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Abstract

Recent studies have revealed that a small non-coding RNA, microRNA (miRNA) down-regulates its mRNA targets. This effect
is regarded as an important role in various biological processes. Many studies have been devoted to predicting miRNA-
target interactions. These studies indicate that the interactions may only be functional in some specific tissues, which
depend on the characteristics of an miRNA. No systematic methods have been established in the literature to investigate
the correlation between miRNA-target interactions and tissue specificity through microarray data. In this study, we propose
a method to investigate miRNA-target interaction-supported tissues, which is based on experimentally validated miRNA-
target interactions. The tissue specificity results by our method are in accordance with the experimental results in the
literature.

Availability and Implementation: Our analysis results are available at http://tsmti.mbc.nctu.edu.tw/ and http://www.stat.
nctu.edu.tw/hwang/tsmti.html.

Citation: Hsieh WJ, Lin F-M, Huang H-D, Wang H (2014) Investigating microRNA-Target Interaction-Supported Tissues in Human Cancer Tissues Based on miRNA
and Target Gene Expression Profiling. PLoS ONE 9(4): e95697. doi:10.1371/journal.pone.0095697

Editor: Yan Xu, The Perinatal Institute, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, United States of America

Received November 15, 2013; Accepted March 28, 2014; Published April 22, 2014

Copyright: � 2014 Hsieh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors would like to thank the National Science Council of the Republic of China for financially supporting this research under Contract No. NSC
98-2311-B-009-004-MY3, NSC 99-2627-B-009-003, NSC 101-2311-B-009-003-MY3, NSC 100-2627-B-009-002, NSC 101-2118-M-009-006-MY2, NSC 101-2811-M-009-
064 and NSC 102-2911-I-009-101. This work was supported in part by the UST-UCSD International Center of Excellence in Advanced Bio-engineering sponsored by
the Taiwan National Science Council I-RiCE Program under Grant Number: NSC 101-2911-I-009-101, and Veterans General Hospitals and University System of
Taiwan (VGHUST) Joint Research Program under Grant Number: VGHUST101-G5-1-1 and VGHUST103-G5-1-2. This work was also partially supported by MOE ATU
and National Center for Theoretical Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wang@stat.nctu.edu.tw (HW); bryan@mail.nctu.edu.tw (H-DH)

Introduction

MicroRNA is a short non-coding RNA that is approximately

22 nt, which suppresses gene expressions via translational

suppression or mRNA degradation by binding to 39-untranslated

regions (39UTR). The discovery of the first miRNA from

Caenorhabditis elegans in 1993 inspired a wide variety of miRNA

studies [1]. At present, approximately 21,264 miRNAs have been

discovered in many species.

To study the regulation between miRNAs and genes, miRNA

target sites are usually predicted by miRNA target prediction tools.

Many computational target prediction tools, such as MiRanda

[2],TargetScanS [3–5] and RNAhybrid [6], have been developed.

In addition, several statistical methods have also been applied to

build a network of associations between miRNAs and their target

mRNAs [7–10]. Usually, miRNA target prediction tools predict

many potential target sites. To reduce the number of false-positive

target sites, predicted miRNA target sites should be confirmed by

experiments. Generally, miRNA-target interactions (MTIs) can be

confirmed by reporter assays, Western blot, microarray experi-

ments, pSILAC or qRT-PCR. Moreover, many databases, such as

miRTarBase [11], TarBase [12], miRecords [13] and miR2Di-

sease [14], have been designed for storing experimentally validated

MTIs. In particular, the miRTarBase (version 2.1) database has

collected approximately 3,500 manually curated experimentally

validated MTIs, including 657 miRNAs and 2,297 target genes

among 17 species from 985 research articles [11]. The TarBase

5.0 database has stored approximately 514 MTIs that were

extracted from 203 papers [12]. The miRecord database, which

includes 1,529 experimental interactions, is composed of exper-

imentally validated miRNAs and predicted MTIs [13]. The

miR2Disease database is aimed at storing experimentally validated

MTIs, which are deregulated in various human diseases [14].

Among these databases, miRTarBase provides more updated

MTIs than the other databases.

Importantly, miRNAs have been observed to be tissue-specific

in many studies. For example, miR-122 can only be detected in

liver tissues and is undetectable in all other tissues [15]; the

expression of miR-122 in hepatocellular carcinoma is relatively

lower than it in healthy liver [16]; miR-1 and miR-143 are

preferentially expressed in heart and colon tissues, respectively

[15,17]; miR-126 is an endothelial-specific miRNA that regulates

vascular integrity and angiogenesis [18]; miR-195 and miR-200c

are specifically expressed in lung tissues [19]. In addition, some

miRNAs are biomarkers for detecting cancers, such as miR-221, -

100, -125b and -21 in pancreatic cancer [20].
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Although many researchers have indicated that many miRNAs

have tissue-specific expression [15–20], no systematic methods

have been established in the literature to investigate the highly

negative correlations between an miRNA and its target genes in a

group of specific tissues through microarray data. Analyzing the

correlation of expressions between miRNAs and mRNAs is one of

the methods that has been applied for increasing the confidence of

predicted miRNA target sites [21–28]. In this study, we have

developed a statistical method to determine microRNA-target

interaction-supported tissues (MTI-supported tissues) based on

experimentally validated miRNA-target interactions. The MTI-

supported tissues of an miRNA is a group of tissues that this

miRNA and its targets express in these tissues.

The major aim of this study is to investigate the MTI-supported

tissues that are based on experimentally validated miRNA-target

interactions in the miRTarBase database. At http://tsmti.mbc.

nctu.edu.tw, we briefly describe how the proposed method is

applied to identify MTI-supported tissues. The major analytical

results and the materials in this paper are presented on this

website.

Materials and Methods

The conception of the proposed procedure is briefly shown in

Figure 1. We use data sets [29] to illustrate our methods. This data

set includes the miRNAs expression profiles and mRNA expres-

sion profiles for 89 samples of 11 organs from tumor or normal

tissues. The samples of 11 organs are summarized in Table 1,

including 68 tumor tissues and 21 normal tissues. The mRNA

expression profiles that were published in 2005 consist of two

microarray platforms, GPL80 and GPL98, which represent

16,063 genes across 89 tissues [29]. Because partial mRNA

expression levels are missing, only 12,766 of these genes are used

in our studies. The miRNA expression profiles (GSE2564) are

composed of the expression data for 288 miRNAs across 249

tissues [29]. After eliminating duplicate and redundant data, we

only use data for 163 miRNA across 89 tissues. With the data for

an miRNA, we intend to investigate the MTI-supported tissues to

determine whether the miRNA is functional across these tissues

based on experimentally validated MTIs. As mentioned in the

Introduction, the miRTarBase database is more informative than

other databases. We apply the miRTarBase version 2.1 database

[11] to obtain experimentally validated MTIs, which can be

accessed at ‘‘http://mirtarbase.mbc.nctu.edu.tw/cache/download

/2.1/miRTarBase_MTI.xls’’. According to the miRNAs that were

recorded in GSE2564, we select 743 experimentally validated

MTIs and analyze the correlations between miRNA and mRNA

expression profiles across different tissue sets.

Before analyzing the expression data, we first normalize the

miRNA and mRNA expression data across 89 tissues. The data

pre-processing method is provided in the Supplementary Data.

Some data pre-processing results are presented in Figures S1 and

S2 in File S1. After the data pre-processing, the top 23 miRNAs

with a target number that is greater than or equal to 10 and with a

number of tissues with expression levels that were greater than

7.25 are selected and are listed in Table 2. The expression level of

7.25 is the cutoff point that was used in Huang et al. (2007) [7]. In

Table 2, four miRNAs, hsa-miR-122, hsa-miR-124, hsa-miR-155

and hsa-miR-133a, are ignored because there are not enough

samples for these miRNAs that could be utilized for the analysis.

Therefore, we analyze 19 miRNAs in this study.

Before introducing the method, we first describe the motivation

for proposing the method. Previous studies have shown that

miRNAs down-regulate their targets [16,30], which results in a

negative correlation of the microarray expressions between an

miRNA and its target interactions. However, Figure S1 in File S1

reveals that the absolute values of most correlations of the miRNAs

and their target interactions across all 89 tissues are not

significantly large. We, therefore, conclude that the down-

regulation of an miRNA occurs in some tissues.

For an miRNA, we first find the associated interactions through

the microarray dataset and the miRTarBase database and then

calculate the correlations between the miRNAs and their targets.

Thus, an miRNA is associated with a correlation set, which

includes the correlations between this miRNA and its targets.

Because there is more than one target interaction that is associated

with an miRNA, our goal is to integrate several correlation

coefficients between this miRNA and their targets to find MTI-

supported tissues. Therefore, to determine the MTI-supported

tissues of this miRNA, we propose using a criterion that is based

on the two factors in the correlation sets: (i) the average correlation

coefficient and (ii) the proportion of negative correlation coeffi-

cients. Due to the down-regulation of the miRNA to its target

interaction, for a set of true MTI-supported tissues of an miRNA,

we expect that the expression data between this miRNA and its

target interactions would be highly negatively correlated. There-

fore, we expect that the true MTI-supported tissues should satisfy

the hypothesis that the average correlation coefficients are strongly

negative and that the proportion of negative correlation coeffi-

cients is large.

To describe the proposed method, we first introduce some

notations. We denote the 89 tissues as t1,:::,t89 and the 19

miRNAs as m1,:::,m19. The expression value of an miRNA m and

an mRNA y across the 89 tissues is denoted as (m1,::::,m89) and

(y1,:::,y89). Let s(m) denote the target interaction (mRNA)

number that corresponds to this miRNA from the miRTarBase

database.

Let A~ftk1
,:::tkh

g, k1v:::vkh, be a set of h tissues of the 89

tissues, where h~jAj is the size of sample set A. The correlation

coefficient of the miRNA m and the mRNA y across a sample set A

is defined as

rm(A)~

Ph
i~1 (mtki {mm)(ytki {my)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh

i~1 (mtki {mm)2Ph
i~1 (ytki {my)2

q

where mm and my denote the means of m and y across the tissues in

the set A, respectively.

Let rfm,1g(A),:::,rfm,s(m)g(A) denote the correlation coefficients

of this miRNA and its target interactions across the tissues in set A,

and let �rrm(A)~
Ps(m)

i~1 rfm,ig(A)=s(m) denote the average of these

correlation coefficients across the tissue set A. In addition, let wneg

be the number of negative value of the s(m) correlation

coefficients. Then, we define the negative correlation coefficient

proportion as.

wfm,negg~
wneg

s(m)
:

For the miRNA m, the goal of this study is to find a tissue set O
such that �rrm(O) is strongly negative. In addition, because there are

s(m) correlation coefficients for this mRNA, we must require that

the proportion of negative correlation coefficients among these

s(m) correlation coefficients is greater than a threshold. That is, we

intend to find a tissue set such that 1{wfm,negg is small. Thus, we

propose using the loss function.

microRNA-Target Interaction-Supported Tissues
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L(O,m)~arm(O)z(1{a)(1{wfm,negg), ð1Þ

to select a tissue set O�, such that the minimum of the loss function

occurs at O�, where a is a constant between 0 and 1, that is,

L(O�,m)~ minOL(O,m): ð2Þ

In the loss function (1), a is used to adjust the weights of �rrm(O) and

1{wfm,negg. To find O� satisfying the condition (2), it is difficult to

directly calculate the L(O,m) value for all sets of O. For a set O

with h elements, there are C89
h combinations. Because the range of

the h value is from 2 to 89, there is a total of

c~C89
2 z:::zC89

89

possible selections of a set O. The calculation complexity is too

Figure 1. Tissue selection pipeline for finding MTI-supported tissues of miR-17 based on experimentally validated MTIs.
Experimentally validated MTIs sharing the same miRNA were selected from the miRTarBase database. The correlations of MTIs across a combination
of tissues, which were selected by our method, are strongly negative.
doi:10.1371/journal.pone.0095697.g001

Table 1. Tumor tissues and normal tissues.

Tissues Tumor Normal

Colon 7 4

Uterus 10 1

Prostate 6 6

Pancreatic 8 1

Ovary 5 0

Lung 5 2

Breast 6 3

Bladder 6 1

Mesothelioma 8 0

melanoma 3 0

Kidney 4 3

Total 68 21

doi:10.1371/journal.pone.0095697.t001

microRNA-Target Interaction-Supported Tissues
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high to obtain the true O�. Because the total possible combination

c is too large, we may slightly relax the condition (2) to be

L(O��,m)~ min O[SL(O,m) ð3Þ

where S is a set of O, which is restricted to have c’ elements instead

of c elements, where c’vc. In the following analysis, c’ is selected

to be 105. To select an adequate c’ value, we had tested many

different c’ values and found that the selected tissue of using

c’~105 is almost the same with the selected tissues of using

c’w105 for many cases. Thus, we adopt c’~105 in this analysis.

When sampling tissue sets, a heuristic method or a brute-force

method can be adopted. If highly confident MTI-supported tissues

for an miRNA are available from the literature or other resources,

Figure 2. The flowchart of the proposed algorithm for finding MTI-supported tissues.
doi:10.1371/journal.pone.0095697.g002

microRNA-Target Interaction-Supported Tissues
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we suggest directly choosing tissue sets including these tissues in

implementing the algorithm, which can prune the search space.

Otherwise, the brute-force sampling is suggested to avoid

obtaining not objective results. Since the suggested sampling size

is c’~105, it is not very time-consuming in implementing the

algorithm when we use the brute-force sampling method.

The steps of finding the O�� under condition (3) is presented in

the following algorithm. Before preceding the algorithm, we must

specify the constant a in condition (1).

To evaluate the performance of our proposed algorithm, we

adopt a permutation test and a clustering analysis [31] to show the

superiority of the proposed algorithm. Both methods are described

in the Supplementary Data. Some comparison results are

presented in Figure S3 in File S1 and Table S1 in File S1. The

results of the two methods uphold our proposed algorithm as an

efficient approach to select valid MTI-supported tissues of an

miRNA.

2.1 Algorithms
Algorithm for tissue prediction: correlation loss function

algorithm. Suppose that an miRNA m has s(m) MTIs.

Step1: Randomly select a set O with h tissues.

Step2: Calculate the correlations between this miRNA and the

s(m) mRNAs across the tissues in O. Then, calculate the mean of

these correlations, �rrm(O) and the proportion of negative correla-

tions, wfm,negg.

Step3: Use the values �rrm(O) and wfm,negg to calculate (1).

Step4: Repeat Steps 1–3 105 times. We obtain 105 L(O,m)
values.

Step5: Find out the minimum value of the 105 values, say lh.

List the tissue set, say Oh, corresponding to this lh value, that is

lh~L(Oh,m).

Step6: Repeat Steps 1–5 for different h to obtain different lh
values. Find the minimum value of these lhs, say lg. Then, the

tissue set O�� corresponding to this lg value is the MTI-supported

tissues set.

In addition to only considering the correlations of the

expressions between miRNAs and mRNAs, DNA copy-number

and promoter methylation at the mRNA gene locus on mRNA

expression may influence the miRNA-mRNA expression associ-

ation. We have provided R-codes which include the other factors

in the loss function. The readers can access the R codes at http://

tsmti.mbc.nctu.edu.tw/lossfunction2.txt.

Because the algorithm is based on the loss function (1) to

evaluate the performance of the correlation, we called this

algorithm the correlation loss function algorithm. The steps of

our algorithm are described in the flowchart in Figure 2.

Practically, for an miRNA and its targets, we are not sure how

many tissues should be selected. First, we begin by selecting 3

tissues from all tissues but do not select one tissue because the

correlation between an miRNA and its targets across one tissue

cannot be calculated. To find the optimal tissue number of

different miRNAs, we select the tissue number from 3 to 15.

In Figure 3, we illustrate the loss of function values with a~1=4
of each miRNA and its targets across 5 tissues, 8 tissues, 11 tissues

and 15 tissues, respectively. From the calculation results, we find

that the loss function value across more than 15 tissues is larger

than the loss function value across less than 15 tissues. Therefore,

we do not consider the case with tissue number that is greater than

15, and only chose 3 to 15 tissue numbers to find the optimal tissue

number. The results indicate that the optimal tissue number that is

derived by the algorithm depends on the miRNAs.

This paper mainly presents the results when a~1=4. We have

used other a values such as a~1=3 in the loss function to select

tissues. The results for a~1=3 are similar to those for a~1=4.

Because a is used to adjust the weight between the mean of the

correlations �rrm(O) and the proportion of positive correlations 1-

wfm,negg, and we are more concern the proportion of positive

correlations, we put more weight on the second term. In this study,

the results using a~1=4 lead to good performance. Therefore,

Figure 3. The loss of function values for different numbers of MTI-supported tissues.
doi:10.1371/journal.pone.0095697.g003
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a~1=4 is a suggested value in using this algorithm. For other real

applications of this algorithm, the readers can use training data to

obtain a suitable a value.

In addition, to make a more objective analysis in selecting the

MTI-supported tissues, instead of selecting a tissue set among

tissue sets for h~3 to 15 which minimizes the loss function (1), we

proposed a method to rank tissues by the following two steps. The

first step is to find the 13 tissue sets which minimize the loss

function corresponding to h~3 to 15, respectively. The second

step is to rank the tissues appeared in these 13 tissue sets according

to their occurrence numbers among the 13 tissue sets. The tissue

with the most occurrence frequency is ranked first and so on. The

ranking results are presented in Table 3, which can provide

information on the significance of the MTI-supported tissues.

Results

Using the algorithm, we obtain MTI-supported tissues for 19

miRNAs that are listed in Table 2. In the following, we use hsa-

miR-17 as an example to describe the analysis result. Figure 4

presents the plots for the density function of correlation and the

heatmap of hsa-miR-17. Figure 4(a) shows the density plot of

correlations (solid line) of all 743 experimentally validated MTIs

across all 89 tissues and the density plot of correlations (dashed

line) between hsa-miR-17 and its targets across the top 6 MTI-

supported tissues. The solid line is symmetric and centralized to

zero; however, the dashed line is right-skewed. Apparently, the

right-skewed density plot of the correlations between hsa-miR-17

and its targets across the top 6 MTI-supported tissues shows that

most correlations are negative, which is in accordance with the

degradation behavior between an miRNA and its targets. In

contrast, the fact that the correlations of all 743 experimentally

validated MTIs across all 89 tissues are near zero indicates that the

down-regulation behavior of an miRNA with its targets only

displays across the MTI-supported tissues.

Figure 4(b) is an example that shows that the expression profiles

of most hsa-miR-17 target genes are negatively correlated with the

expression profile of hsa-miR-17. In Figure 4(b), the expression

profiles of hsa-miR-17 and 24 target genes across the top 6 MTI-

supported tissues are presented. The correlation between the

expression profiles of hsa-miR-17 and each target gene is

annotated next to the gene symbol in Figure 4(b). Most of

expression profiles of hsa-miR-17 target genes are negatively

correlated with the expression profile of hsa-miR-17. The

expression profiles of the hsa-miR-17 target gene TGFBR2 is

positively correlated with the miRNA expression profile. Although

Figure 4. The correlation density plot and heatmap for experimentally validated MTIs (miRTarBase). a. Comparison of correlation
densities for all 743 experimentally validated MTIs (solid line) and hsa-miR-17 with 24 targets across the top 6 MTI-supported tissues (dashed line). b.
The expression profiles of hsa-miR-17 and 24 targets across the top 6 MTI-supported tissues. The correlations between the expression profile of hsa-
miR-17 and the profiles of target genes were annotated next to the gene symbol. Green represented low expression and red represented high
expression in corresponding genes and tissues.
doi:10.1371/journal.pone.0095697.g004

Figure 5. The correlation density plot. Comparison of correlation
densities for all 743 experimentally validated MTIs across all 89 tissues
(black solid line), hsa-miR-17 with 24 targets across the top 6 MTI-
supported tissues (red dashed line), hsa-miR-17 with 24 targets across
19 extended tissues (green dashed line) and hsa-miR-17 with 95
predicted targets across the top 6 MTI-supported tissues (blue dashed
line).
doi:10.1371/journal.pone.0095697.g005
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it has been experimentally validated that these target genes could

be inhibited by hsa-miR-17, TGFBR2 is not. The reason for the

positive correlation between hsa-miR-17 and these genes could be

that these genes are regulated by other stronger regulatory factors.

To support our suspicion, we re-examine the studies of hsa-miR-

17 regulation on TGFBR2, which shows that TGFBR2 expression

could not be detected because of microsatellite-instability and

mutations [32–34].

In addition, the correlation density plots of other 18 miRNAs

and their targets (At http://tsmti.mbc.nctu.edu.tw) reveal similar

results to that of hsa-miR-17. For example, the proposed

algorithm searches out 5 top specific tissues for hsa-miR-21,

which has the largest target number (43 targets) among the

miRNAs that have been considered in this study. In addition, we

also find the top 8 MTI-supported tissues for hsa-let-7a and its

targets. Both of the correlation density plots across MTI-supported

tissues are right-skewed and are greater than those plots across all

89 tissues. In addition to the correlation density results, we observe

that the selected tissue number depends on the miRNA. In the

Methods section, we show that the optimal tissue number, which is

derived by the algorithm, is dependent on the miRNAs. Due to the

limited space, we only provide the elaboration on the example

miR-17 in details. For other miRNAs, we calculate average

correlation between an miRNA and its targets across all 89 tissues

and average correlation between an miRNA and its targets across

selected MTI-supported tissues. Then we use the value of the

second average correlation minus the first average correlation as a

metric to quantify the quality improvement. The results are

presented in Table 2. The values are range from 20.32 to 20.68.

The value for miR-17 is 20.536. It reveals that average

correlation between an miRNA and its targets across selected

MTI-supported tissues are more strongly negative correlated than

the average correlation between an miRNA and its targets across

all 89 tissues.

Because the top 6 MTI-supported tissues that have been

selected for hsa-miR-17 include tumor tissues, which may be

queried with extreme expression levels, we extend the top 6 MTI-

supported tissues to other tissues with the same organ as the top 6

MTI-supported tissues. The top 6 MTI-supported tissues for hsa-

miR-17 include tumor tissues and normal tissues. Tumor tissues

are composed of prostate, breast and uterus tissues. Normal tissues

are composed of breast and uterus tissues. The number of tissues is

extended to 24 because the total number of tumor prostate tissues,

tumor/normal breast tissues and tumor/normal uterus tissues is

24. Here, we again examine the expression levels of 24 tissues of

hsa-mir-17. Only 19 expression levels are larger than 7.25. A tissue

is eliminated if its miRNA expression level that corresponds to the

tissue is less than 7.25, which is the cutoff point that was used in

Huang et al. [7]. Figure 5 shows the correlation density plot (green

dashed line) for the extended results. Comparing Figure 4(a) with

Figure 5, we add a green dashed line in Figure 5, which is the

correlation density plot of hsa-miR-17 and its targets across the 19

extended tissues. The green dashed line is always between the

black solid line and the red dashed line. The result clearly reveals

that the analysis that is based on 6 MTI-supported tissues leads to

the best result, followed by the extended tissues, which are better

than the analysis that is based on 89 tissues.

Furthermore, we also investigate the target prediction that is

based on the selected tissues. By searching for the conserved 8mer

and 7mer sites that match the seed region of each miRNA from

the TargetScanS prediction tool [3–5], we have 95 predicted

targets of hsa-miR-17 from our dataset, which are based on the

top 6 MTI-supported tissues. The blue dashed line in Figure 5 is

the correlation density of hsa-miR-17 and 95 predicted targets

across the top 6 MTI-supported tissues. Although a small portion

of correlations are positive correlations, most of the correlations

are more negative than that across all 89 tissues. Nevertheless, the

correlation density of hsa-miR-17 and 95 predicted targets across

Figure 6. The heatmaps of hsa-miR-17 expression and regulated genes. a. The expression profiles of hsa-miR-17 and 24 targets across 19
extended tissues. The correlations between the expression profiles of hsa-miR-17 and target genes were annotated next to the gene symbols. Green
represented low expression and red represented high expression in corresponding genes and tissues. b. Part of the expression profile of hsa-miR-17
and experimentally validated and predicted target genes. There are 20 negatively correlated target genes; 16 of these target genes are predicted to
be hsa-miR-17 target genes. PTEN, MAPK9, MAP3K12 and BMPR2 are experimentally confirmed target genes.
doi:10.1371/journal.pone.0095697.g006
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the top 6 MTI-supported tissues (blue dashed line) does not have a

better performance than that obtained using 24 experimentally

validated MTIs across the top 6 MTI-supported tissues (red

dashed line) and that obtained using 24 experimentally validated

MTIs across 19 extended tissues (green dashed line). Adopting 95

predicted targets of hsa-miR-17 across the top 6 MTI-supported

tissues can still improve the correlations that are not near zero. By

the extended case and the predicted case, it is concluded that the

proposed algorithm is reliable for selecting MTI-supported tissues.

Discussion

Our approach is focused on discovering MTI-supported tissues

for an miRNA based on experimentally validated target genes.

However, we find some mRNAs are not down-regulated by their

experimentally validated miRNA. Several potential reasons are

described. First, mRNA expression can be regulated by multiple

factors including DNA copy number, transcriptional regulation

and post-transcriptional regulation. Since our approach selects a

group of different tissues, miRNA repression ability could be

smaller than other regulation mechanisms in part of selected

tissues. Second, some miRNAs not only down-regulate their target

genes, but also up-regulate their target genes [35]. miRTarBase

does not include any information about an miRNA up-regulates or

down-regulates its target genes. It is supposed that the miRNA in

miRTarBase can only down -regulate its target genes. Neverthe-

less, many miRNAs have been reported that miRNAs can up-

regulate their target genes [35–38]. For example, the record of

MIRT004506 in miRTarBase is that miR-466l up-regulates IL-10

via binding AU-rich region in 39UTR [36]. Therefore, some up-

regulation phenomenons are discovered from the correlation

density plots across the MTI-supported tissues.

From the correlation density plots across the MTI-supported

tissues in Table 2, we find that several experimentally validated

MTIs are positively correlated with the miRNA expression

profiles. First, miR-145 is positively correlated to the target gene

IRS1 with a correlation of 0.55. A previous report shows that miR-

145 can down-regulate the protein level of IRS1 but cannot down-

regulate the mRNA of IRS1 [39]. Therefore, the negative

correlation between miR-145 and IRS1 is not observed. Further-

more, some cell lines, such as BCT-20, do not express IRS1. Thus,

the down-regulation of IRS1 by miR-145 cannot be observed [40].

The second non-negatively correlated MTI is miR-1 and SERP1.

The study, which does examine the interaction between miR-1

and SERP1, shows that the down-regulation of SERP1 by miR-1

is not significant [41]. The miRTarBase database might record

many experimentally validated MTIs whose target genes are

significantly down-regulated by the corresponding miRNAs. It is

difficult to determine the reason for some positively correlated

experimentally validated MTIs, such as the experimentally

validated MTI between miR-1 and FOXP1. More advanced

experiments are required to explore these MTIs.

Figure 6 (a) is an extended illustration of Figure 4. We collect

expression profiles, which are sampled from the same organs that

are listed in Figure 4. We observe more conflicted correlations in

experimentally validated MTIs. First, the correlation between the

expression of CDKN1A and hsa-miR-17 is 0.23, and the

correlation between the expression of RUNX1 and hsa-miR-17

is 0.04. Previous studies have revealed that CDKN1A and

RUNX1 are regulated by multiple miRNAs [42,43]. Due to our

approach, which only observes one miRNA and its corresponding

target genes, the expression of CDKN1A and RUNX1 could not

simply negatively correlate to the expression of hsa-miR-17. Two

conflicted studies show that hsa-miR-17 can or cannot inhibit the

translation of PTEN. Olive et al. (2009) concluded that PTEN

could be repressed by miR-19, but not by hsa-miR-17, in B-cell

lymphoma [44]. The experiment that was reported by Trompeter

et al. (2007) shows that PTEN is significantly repressed by hsa-

miR-17 in HEK293T cells and kidney cells [45]. NCOA3 (AIB1)

is not correlated with the expression of hsa-miR-17. The

expression correlations are negative in breast tissues and are in

agreement with the study that demonstrated that NCOA3 is

down-regulated by hsa-miR-17 [46]. However, these interactions

are not negatively correlated with the rest of the tissues. This

phenomenon indicates that an miRNA-target interaction is MTI-

supported tissue-specific and reveals that our approach might

include tissues whose experimentally validated MTIs are not

functional. Because the seed region of miR-17, miR-106a and

miR-20a are identical, the expression correlation of hsa-miR-17

and its target genes might be affected by other miRNAs. Thus, our

approach can determine which target genes are dominantly

regulated by hsa-miR-17 and find the non-MTI-supported tissues.

Currently, many studies use differentially expressed genes to

reduce false-positive miRNA target sites [22,25,47]. We also apply

our approach to the predicted miRNA target genes. In Figure 6

(b), 16 predicted target genes have a highly negative correlation

with the expression of the miRNA.

In addition, we present the selected tissues of miRNAs and their

targets in Table 4. Table 4 shows that three of five MTI-supported

tissues of hsa-miR-34a are prostate tissues; four of five MTI-

supported tissues of hsa-miR-106a are colon tissues; three of five

MTI-supported tissues of hsa-miR-222 are uterus tissues; three of

five MTI-supported tissues of hsa-miR-26a are pancreatic tissues;

and four of six MTI-supported tissues of hsa-miR-141 are

pancreatic tissues. These tissues account for a high proportion of

selected MTI-supported tissues. Therefore, we conclude that each

miRNA can down-regulate its experimentally validated target

genes in the selected tissues. Although not all of selected tissues

account for a high proportion of MTI-supported tissues, the

correlations between an miRNA and its targets across selected

tissues are highly negative. The individual selected tissues, which

do not account for a high proportion of MTI-supported tissues,

can also be suggested as potential MTI-supported tissues of the

miRNA and its targets.

Because the correlation results are not significant for explaining

the down-regulation between an miRNA and its targets, we are

highly interested in these results, particularly because the results

conflict with our expectation. The results of our proposed

algorithm support that experimentally validated MTIs are only

functional in MTI-supported tissues. In addition, we also provide

two methods to verify the tissue-specificity; the results uphold our

proposed algorithm as an efficient approach to select valid MTI-

supported tissues of an miRNA. Our approach uses publicly

available microarray data to select the predicted target genes,

which are highly negatively correlated with the miRNA expression

profiles. The benefit of our approach is that the experimental cost

could be reduced; however, the drawback is that the expression

profiles of the experimental target might differ from our collected

expression profiles. This drawback can be improved by increasing

the expression profiles from all type of tissues. Once the numbers

of miRNA and mRNA expression profiles are increased, our

approach might provide better performance for selecting potential

experimentally validated MTIs from the predicted MTIs, and the

MTI validation could be accelerated by our analysis.
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Supporting Information

File S1 Figure S1–S3. Figure S1. Summary of the correlations

of 743 MTIs (miRTarBase) across all 89 tissues. a. The proportion

of negative correlations is near 50%. b. The amount of

correlations between 20.5 and 0.5 is larger than 90%. Both

results reveal that there are no significant correlations among

MTIs using this data source across all 89 tissues. Figure S2. The

expression levels of hsa-miR-122 and hsa-let-7a in 89 tissues The

red line is a cutoff line, and the cutoff value is 7.25 (after log2

transformed). The data were eliminated when the expression level

was lower than the cutoff line (Huang et al. 2007). Figure S3.

Comparison of selected results and permutation results. (a)(b) Loss

function values of each miRNA and its targets across MTI-

supported tissues and permutation tissues.
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