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Abstract: Polarization dependent leakage loss as well as optical 
birefringence for the fundamental mode in square- and rectangular-lattice 
holey fibers with elliptical air holes are studied numerically based on the 
full-vector finite element method for the first time. It is shown that high 
birefringence in the order of 10-2 and large polarization dependent loss 
required for single-polarization single-mode transmission are both 
achievable by using the proposed structure.  
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1. Introduction  

It is well known that photonic crystal fibers (PCFs) or holey fibers (HFs) can offer more 
flexibility than conventional fibers in the design of optical fiber properties including the 
birefringence. According to the recent literature, high birefringence in PCFs can be produced 
by combining the asymmetric core and the large core-cladding index contrast [1], by 
introducing two-size air holes around the fiber core [2], and by selectively filling the air holes 
with polymer to obtain an asymmetric structure [3]. Up to date, the largest birefringence in 
experimental reports is 3.7 ⋅ 10-3 for solid core (index guiding) HFs [4], and around 0.02 for 
photonic bandgap fibers [5]. Recently, the dispersion properties of square-lattice HFs with 
circular air holes have been studied numerically with the use of finite element method and 
compared with triangular-lattice HFs [6]. The experimental study of the sonic bandgap based 
on square-lattice PCF preforms has also been reported [7]. In the present study, we will 
investigate the optical properties of the fundamental mode in square-lattice and 
rectangular-lattice HFs with elliptical air holes based on the full-vector finite element method. 
One of our main goals is to find some suitable structure parameters that can be used for 
designing single polarization transmission fibers as well as high birefringence polarization 
maintaining fibers. For this purpose, optical properties of the fiber structures with different 
pitches (hole-to-hole spacing), air hole sizes and stress factors are calculated within the 
wavelengths ranging from 1.42 µm to 1.61 µm. We find that the birefringence can be 
increased to the order of 10-2, which is larger than the reported experimental record with the 
order of 10-3 [4], by decreasing the pitch and the stress factor. The suggestion for achieving 
similar birefringence in the proposed structure has been reported based on the         
Finite-Difference-Time-Domain (FDTD) method [8], and in elliptical-hole triangular lattice 
PCFs based on the plane wave expansion [9, 10]. However, the confinement (or leakage) loss 
properties for these fiber structures have not been investigated yet since both methods are not 
efficient in the evaluation of the optical loss due to field leaking. In our studies, the full-vector 
Finite-Element-Method (FEM) accompanied with the anisotropic perfectly-matched-layers 
(PMLs) boundary condition [11] are adopted as an alternative approach to investigate both the 
birefringence and the leakage loss properties of the square- and rectangular-lattice holey fibers 
with elliptical air holes, by performing simulations for different fiber structure parameters. 

One interesting finding from our simulation is that, for square-lattice structures, a small 
stress factor may introduce a large loss coefficient ratio between the two polarization states. 
Thus the square-lattice structures with small stress factors may be suitable for achieving the 
single polarization transmission, because the lights in the other polarization state will 
experience much larger leakage loss and disappear eventually. Here we have adopted the 
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approach of maintaining a large differential loss between the two fundamental polarization 
modes to achieve the single-polarization single-mode (SPSM) fibers [12, 13], in contrast to 
the other approach of making one of the polarization modes unguided [14, 15, 16, 17].  

On the other hand, for achieving high birefringence with low polarization dependent loss, 
we find that the rectangular-lattice fibers may be more favorable. From the simulation, we 
observe that the birefringence is still large in the rectangular-lattice case with Λ=2.32 µm, 
a=0.3, s=0.35, and Λx=0.2 Λ, while the polarization dependent loss coefficient ratio becomes 
much smaller. Thus, by putting enough layers of the holes to make the leakage losses of both 
polarizations low enough [18], this fiber structure should be suitable to serve as high 
birefringence polarization maintaining fiber. In the following sections we shall provide the 
detailed simulation results on which the above statements are based. 

2. Square-lattice fiber structure 

The square-lattice fiber structure used in our simulation is depicted in Fig. 1. Here Λ is the 
hole-to-hole distance (or pitch) and the silica index is assumed to be 1.45. In all the 
calculation of this section, the number of the elliptical air hole layers is assumed to be 5 (i.e., 
five-ring elliptical air holes). The elliptical air holes can be specified by transforming the 
circular air holes with a specified stress factor s, which is defined as follow: 

                            s = x

y

  d    d
=

  d    d
                                (1) 

The relation between the ellipticity and the stress factor s is 

                             2x

y

  d
e =  = s

  d
                                 (2) 

As shown in Fig. 2, dx and dy are the minor axis and major axis lengths of the elliptical air hole 
respectively and d stands for the diameter of the circular air hole. Moreover, the air hole size 
ratio parameter a is defined as 

                              a =
d

 Λ
                                    (3) 

In our simulation, the full-vector FEM with hybrid edge/nodal element as well as the 
anisotropic perfectly-Matched-Layers (PMLs) boundary condition are applied to study the 
proposed five-ring-air-hole structure [19, 11]. Triangular mesh elements are generated to 
divide the solution domain and the waveguide symmetry is exploited to reduce the area size of 
the domain by a factor of 4 for saving the computational labors. Each triangular mesh element 
has three nodes in the middle of the edges and three nodes on the corners. The element model 
we use is based on the constant tangential/linear normal (CT/LN) vector basis functions with 
the three edge nodes for the transverse field interpolation and the linear basis functions with 
the three corner nodes for the axial field interpolation [19]. The CT/LN edge element is also 
known as the mixed-order tangential vector finite element (TVFE) of order 0.5, because it 
provides a constant tangential/linear normal field along the element edges and a linear field 
inside the element [20, 21]. After applying the full-vector finite element procedure, a complex 
generalized eigenvalue equation can be obtained. The eigenvalue equation is then solved by a 
modified Matlab function and the effective index neff of the fundamental mode can be obtained 
form the corresponding complex eigenvalue. The birefringence between the x and y polarized 
modes is determined by taking the real part of the effective index difference of the two 
polarization modes. Figure 3 and Fig. 4 show the birefringence for fibers with a=0.6 and a=0.7 
respectively. We can learn that, for a fixed air hole size ratio, structures with smaller pitches 
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and stress factors exhibit higher birefringence. For the fixed pitch cases in Fig. 5 and Fig. 6, 
the birefringence is higher when the stress factor is smaller. This is because a smaller stress 
factor will cause the structure to be more nonsymmetrical, while a smaller pitch will lead a 
larger core-cladding index contrast. Hence, higher birefringence can be expected. Figure 7 
shows the birefringence of the structures with Λ=1.0 µm, a=0.6, s=0.7, and Λ=1.0 µm, a=0.6, 
s=0.64 respectively. The birefringence is of the order of 10-2

, which is higher than the recent 
experimental record 10-3 [4]. When the stress factor s changes from 0.7 to 0.64, the 
birefringence raises significantly. The number of unknowns used in the simulation for this 
case is 156572 with s=0.7 and 133689 with s=0.64 (only one quarter of the fiber structure 
needed to be simulated due to symmetry). We have especially checked the numerical accuracy 
for the structure with s=0.64 and confirmed that the accuracy is better than 10-3. The 
simulation is performed on a Pentium 2.0GHz personal computer equipped with 2.0GB RAM 
by using the Matlab software. Typically it will require 12hrs to obtain a birefringence 
(loss)-versus-wavelength curve from calculation. 

Although we have seen that the birefringence can be increase to the order of 10-2, the 
polarization dependent leakage loss still needs to be evaluated before one can conclude the 
fiber structures to be useful. The leakage loss can be determined according to the following 
formulation: 

                     
7

eff

2 10 2π
Leakage loss  Im[n ]

ln(10) λ

⋅= ⋅ ⋅  (dB/m)               (4) 

As shown from Fig. 8 to Fig. 10, the loss difference between the x-polarized mode and the 
y-polarized mode increases for smaller stress factor when the pitch and the hole size are fixed. 
One can observe that the loss of y-polarized mode is greater than that of x-polarized mode. 
This is because a smaller stress factor makes the hole diameter become smaller in the 
x-direction and thus allow the y-polarized fields leaks more to the cladding than the 
x-polarized field does. Based on this observation, the square-lattice structures with elliptical 
holes may not be suitable for achieving high birefringence polarization maintaining due the 
large polarization dependent loss difference. However, they may be suitable for achieving the 
single-polarization single-mode transmission by taking the advantage of the large polarization 
dependent differential loss. For the structure shown in Fig. 11, at 1.55 µm, the loss coefficient 
ratio of the y-polarized mode compared to the x-polarized mode is about 76.7, and the leakage 
loss of the x-polarized mode can be made below 0.1dB/km. We have also confirmed that there 
is no higher order guided mode in this structure by making sure that there is no eigen-solution 
between the effective index of the fundamental mode and the fundamental space-filling mode 
(FSM) for both polarization states respectively. Hence, this structure should be suitable to 
achieve the single-polarization single-mode transmission. The magnitude of the loss 
coefficients for both polarizations can be engineered by adjusting the value of Λ. A smaller Λ 
will increase the loss coefficients for both polarizations, as can be seen from the comparison 
of Fig. 8 and Fig. 10. This may be desirable if one wants to reduce the required fiber length 
for achieving a given extinction ratio for different application purposes.  
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  Fig. 1. The structure of the square-lattice HF with elliptical air holes. 

  
 

Fig. 2. Illustration of the structure parameters. 
 

 

 
 

Fig. 3. The birefringence for the cases with a=0.6. The solid lines are with s=0.8 
and the dot lines are with s=0.9. 
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Fig. 4. The birefringence for the cases with a=0.7. The solid lines are with s=0.8 
and the dot lines are with s=0.9. 

 

 
 

Fig. 5. The birefringence for the cases with Λ=2.32 µm. The solid lines are with 
s=0.8 and the dot lines are with s=0.9.   
 

 
 

Fig. 6. The birefringence for the cases with Λ=1 µm. The solid lines are with s=0.8 
and the dot lines are with s=0.9. 
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Fig. 7. The birefringence for the cases with Λ=1 µm, a=0.6. 
 

 
 

Fig. 8. The leakage loss for the cases with Λ=1 µm, a=0.6. 
 

 
 

Fig. 9. The leakage loss for the cases with Λ=1 µm, a=0.7 
.                                
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Fig. 10. The leakage loss for the cases with Λ=2.32 µm, a=0.6. The irregularities in 
the lower two curves should be due to the numerical inaccuracy when the imaginary 
part of the eigenvalue is too small and can be discarded. 

 

 
 

Fig. 11. The leakage loss for the cases with Λ=2.32 µm, a=0.5, and s=0.52. 
 

 

3. Rectangular-lattice fiber structure 

In order to reduce the polarization dependent loss ratio, we change the square-lattice structure 
into the rectangular-lattice arrangement and re-calculate the results. The structure in our 
simulation is shown in Fig. 12. Here Λx is the hole-to-hole distance (pitch) in the x-direction, 
and the parameter a, s, and Λ are fixed to 0.3, 0.35, and 2.32 µm respectively. The number of 
air holes in our simulation is the same as that depicted in Fig. 16. Two cases are considered in 
the simulation: (1) Λx=0.4Λ, (2)  Λx=0.2Λ. From Fig. 13, one can observe that the 
birefringence is larger for Λx=0.2Λ than for Λx=0.4Λ, because a smaller  Λx makes the 
structure more asymmetric. The achieved birefringence here is somewhat larger than that in 
the square-lattice structure, but still in the order of 10-2

. Figure 14 and Fig. 15 show the 
leakage loss for the cases with Λx=0.4Λ and Λx=0.2Λ respectively. The loss ratio of the 
y-polarized mode to the x-polarized mode at 1.55 µm is about 0.53 for the case with Λx=0.2Λ, 
which is much smaller than the value of 25 for the case with Λx=0.4Λ. Based on this 
observation, the fiber structure with Λx=0.2Λ exhibits the possibility of achieving the high 
birefringence polarization maintaining property with a small polarization dependent loss ratio. 
Here we simply try to minimize the loss coefficient “ratio” between the two polarizations by 
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using a fixed number of hole layers. Due to the thinner layers of holes, the results of the 
leakage loss in Fig. 15 tend to be high and the mode field patterns in Fig.16 seem to be not 
well confined. In practice this should not be a problem since it can be overcome easily by 
increasing the number of air hole layers [18]. The field patterns in Fig.16 are for Λx=0.2Λ at 
1.55 µm. Compared to the y-polarized field, the x-polarized field is less confined in the core 
region. This also supports that the loss of the x-polarized field should be larger than that of the 
y-polarized field, as has been shown in Fig. 15. The number of unknowns in both cases are 
141120 and 169229 respectively and the numerical accuracy has also been double checked. 
Again, only one quarter of the fiber structure is needed to be simulated due to the symmetry of 
the structures. 
 
 
 

         
Fig. 12. The structure of rectangular-lattice HF with elliptical air holes. 

 

 
 

Fig. 13. The birefringence of rectangular-lattice HFs for  Λx=0.4Λ and Λx=0.2Λ 
respectively. 
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Fig. 14. The leakage loss of rectangular-lattice HFs for x-polarized mode and 
y-polarized mode respectively with Λx=0.4Λ. 

 

 
 

Fig. 15. The leakage loss of rectangular-lattice HFs for x-polarized mode and 
y-polarized mode respectively with  Λx=0.2Λ.   
 

   
(a)  (b) 

Fig. 16. Contour plots of the field magnitude for (a) Ex mode of the rectangular-lattice HF with 
Λx=0.2Λ at 1.55 µm; (b) Ey mode of the rectangular-lattice HF with Λx=0.2Λ at 1.55 µm. The 
increment between adjacent contours is 1/10 of the peak value. 
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5. Conclusion and discussions  

In this paper the influences of fiber structure parameters on the birefringence and the 
polarization-dependent leakage loss of the square- and rectangular-lattice holey fiber 
structures with elliptic air holes have been investigated in details. It has been shown that high 
birefringence to the order of 10-2 can be reached by decreasing the pitch and the stress factor. 
We have also found that, for square-lattice structures, a small stress factor introduces larger 
loss difference between the two polarization states. Thus the square-lattice structures with 
small stress factors may be more suitable for achieving the single polarization transmission. 
For achieving high birefringence with low polarization dependent loss, we find that the 
rectangular-lattice fibers should be more favorable, since their polarization-dependent loss 
ratio can be made much smaller by properly adjusting the hole distance in two directions. 
Based on these simulation results, we conclude that both the single polarization transmission 
and the high birefringence polarization maintaining can be achieved by using the proposed 
structures with suitable parameters respectively. 

Even though the present study is purely theoretical, at the end of this paper we would like 
to briefly comment on the possible fabrication issues for the proposed fiber structure, although 
the only way to know the answer really is to try it. For current PCFs with small holes, 
typically there is considerable variation in precise hole size and shape. The holes may be 
particularly susceptible to changes in shape due to collapse and the surface tension may also 
tend to pull elliptic holes into circular ones. It seems that up to date one of the most promising 
fabrication methods that can overcome these problems may be the new multi-step process of 
forming preforms [22]. In this new method, compared to the conventional stacking procedure, 
the rods and tubes made of two different glass materials respectively are first stacked, then 
fused and finally etched to form the preform before being drawn. Since the fusing process is 
performed in advance, the drawing temperature can be kept as low as possible to minimize the 
shape distortion during the later drawing process. Even though right now only circular shapes 
are demonstrated with this method, hopefully in the future the method can be extended to 
fabricate elliptical holes with smaller hole distance and/or with large stretching.      
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