large dipole
moment) as well as self-diffusion coefficients Dij(T ) are
shown in Figures 6–9.

The presented data exhibit that an account for the
contributions of the second type isomer for each type of
clusters (dimer, trimer, tetramer) cannot provide a sub-
stantial correction to the net diffusion coefficient, because
the isomers possess similar collision diameters and polar-
izabilities (see Tab. 2). However, the most stable monomer
(3C2v) has substantial dipole moment (2.47 D), whereas
the singlet monomer has D∞h symmetry, and its dipole
moment is equal to zero. This leads to the substantial
difference in their diffusion coefficients in the gas of po-
lar molecules at low temperature due to distinguishing
values of Cel

6 term in the interaction potential responsi-
ble for the dipole-dipole interaction for these isomers. So,
at low temperature (T = 200–300 K), for j = H2O we
have Dij(1D∞h) = (1.04 ÷ 1.51) Dij(3C2v). To a lesser
extent, the difference in the diffusion coefficients, at low

http://www.epj.org


Eur. Phys. J. D (2014) 68: 99 Page 7 of 9

Table 4. The values of dispersion potential well depth εdisp
ij and values of εeff

ij calculated in terms of DRFM approach (Eq. (12))
(in parentheses) for different pairs of collision partners at T = 298 K.

εij , K
Mono Mono Dimer Dimer Trimer Trimer Tetramer Tetramer
3C2v

1D∞h Td C2h C1 D3h D3d Oh

CO
95.3 83.4 83.5 93.3 69.3 85.0 67.6 86.8

(100.7) (83.4) (83.5) (93.3) (69.8) (85.1) (67.6) (86.8)

H2
42.7 37.0 35.6 40.0 28.5 35.3 27.3 35.5

(45.4) (37.0) (35.6) (40.0) (28.7) (35.3) (27.3) (35.5)

H2O
75.4 65.7 65.5 73.2 53.8 66.2 52.1 67.2

(156.6) (82.2) (80.2) (89.7) (70.5) (81.0) (63.7) (82.2)

N2
101.7 88.5 87.9 98.4 72.1 88.7 69.8 90.1

(107.2) (88.5) (87.9) (98.4) (72.5) (88.7) (69.8) (90.1)

O2
101.1 87.6 86.9 97.5 70.7 87.2 68.2 88.2

(106.2) (87.6) (86.9) (97.5) (71.1) (87.2) (68.2) (88.2)

Self – –
78.7 95.0 65.7 92.4 71.7 106.7

(78.7) (95.0) (66.8) (92.4) (71.7) (106.7)

Table 5. Approximation parameters for the temperature dependence for the self-diffusion coefficients Dii and binary diffusion
coefficients Dij (in m2 s−1) in various bath gases: CO, H2, H2O, N2, O2 for two structures of (Al2O3)n, n = 1 . . . 4 clusters.

Monomer 3C2v Monomer 1D∞h

partner D0
ij , m2 s−1 a b c partner D0

ij , m2 s−1 a b c

CO 9.86 × 10−6 1.651 1.12 × 10−1 0.2691 CO 9.45 × 10−6 1.652 7.59 × 10−2 0.1966

H2 4.24 × 10−5 1.655 1.73 × 10−2 –0.0519 H2 4.07 × 10−5 1.655 9.09 × 10−3 –0.1631

H2O 1.32 × 10−5 1.641 2.58 × 10−1 0.3381 H2O 1.23 × 10−5 1.652 7.35 × 10−2 0.1908

N2 1.03 × 10−5 1.650 1.26 × 10−1 0.2934 N2 9.87 × 10−6 1.652 8.61 × 10−2 0.2198

O2 1.02 × 10−5 1.651 1.24 × 10−1 0.2897 O2 9.75 × 10−6 1.652 8.41 × 10−2 0.2155

with itself – – with itself – –

Dimer 1Td Dimer 1C2h

CO 7.70 × 10−6 1.652 7.61 × 10−2 0.1972 CO 7.86 × 10−6 1.651 9.58 × 10−2 0.2399

H2 3.48 × 10−5 1.655 7.91 × 10−3 –0.1887 H2 3.55 × 10−5 1.655 1.18 × 10−2 –0.1171

H2O 1.02 × 10−5 1.652 6.97 × 10−2 0.1811 H2O 1.04 × 10−5 1.652 8.85 × 10−2 0.2249

N2 8.03 × 10−6 1.652 8.48 × 10−2 0.2170 N2 8.19 × 10−6 1.651 1.07 × 10−1 0.2605

O2 7.85 × 10−6 1.652 8.28 × 10−2 0.2126 O2 8.01 × 10−6 1.651 1.05 × 10−1 0.2568

with itself 2.01 × 10−6 1.652 6.68 × 10−2 0.1735 with itself 2.08 × 10−6 1.651 9.94 × 10−2 0.2469

Trimer 1C1 Trimer 1D3h

CO 6.46 × 10−6 1.653 5.11 × 10−2 0.1267 CO 6.66 × 10−6 1.652 7.91 × 10−2 0.2041

H2 2.96 × 10−5 1.656 3.31 × 10−3 –0.3630 H2 3.05 × 10−5 1.655 7.73 × 10−3 –0.1930

H2O 8.58 × 10−6 1.653 4.93 × 10−2 0.0628 H2O 8.84 × 10−6 1.652 7.11 × 10−2 0.1848

N2 6.71 × 10−6 1.653 5.58 × 10−2 0.1418 N2 6.93 × 10−6 1.652 8.64 × 10−2 0.2206

O2 6.54 × 10−6 1.653 5.34 × 10−2 0.1342 O2 6.75 × 10−6 1.652 8.34 × 10−2 0.2140

with itself 1.25 × 10−6 1.653 4.61 × 10−2 0.1065 with itself 1.31 × 10−6 1.651 9.40 × 10−2 0.2363

Tetramer 1D3d Tetramer 1Oh

CO 5.77 × 10−6 1.653 4.76 × 10−2 0.1144 CO 6.03 × 10−6 1.652 8.26 × 10−2 0.2122

H2 2.66 × 10−5 1.656 2.62 × 10−3 –0.4138 H2 2.78 × 10−5 1.655 7.87 × 10−3 –0.1898

H2O 7.68 × 10−6 1.653 4.14 × 10−2 0.0909 H2O 8.02 × 10−6 1.652 7.35 × 10−2 0.1909

N2 5.99 × 10−6 1.653 5.12 × 10−2 0.1269 N2 6.26 × 10−6 1.652 8.92 × 10−2 0.2264

O2 5.82 × 10−6 1.653 4.85 × 10−2 0.1175 O2 6.08 × 10−6 1.652 8.54 × 10−2 0.2183

With itself 9.08 × 10−7 1.653 5.43 × 10−2 0.1370 with itself 9.71 × 10−7 1.650 1.25 × 10−1 0.2916
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Fig. 6. Diffusion coefficients of the two energy-lowest isomers
of (Al2O3)n (n = 1 . . . 4) clusters with N2.
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Fig. 7. Diffusion coefficients of the two energy-lowest isomers
of (Al2O3)n clusters (n = 1 . . . 4) with CO.
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Fig. 8. Diffusion coefficients of the two energy-lowest isomers
of (Al2O3)n clusters (n = 1 . . . 4) with H2O.

temperature, takes place for polar C1 trimer and non-polar
D3h trimer in H2O bath gas.
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Fig. 9. Self-diffusion coefficients of the two energy-lowest iso-
mers of (Al2O3)n (n = 2 . . . 4) clusters.

4 Concluding remarks

Binary diffusion coefficients for two low-lying pairs of iso-
mers of (Al2O3)n clusters (n = 1 . . . 4) in bath gases, H2,
CO, N2, O2 and H2O as well as self-diffusion coefficients
for clusters with n = 2 . . . 4 were computed over a wide
range of temperature using first-principle calculations and
reliable interaction potential. The parameters of the po-
tential for (Al2O3)n clusters interaction with H2, CO, N2,
O2 and H2O molecules were calculated taking into account
the dispersion, dipole-dipole and dipole-induced dipole in-
teraction terms. Special attention was paid to the correct
determination of collision diameter of colliding partners
(cluster-molecule). A comparison of the computed diffu-
sion coefficients for pairs of bath gases with experimental
data, obtained at near room temperature showed an ad-
vance of applied methodology. It was revealed that the dif-
fusion coefficients of the isomers of (Al2O3)n clusters differ
notably only in the case when dipole moments of isomers
distinguish strongly. So, the diffusion coefficients of two
Al2O3 structures with 3C2v and 1D∞h symmetries in wa-
ter vapour can differ by a factor of 1.5 at T = 200–300 K.

This work was supported by the Russian Foundation for Basic
Research (Grants Nos. 12-08-92008 and 14-08-31247).
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