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Abstract: Sequential Gaussian simulation method is taken as an example to analyze the characteristics and defects of stochastic simula-
tion methods, and a modeling strategy is proposed that is based on the results of seismic inversion to improve modeling accuracy. Sto-
chastic simulation can only achieve “mathematical reality” by recovery of parameter’s macro statistical regularity through examples, and 
seismic forward model can verify whether the simulation results deviate from the “geological reality”. Seismic forward modeling can 
verify the reliability of the geological model, and the results of geological modeling constrained by seismic inversion can improve the 
accuracy of the model to achieve the “geological reality”. For braided river delta, a modeling strategy constrained by seismic inversion 
results in the condition of “multi-levels” and “multi-conditions” is put forward. For lithofacies modeling, division of lithofacies in single 
well acts as the first variable; in the stage of exploration and development, lithology probability and lithology body act as the second 
variable respectively, and then establish facies models. For property modeling, take lithofacies model and the seismic impedance as the 
first variable and the second variable respectively to create property model, in the condition of horizontal and vertical impedance con-
straints. The proposed modeling strategy maintains the statistical regularities of input data, keep a better consistency with seismic data, 
and match with dynamic field production. 

Key words: stochastic simulation; variogram; seismic forward; seismic inversion; facies-controlled modeling; seismic constraint; con-
straint modeling   

Introduction 

Reservoir geological modeling is aimed at three-dimen-
sional quantitative description of the distribution of various 
reservoir parameters (facies, porosity, permeability, saturation, 
etc.) to guide exploration and development of oilfields. As a 
space simulation and prediction tool, geostatistics has been 
widely applied in reservoir modeling and other fields since the 
1960s [1−8]. In China with most of the oilfield entering the 
middle and late development stage, the main target of geo-
logical modeling is studying remaining oil distribution. In 
recent years, conventional static or conceptual models can 
hardly meet the demands of oilfield production, so stochastic 
simulation has been frequently used to build reservoir geo-
logical model [4−8]. Currently, there are a number of stochastic 
simulation methods [9−11], but all these methods should be ap-
plied according to their own applicable conditions, and there 
does not exist a reservoir modeling method suitable for all 
depositional environments. Thus, worldwide scholars continue 
to improve the algorithm to adapt to the complex geological 
conditions and describe the underground reservoir characteris-

tics as realistic as possible [11−14]. 
Stochastic simulation can produce multiple realization of 

equal probability. From the mathematical point of view, the 
probability of multiple simulations is equal, and follows the 
law of prior probability characteristics, so each model is rea-
sonable. But from the oilfield production point of view, by the 
application of these simulation and practice to simulate reser-
voir values, all the models cannot fit correctly once. Generally, 
each model need to be regulated manually more than 10  
times [15−16], and multiple models can achieve the same 
matching result [14−17], therefore these models are not accurate. 
Thus, these realizations conform to the mathematical proper-
ties of reservoir, to some degree, and just approach the “ma-
thematical reality” rather than “geological reality”. 

In this paper, taking the widely used sequential Gaussian 
simulation method as an example, mathematical reality prop-
erties of stochastic simulation are analyzed, seismic forward 
modeling is employed to analyze the differences between the 
result of stochastic simulation and the “geological reality”. 
And the modeling strategy constrained by seismic inversion 
results in the condition of “multi-level, multi-condition” is 
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proposed. So the simulation results continue to approach the 
“mathematical reality” and improve crosswell prediction ac-
curacy to approach “geological reality” in order to guide fur-
ther deployment of oilfield development program effectively. 

1  Mathematical properties of stochastic  
simulation 

Based on statistics of geologic body parameters, stochastic 
simulation technique is a geomathematical method which 
takes variable probabilistic and structural properties in space 
into consideration. Sequential Gaussian simulation algorithm 
has two main types of input parameters: probability distribu-
tion function and variogram. The probability distribution 
function is used to describe the data distribution pattern, and 
the variogram is used to describe the structural feature in 
space of geological body through triple directional range 
(main variable range, secondary variable range, vertical vari-
able range) to control the geological formation. 

Taking offshore oil field A in the study region as an exam-
ple, isotropic variogram function (the main variable range and 
the secondary variable range are the same) and anisotropic 
variogram function (the main variable range and the secon-
dary variable range are different) were adopted to simulate the 
porosity of reservoir respectively. The results of simulation 
behave a near round and near ellipse shape of high porosity 
values area (Fig. 1). The analysis of the obtained porosity 
model shows that output variogram function and data distri-
bution pattern are consistent with the distribution pattern of 
the input parameters, indicating that the simulation results can 
reappear the statistical characteristics of input parameters ac-
curately, i.e. the “mathematical reality” characteristics of the 
stochastic simulation. The distribution pattern of the parame-
ters gained by sequential Gaussian simulation method may be 
irregular in dense well pattern, but they match well with the 
actual sand body. In the area with no wells or few wells, the 
distribution pattern tend to be specific, as shown in Fig. 1, the 
near round and near ellipse shape which can not reflect the 
complexity of actual sand body shape. In the numerical simu-
lation phase of reservoir, a model usually needs to be regu-
lated several times to match with the production-performance  

data [15−16], although the simulation results coincide with the 
data macro-statistical pattern, but fail to reflect the realistic 
spatial distribution of the reservoir parameters, this also goes 
for other stochastic simulation methods [10−14]. 

2  Reliability verification of the model with seismic 
forward  

Seismic forward modeling refers to the construction of a 
known model, and obtaining the geological seismic waveform 
under specific geological conditions according to some theo-
ries. On the contrary, seismic inversion refers to using the 
receieved seismic wave to speculate the model information. 
The solution of geophysical inversion is based on the research 
of forward issues, such as seismic inversion, it builds seismic 
forward model to examine the inversion computing methods 
and keep continuous improvement, so the inversion results 
can approach the geological reality [18−20]. 

Since the seismic data has such advantages that good lateral 
continuity and rich spatial information, the reliability of 
model will be improved effectively by using seismic data as 
constraint. The difference of wave impedance between strata 
causes seismic reflection, and wave impedance can effectively 
characterize the strata attribution, Li Qingzhong presented that 
wave impedance was the ultimate form of seismic processing, 
the valid parameter connecting seismic data with lithology, 
and proposed to describe reservoirs directly [18]. In the case the 
actual wave impedance underground is known, the seismic 
waveform data a will be obtained by convolution of wavelets 
and corresponding reflection coefficients; the seismic wave-
form data b will be obtained by convolution of wavelets and 
corresponding reflection coefficient model which is modeled 
by using stochastic simulation to simulate the wave imped-
ance. The closer the wave impedance model gained by sto-
chastic simulation method and the actual wave impedance, the 
more consistent seismic data a and b will be. If two wave im-
pedance models are identical, the results of simulation com-
pletely reappear the geological reality, seismic data a is en-
tirely consistent with b in theory. Contrarily, the bigger dif-
ferences between data a and b, the more unreliable the simula-
tion results are. 

 
Fig. 1  Porosity models obtained using different variogram modeling
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Well pattern of oilfield A is irregular, impedance attributes 
were used to get the fairly reliable variogram [21], and the 
model of impedance attributes (Fig. 2) was built by using 
sequential Gaussian simulation method, and the reliability of 
wave impedance model was verified by using the seismic 
forward model which was built by Jason software. The seis-
mic section (red) gained from seismic forward modeling and 
the seismic section (black) from actual measurement were 
overlapped (Fig. 3), showing there are great differences both 
in crosswell area and extrapolation area, which indicates that 
the wave impedance obtained from the stochastic simulation 
results is quite different from the actual impedance. Thus it 
implies the stochastic simulation results can not reflect the 
geological reality accurately. 

The impedance volume gained by seismic inversion (Fig. 4) 
differs from the wave impedance obtained by stochastic 
simulation (Fig. 2). Impedance volume gained by seismic 
inversion is faithful to seismic reflection characteristics, and 
independent on geostatistical parameters. It matches with well 
data, and be natural transition between wells. Comparison of 
the seismic section of forwarding modeling of wave imped-
ance data by inversion with the actual seismic section shows 
the correlation coefficient of them is more than 99% (Fig. 5), 
which indicates that the seismic inversion result better reflects 
geological reality than wave impedance from stochastic simu-
lation. 

It can be seen that seismic forward modeling can verify the 
reliability of geological model, and the data of seismic inver-
sion can constrain the modeling effectively. Taking full ad-
vantage of the spatial characteristics of inversion data, and 
using the inversion results (wave impedance, lithological in-
terpretation results) to constrain each phase of modeling (fa-
cies modeling property modeling) can improve the accuracy 
of the model. 

 
Fig. 2  Impedance attribute section simulated by sequential 
Gaussian simulation method 

 
Fig. 3  Comparison between forward model (red) and actual 
seismic section (black) 

 
Fig. 4  Impedance attribute section from seismic inversion 

 
Fig. 5  Comparison between forward model (red) and actual 
seismic section (black) 

3  Examples of modeling constrained by seismic 
inversion results  

Taking oilfield A as an example, this paper discusses mod-
eling strategies of different stages in the modeling constrained 
by seismic inversion results. In the exploration stage, due to 
large study area but few wells, the interpretation of results 
often have multiple solutions, the macro-trend was con-
strained by the probability in the modeling process, then the 
sedimentary pattern of the whole area was analyzed; in the 
development stage, due to smaller study area and more wells, 
there are higher requirements towards crosswell prediction 
accuracy, inversion results (lithosome, wave impedance body) 
are used to constrain the modeling, in order to improve the 
accuracy of the model. 

3.1  Modeling in the exploration stage 

The purposes of modeling are different in different stages 
of oilfield [22]. In the exploration stage, it just needs to figure 
out the distribution area of favorable zone and macroscopic 
pattern, so the static conceptual model is enough to meet this 
purpose which uses the sequential indicator algorithm or mul-
tiple point geostatistics method to simulate lithofacies. Gener-
ally, in the exploration stage, large study area, sparse wells, 
and large crosswell interval, result in lower reliability of in-
version. 

Fig. 6a is the plan of study area, there are 3 exploration 
wells and 21 production wells. The study area is 200 km2 

within a braided river delta system. Oilfield A is in the delta 
front belt, where the braided bar distributed between branch 
channels of near diamond shape is the most favorable reser-
voir sand bodies. Sequential indicator simulation method 
based on the variogram can better describe this type of sand 
bodies morphology. Fig. 6b shows the simulation result. For 
there are only 3 exploration wells in uneven distribution in the 
study area, the simulation results can not show the planar dis- 
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Fig. 6  Lithofacies model built by sequential indicator method 

tribution of delta deposits and sand bodies morphology effec-
tively, the simulation results of sand bodies distribution be-
tween wells depends heavily on statistical pattern. 

In Fig. 6a, area A and area B are located in the same delta 
front belt, and area C is located in the delta plain belt. Com-
parison of statistical wavelets extracted from 3 areas shows 
area A and area B are quite similar in wavelet shape, ampli-
tude spectrum and phase spectrum, but wavelet shape of area 
C in a different sedimentary facies belt is quite different from 
the former two (Fig. 7). In different areas, the amplitude, fre-
quency and phase of seismic wavelets are also different, be-
cause seismic wavelet is affected by rock composition, struc-

ture, porosity and fluid in the wavelet propagation process. In 
the exploration area where there are few wells, the average 
wavelet generally can not represent all the wavelets charac-
teristics. Wavelet extraction is the key of seismic inversion, 
directly affecting the accuracy of inversion results. For large 
study area, changes in sedimentary facies lead to the deforma-
tion of wavelets, so there must be multiple solutions of seis-
mic inversion in the same area.  

In consideration of modeling target and seismic inversion 
uncertainty, therefore, generally, constrained sparse spike in-
version which can reflect macroscopic trend is used in explo-
ration stage. In this inversion, wave impedance data is con-
verted into lithological probability body (Fig. 8a) based on the 
relation between lithology and wave impedance. In addition, 
modeling of lithofacies should be constrained by co-sequen-
tial Gaussian simulation to effectively represent the macro-
scopic pattern of sand body which belongs to seismic prob-
ability body. Fig. 8b is the modeling result constrained by 
lithological probability body. Compared with Fig. 6b, the simu-
lation result is consistent with the macro-pattern of probability 
body, so the result is able to reappear the plan form of delta. 
And the prediction result of crosswell sand body can be ex-
plained from the interpretation of sedimentary origin. 

 
Fig. 7  Comparison of wavelets from different parts of the study area

Some scholars used trend surface or probability surface to 
constrain the plan [6−7, 23−24], but the plan could only reflect the 
horizontal distribution of sand body during the deposition 
time of the strata mentioned above [25], failing to reflect the 
complexity of vertical evolution in sedimentary environment, 
especially in the continental sedimentary environment where 
vertical facies change frequently. But, if probability body is 
used for constraint, it is equivalent to use multiple probability 
surface (the number depends on the division degree of the grid) 
for constraint rather than only one probability surface, which 
can better reflect the vertical facies change pattern. In addition, 
during the simulation process of study area, the variogram 
was gained from plane attribute, which is more accurate 
gained by well data [21]. 

 
Fig. 8  Lithofacies model constrained by lithologic probability 
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3.2  Modeling in the development stage 

In oilfield development stage, modeling is required detailed 
reservoir description to define local or crosswell sand body 
and remaining oil distribution, and further to guide the design 
of development plan. Generally, this stage requires much 
higher accuracy of the model with smaller study area and 
more wells. Oilfield A, an offshore oilfield which has been 
developed for over 20 years, is currently facing the task of 
tapping remaining oil to increase production, which sets high 
requirements on geological modeling. For this reason, lithofa-
cies model and property model of the study area are built un-
der constraint of seismic inversion results. 

3.2.1  Lithofacies modeling 

The main difference of lithofacies modeling in develop-
ment stage from exploration stage is lithosome, used to re-
place probability body to constrain the model. With the in-
crease of modeling requirement and data, the lithofacies mod-
eling constrained by lithosome from inversion directly is more 
accurate than lithology probability body based on probability 
distribution, meanwhile the accuracy requirement of seismic 
inversion and lithology interpretation are higher. In this paper, 
the uncertainty of lithology interpretation results based on 
seismic inversion is reduced from the following two aspects. 

(1) During inversion process, MCMC (Markov Chain- 
Monte Carlo) algorithm [26] was used to achieve high-resolu-
tion inversion and improve vertical resolution of inversion 

results. The deterministic seismic inversion can only identify 
about 10 m thick sand beds, but fail to identify thin sand beds 
or interbeds which are less than 10 m thick. In oilfield A, the 
target beds are mostly thin oil layers, less than 4 m thick, even 
less than 1 m, so low-resolution constrained sparse spike in-
version can only reflect the overall trend (Fig. 9a, 9b), while 
the geostatistical inversion based on MCMC algorithm can 
effectively improve the vertical resolution, and show details of 
the reservoir (Fig. 9c, 9d). 

(2) Threshold volume interpretation method was used to 
transfer the impedance inversion to lithosome, in order to 
improve the accuracy of interpretation. Affected by diagenesis 
and sedimentation, the seismic impedance would change ver-
tically and laterally [27]. In continental region where facies 
change rapidly, lateral variation is especially obvious, result-
ing in the change of relationship between impedance and 
lithology. Lithofacies model is built by using sequential indi-
cator simulation method (Fig. 11), by the constraint of the 
lithology interpretion of threshold (Fig. 10). 

Traditional layering and single threshold lithology interpreta-
tion method can not deal with horizontal impedance changes 
caused by deposition, and the reservoir impedance characteris-
tics of all wells can not be reflected just by one single threshold, 
resulting in high uncertainty of interpretation results. But the 
threshold lithology interpretation method adopt different 
thresholds in different facies belts, whose interpretation results 
consider more single wells, thus obtain more reliable results [27]. 

 
Fig. 9  Comparison between constrained sparse spike inversion and geostatistical inversion

 

Fig. 10  Lithology interpretation results of threshold 

 
Fig. 11  Lithofacies model constrained by lithology interpreta-
tion result of inversion 
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3.2.2  Attribute modeling 

Reservoir parameter models reflect its heterogeneity, i.e. 
the spatial distribution of internal physical property. Reservoir 
parameters mainly including porosity, permeability and oil 
saturation, etc, are important input parameters in reservoir 
numerical simulation, and directly affect the fitting results. In 
study area, impedance is well correlated to the porosity (cor-
relation coefficient is 0.958). According to the idea of facies 
constraining modeling, impedance constraint and synergistic 
sequential Gaussian simulation methods were used jointly to 
build porosity model (Fig. 12), based on the pre-inversion 
constrained by lithosome. Then according to the analysis re-
sults of core, the correlation between porosity and permeabil-
ity is established. The porosity model converted into perme-
ability model (Fig. 13a). Finally, the classification J-function 
method was used to build oil saturation model [28] based on the 
mercury injection curve (Fig. 13b). 

3.2.3  Model verification 

Due to high offshore drilling cost, in order to lower devel-

opment risk, multi-discipline data was used to build the geo-
logical model. Seismic forward modeling, comparison tests and 
reservoir numerical simulation were used to validate the model. 

Comparison of the seismic forward modeling results of 
impedance model in the study area with the actual seismic 
section (Fig. 14), shows that the waveform of seismic forward 
modeling is consistent with the actual seismic waveform, in-
dicating modeling constrained by impedance can effectively 
improve the reliability of model. 

Since the stochastic simulation algorithm is a geostatistical 
interpolation method based on wells, the model is consistent 
with wells at the well points, while the crosswell prediction 
accuracy can be verified by rarefying wells. Fig. 15 is a 
through-well section of porosity model, in which Well 1 and 4 
were involved in computation, the porosity values of model at 
the well points are similar with the actual porosity values, 
while Well 2 and 3 are not involved in computation (rarifying 
wells), so the porosity of these two wells are the predicted 
values by the model. It can be seen both thin and thick beds of 
the model are in good match with wells. 

 
Fig. 12  Building of porosity model of study area 

 
Fig. 13  Permeability model and oil saturation model of study area 

 
Fig. 14  Comparison between forward model (red) and the ac-
tual seismic section (black) 

 
Fig. 15  Rarifying test of porosity model 
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Comparing the reservoir numerical results of reservoir nu-
merical simulation history matching by modeling with the 
simulation results before modeling constrained, it shows the 
higher fitting degree in whole oilfield before manual adjust-
ment, proving the accuracy of attribute model indirectly. 

3.3  Modeling strategy constrained by “multi-level, mul-
ti-condition” seismic inversion results  

The facies-contrained modeling usually involves two 
steps: (1) build the framework model, i.e. the lithofacies 
model; (2) build model of porosity, permeability and other 
attributes. Predecessors have made a lot of researches on 
lithofacies modeling constrained by seismic [24,29], and 
achieved some results in constrained attribute model-   

ing [23,30−32]. This paper thinks lithofacies modeling and 
attribute modeling constrained by seismic data can improve 
the accuracy of the model significantly, that is “multi-level, 
multi-condition” constraint modeling (Fig. 17): in the first 
level constraint, dividing of lithofacies in single well is 
taken as the first variable, take lithology probability and 
the lithosome as the second variable in the exploration and 
development stages respectively to build lithofacies model 
(“multi-condition” constraint); in the second level con-
straint, lithofacies model is taken as the first variable, and 
impedance data is taken as the second variable to build 
porosity (property) model, constrained by impedance in 
horizontal and vertical direction (“multi-condition” con-
straint). 

 
Fig. 16  Comparison of history match

Modeling examples in this paper indicate that the model 
built by using “multi-level, multi-condition” constraint has 
high accuracy, recovering the statistical pattern of input pa-
rameters. Besides, the forward result by model matches well 
with seismic on the macroscopic scale (Fig. 14), and well with 
data on the microscopic scale (Fig. 15). The method can ef-
fectively improve the accuracy of history matching (Fig. 16). 

After constraint modeling, the results of numerical simula-
tion of the study area are very well, because of high seismic 
data quality with 60 Hz dominant frequency wavelet, stable 
deposition, correlatable strata, stable barrier beds between oil 
layers, and no muddy intercalation. But for continental sedi-
mentation system, the depositional environment changes rap-
idly laterally, frequent sand and shale interbed in vertical di-
rection, such as in the lateral accretion body of river point bar, 
muddy intercalations are complex in distribution, and usually 

  

Fig. 17  Flow chart of “multi-level, multi-condition” modeling 



HU Yong et al. / Petroleum Exploration and Development, 2014, 41(2): 208–216 
 

− 215 − 

less than 0.5 m thick. The accuracy of present modeling and 
inversion can only define the single sand body, interbed in-
tervals are difficult to be described, adversely affecting water-
flooding deployment. The application of research on interbed 
simulation is limited [33−34]. Generally, this kind of research 
requires outcrop survey and architecture study to modify the 
specific model. 

4  Conclusions 

Stochastic simulation featuring “mathematical reality” does 
not always reflect the “geological reality”. The research of 
seismic forward model indicates that geology modeling con-
strained by seismic inversion data can improve the accuracy 
of model. Wave impedance is more suitable to be used as con-
straint for geological modeling than other seismic attributes. 
The modeling constrained by “multi-level, multi-condition” 
seismic inversion results can take full advantage of seismic 
data, improve crosswell prediction accuracy of model, and 
match better with production performance. 
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