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We investigate the chiral electric separation effect, where an axial current is induced by an electric field
in the presence of both vector and axial chemical potentials, in a strongly coupled plasma via the Sakai-
Sugimoto model with a Uð1ÞR × Uð1ÞL symmetry. By introducing different chemical potentials in Uð1ÞR
and Uð1ÞL sectors, we compute the axial direct current (DC) conductivity stemming from the chiral current
and the normal DC conductivity. We find that the axial conductivity is approximately proportional to the
product of the axial and vector chemical potentials for arbitrary magnitudes of the chemical potentials. We
also evaluate the axial alternating current (AC) conductivity induced by a frequency-dependent electric
field, where the oscillatory behavior with respect to the frequency is observed.
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I. INTRODUCTION

The influence from electromagnetic fields on quark
gluon plasma (QGP) has been widely studied recently.
In relativistic heavy ion collisions, a strong magnetic field
with the scale eB ∼m2

π perpendicular to the reaction plane
is generated by two fast-moving nuclei in early stages [1].
Based on the existence of such a strong magnetic field, the
so-called chiral magnetic effect (CME) was proposed in the
presence of the axial charge density due to triangle anomaly
[1–4]. This effect has been further derived from a variety of
different approaches, including relativistic hydrodynamics
[5–9], kinetic theory [10–16], and lattice simulations
[17–21]. For a recent review of the CME and related
topics, see e.g. [22,23] and the references therein. From
CME, a vector current is induced by a magnetic field as

JV ¼ Nce
2π2

μAB; (1)

where μA represents the axial chemical potential, Nc is the
degree of freedom for fermions, B is the external magnetic
field, and e is the electric charge. Since the vector current
propagates along the direction of magnetic field, the current
thus yields the charge separation perpendicular to the
reaction plane. Although it is challenging to disentangle
CME from other effects which may as well lead to the
charge separation in QGP, there have been various

observables proposed in heavy-ion collisions experiments
to measure CME, as shown in the review [24]. Along with
CME, the magnetic field can also trigger an axial current
parallel to the applied field in the presence of nonzero
charge density via

Ja ¼
Nce
2π2

μVB; (2)

where μV represents a vector chemical potential. This effect
is called chiral separation effect (CSE) [25]. Based on these
two effects, the fluctuations of both μA and μV result in a
propagating wave as the chiral magnetic wave (CMW) [3].
As shown in [26], the CMW could generate a chiral dipole
and charge quadrapole in QGP, which may contribute to the
charge asymmetry of elliptic flow v2 measured in the
relativistic heavy ion collider (RHIC) [27,28]. More details
of comparisons between the theoretical results and exper-
imental measurements can be found in [29]. On the other
hand, the strong magnetic field may enhance the photon
production in heavy ion collisions [30–35], which serves as
one of the possible mechanisms to cause the large photon
v2 recently measured in RHIC [36] and in the LHC [37].
In addition to the strong magnetic field, a strong electric

field could be produced in heavy ion collisions as well. In
general, the magnitude of the average electric field is much
smaller than that of the average magnetic field. However,
on the basis of event-by-event fluctuations, it has been
shown that the magnitude of the electric field can be
comparative to that of the magnetic field [38]. Moreover, in
the asymmetric collisions such as Cuþ Au collisions for
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two colliding nuclei having different numbers of charge,
there exists a strong electric field directing from the Au
nucleus to the Cu nucleus [39]. Accordingly, a novel
phenomenon called chiral electric separation effect
(CESE) was proposed in [40]. In the presence of both
vector and axial chemical potentials, an axial current can be
induced by an electric field E through

Ja ¼ σ5E ¼ χeμVμAE; (3)

where σ5 denotes the anomalous conductivity which is
proportional to the product of μV and μA for small chemical
potentials compared to the temperature (μV=A ≪ T) and χe
is a function of T in that case. Unlike CME and CSE, the
CESE does not originate from the axial anomaly, but
naturally comes from the interactions of chiral fermions.
In fact, the normal conductivity also receives the correction
proportional to μ2V þ μ2A in the system. Combining CESE
with CME, the authors in [40] further indicated that a
charge quadrapole could be formed in the asymmetric
collisions, which may give rise to nontrivial charge
azimuthal asymmetry as a signal for CESE in experiments.
Nonetheless, due to strongly coupled properties of QGP,

it is imperative to investigate the aforementioned effects
with nonperturbative approaches. The AdS/CFT correspon-
dence [41–45], a duality between a strongly coupled N ¼
4 super Yang-Mills (SYM) theory and a classical super-
gravity in the asymptotic AdS5 × S5 background in the
limit of large Nc and strong t’Hooft coupling, could be a
useful tool to analyze the qualitative features of strongly
coupled QGP (sQGP). There have been extensive studies in
holography to address the issues related to magnetic fields
in strongly coupled plasmas. The CME has been inves-
tigated in distinct thermalized backgrounds [46–52]. In the
original paper of CMW [3], the propagating dispersion
relation was studied in the Sakai-Sugimoto (SS) model
[53,54]. In a recent study in [55], the CME and CMW have
been further investigated in out-of-equilibrium conditions.
Nevertheless, the existence of CME in the SS model is
somewhat controversial [46,47,49,56]. The Chern-Simons
(CS) term therein is crucial to generate an axial current
caused by a magnetic field, while it gives rise to an
anomalous vector current. In order to make the theory
invariant under electromagnetic gauge transformations, the
Bardeen counterterm has to be introduced on the boundary,
which turns out to cancel the vector current and wipe out
CME in the system [47]. It was argued that the recipe to
preserve both the gauge invariance and vector current is to
allow the nonregular bulk solutions, where the background
gauge fields responsible for chemical potentials become
nonvanishing on the horizon [49,56].
Motivated by the anomalous flow of direct photons in

heavy ion collisions, the thermal photon production with a
constant magnetic field in holography have been studied
[57–62], where the thermal-photon v2 in the SS model and

D3=D7 system were presented in [59] and [62], respec-
tively. Unlike many effects led by magnetic fields, CESE
has not been analyzed in the strongly coupled scenario. As
a result, we investigate the CESE in the framework of the
SS model in the presence of both vector and axial chemical
potentials. Since CESE is irrelevant to the axial anomaly,
the problem with the CS term for CME does not exist in our
approach.
Our paper is organized in the following order. In Sec. II,

we discuss the axial electric conductivity, where we make
the simple estimation based on the power counting for
small chemical potentials. In Sec. III, we compute both the
normal and axial conductivities in the SS model in the
presence of small vector and axial chemical potentials.
We will perform the background-field expansion to identify
the origin of CESE in the effective action. In Sec. IV, we
then solve the full DBI action to evaluate both conductiv-
ities for arbitrary chemical potentials. Finally, we make a
brief summary and discussions in Sec. V.

II. INTERPRETATION OF CHIRAL ELECTRIC
CONDUCTIVITY

In a hot and dense system with massless chiral fermions,
we can define two currents, JR and JL with respect to left-
and right-handed fermions. For simplicity, we neglect the
chiral anomaly in our discussion. In the presence of an
external electric filedE, the left- and right-handed fermions
will be dragged by the electric force and two charge
currents will be induced,

JR ¼ σReE; JL ¼ σLeE; (4)

where e is the charge of fermions, σR=L denotes the left/
right-handed conductivity as a function of μR=L and
temperature T, with

μR=L ¼ μV � μA; (5)

the chemical potential of right/left-handed fermions. On the
other hand, it is straightforward to describe this system by
two other currents, the vector and axial vector currents,

JV ¼ 1

2
ðJR þ JLÞ ¼ σVeE; (6)

Ja ¼
1

2
ðJR − JLÞ ¼ σ5eE; (7)

where we can read from (4) that the normal and chiral
electric conductivities are given by

σV ¼ 1

2
ðσR þ σLÞ;

σ5 ¼
1

2
ðσR − σLÞ: (8)
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Here we find the chiral electric conductivity σ5 is induced
by the interactions of fermions and can exist without chiral
anomaly. Also, given that μR ≠ μL corresponding to
σR ≠ σL, the CESE should exist for arbitrary values of
the chemical potentials.
Now let us discuss the property of this new transport

coefficient. Taking the parity transform to (7), since left-
and right-handed fermions will exchange with each other,
we get

σ5ðxÞ ¼ −σ5ð−xÞ; (9)

which implies it is a pseudoscalar. In the macroscopic
scaling, there is only a pseudoscalar in our system, μA.
Therefore, in a small μA case, we can assume, σ5 ∝ μA.
Since we neglect the chiral anomaly, the system has a

Uð1ÞL ×Uð1ÞR symmetry. We can take the charge con-
jugate transformation e → −e, μR=L → −μR=L to the left-
and right-handed currents (4) independently. Because E as
an external field does not change the sign, and the JR=L as
charge currents will give minus signs, finally we find
σR=LðμR=LÞ ¼ σR=Lð−μR=LÞ. In the small μR=L limit, we
can get σR=L ¼ C1;R=L þ C2;R=Lμ

2
R þ C3;R=Lμ

2
L, with Ci

as functions of T. On the other hand, because the system
is invariant under the chiral transformation, we get
C1;R ¼ C1;L, C2;R ¼ C3;L, and C2;L ¼ C3;R. Inserting these
relations into (8) yields

σ5 ¼ χeμAμV; (10)

where χe is a function of T. This relation is also assumed
in Ref. [40].
Next, we discuss a special system where different

chirality particles will not interact with each other, i.e.
right-handed particles will only interact with right-handed
particles, so do the left-handed particles. Therefore, we can
assume σR=L ¼ σR=LðT; μR=LÞ. On the other hand, for chiral
fermions without chiral anomaly, the system will be
invariant under the chiral transformation, i.e. one can
exchange the left- and right-handed fermions and the
system is invariant. In this case, we can rewrite σR=L as

σR=L ¼ σðT; μR=LÞ; (11)

where σ is just a normal conductivity. Then, we get, in
small μA cases,

σV ¼ 1

2
ðσR þ σLÞ ¼ σðT; μVÞ þ

1

2

∂2σðT; μVÞ
∂μ2V μ2A þOðμ3AÞ;

σ5 ¼
1

2
ðσR þ σLÞ ¼

∂σðT; μVÞ
∂μV μA þOðμ3AÞ;

or

σ5ðT; μV; μAÞ ¼ μA∂μVσVðT; μVÞ; μA → 0: (12)

Later, we will show this behavior in our framework.
Besides [40], this effect is also suggested in other weakly

coupled systems. Roughly speaking, different chiralities
are quite similar to different flavors in a weakly coupled hot
QCD plasma. The flavor nonsinglet currents correspond to
the axial currents here. It is shown that the conductivities of
such flavor nonsinglet currents is nonzero and can be quite
large in large μ=T case [63].

III. HOLOGRAPHIC QCD WITH SMALL
CHEMICAL POTENTIALS

A. Setup

In order to describe a strongly coupled chiral plasma, we
consider the SS model with a Uð1ÞL symmetry assigned to
D8 and a Uð1ÞR symmetry assigned to D8,

Stot ¼ SD8ðALÞ þ SD8ðARÞ; (13)

where AL=R represent the background gauge fields con-
tributing to the chemical potentials in L=R sectors. The
background geometry in Eddington-Finkelstein (EF) coor-
dinates with a black hole solution reads

ds2 ¼
�
U
R

�
3=2

ð−fðUÞdt2 þ ðdxiÞ2Þ þ 2dUdt

þ
�
R
U

�
3=2

U2dΩ2
4 þ

�
U
R

�
3=2 dx24

ðMKKlsÞ2
;

R3 ¼ πgsNcl3s ; gs ¼
g2YM

2πMKKls
; fðUÞ ¼ 1 −

�
UT

U

�
3

;

(14)

where x4 corresponds to the compactified direction and
MKK represents the Kaluza-Klein mass. Here gs is the
string coupling, ls is the typical string length, R is the AdS
radius, and UT is the position of the horizon. The D8=D8
branes now span the coordinates ðU; t; xi;Ω4Þ. We will
only consider the deconfined phase, where the temperature
is determined by UT via

T ¼ 3

4π

�
UT

R3

�
1=2

: (15)

Note we also work in the chiral symmetry restored phase,
where ∂Ux4 ¼ 0. The reduced 5-dimensional action of
D8=D8 branes is given by [46]

SD8=D8 ¼ −CR9=4

Z
d4xdUU1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg5d þ 2πl2sFL=RÞ

q

∓ Nc

96π2

Z
d4xdUϵMNPQR

× ðAL=RÞMðFL=RÞNPðFL=RÞQR; (16)
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where

C ¼ N1=2
c =ð96π11=2g1=2s l15=2s Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg5dÞ

p
¼ ðU=RÞ9=4:

(17)

Here −ðþÞ sign in front of the CS term corresponds to
D8ðD8Þ branes, while the CS term does not affect CESE
and will be discarded in our computations. The chemical
potentials dual to the boundary values of the time compo-
nents of the background gauge fields as

μL=R ¼ lim
U→∞

ðAL=RÞt: (18)

Now, our strategy to compute the normal and axial
conductivities will be the following: We first solve for
the background gauge fields from the actions in (16) to
acquire the chemical potentials in the R=L bases. Then we
perturb the actions with electric fields to generate the R=L
currents. Finally, by extracting the electric conductivities in
the R=L sectors, we can evaluate the normal and axial
conductivities directly from (8).
Since both the normal conductivity σV and the axial

conductivity σ5 have to be evaluated numerically, we list
the numerical values for all fixed parameters here for
reference. By following the convention in [46], we take

2πl2s ¼ 1 GeV−2; λ ¼ g2YMNc ¼ 17; MKK ¼ 0.94 GeV;

(19)

which gives

R3 ¼ ð2MKKÞ−1ðg2YMNcl2sÞ ¼ 1.44 GeV3: (20)

We further choose the temperature as the average temper-
ature in RHIC,

T ¼ 200 MeV ¼ 0.2 GeV; (21)

which yields, via (15),

UT ¼ 1.02 GeV−1: (22)

B. Background-field expansion

In comparison with the weakly-coupled approach in
[40], we should consider the case with small chemical
potentials (μVðAÞ ≪ T). The statement will be justified later
in this section. Thus, we have to treat the background gauge
fields responsible for the chemical potentials in the Dirac-
Born-Infeld (DBI) actions in (16) perturbatively. Now, by
expanding the DBI actions up to quartic terms of the
background gauge fields, we find

SD8=D8 ¼ −C
Z

d4xdUU5=2

×

�
1þ 1

4
~FMN

~FMN −
1

32
ð ~FMN

~FMNÞ2
�

∓ Nc

96π2

Z
d4xdUϵMNPQKAMFNPFQK; (23)

where ~F ¼ 2πl2sF and we omit the L=R symbols above
for simplicity. We then define the axial and vector gauge
fields,

Aa ¼
1

2
ð−AL þ ARÞ; AV ¼ 1

2
ðAL þ ARÞ: (24)

By combining the contributions from D8 and D8 branes
together, the full action yields

Stot ¼ −C
Z

d4xdUU5=2

�
1þ 1

2
ð ~FaMN

~FMN
a þ ~FVMN

~FMN
V Þ

−
1

16
ðð ~FaMN

~FMN
a Þ2 þ ð ~FVMN

~FMN
V Þ2Þ

−
1

8
~FaMN

~FMN
a

~FVPQ
~FPQ
V −

1

4
ð ~FaMN

~FMN
V Þ2

�

þ Nc

48

Z
d4xdUϵMNPQKðAaMFaNPFaQR

þ AaMFVNPFVQR þ 2AVMFaNPFVQKÞ: (25)

The action then leads to the field equations,

∂M

�
U5=2

�
2FMN

V −
1

2
FMN
V FVPQF

PQ
V −

1

2
FMN
V FaPQF

PQ
a

− FMN
a FaPQF

PQ
V

��
¼ 0;

∂M

�
U5=2

�
2FMN

a −
1

2
FMN
a FaPQF

PQ
a −

1

2
FMN
a FVPQF

PQ
V

− FMN
V FVPQF

PQ
a

��
¼ 0: (26)

Recall that the time components of the background
gauge fields should contribute to chemical potentials.
We may set other components of the background gauge
fields to zero. In practice, it is more convenient to solve
the field equations above by reshuffling them into the
L=R bases or directly minimize the D8 and D8 actions,
where the right-handed and left-handed fields are
decoupled. In the L=R bases, the equations of motion
then become

∂M

�
U5=2

�
~FMN
ðL=RÞ −

1

4
~FMN
ðL=RÞ ~FðL=RÞPQ ~FPQ

ðL=RÞ

��
¼ 0: (27)
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Since we only have to solve AtðUÞ, the equations of
motion reduce to just one equation,

∂U

�
U5=2

�
~FðL=RÞUt þ

1

2
~F3
ðL=RÞUt

��
¼ 0; (28)

The equation of motion now yields three solutions,

~FðL=RÞUt ¼
−2 × 32=3 þ 31=3ð9yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ 81y2

p
Þ2=3

3ð9yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ 81y2

p
Þ1=3

;

1� i
ffiffiffi
3

p

31=3ð9yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ 81y2

p
Þ1=3

þ iði� ffiffiffi
3

p Þð9yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ 81y2

p
Þ1=3

2 × 32=3
; (29)

where

y ¼ γL=RU−5=2 (30)

is a dimensionless parameter for γL=R being the integration
constants. Near the boundary y → 0, the three solutions
reduce to y, �i

ffiffiffi
2

p
. Given that the first solution is normal-

izable on the boundary, we may choose it as the physical
solution. Also, the first solution is always real with an
arbitrary value of y. As we make the transformation
γL=R → −γL=R, we find ~FðL=RÞUt → − ~FðL=RÞUt, where the
negative γL=R will contribute to negative chemical poten-
tials. Notice that the validity of the background-field
expansion from the DBI action requires ~FðL=RÞUt ≪ 1 at
arbitrary U. Since the region below the horizon U ¼ UT is
causally disconnected and the physical solution monotonic
increaseswith respect toy, themaximumof ~FðL=RÞUt locates
on the horizon. From (29), we find a critical value yc ¼ 1.5
such that ~FðL=RÞUtðy ¼ ycÞ ¼ 1, which implies the valid
integration constants γL=R should satisfy γL=R ≪ ycU

5=2
T .

After obtaining the background-field strength, we sub-
sequently compute the chemical potentials by choosing the
radial gauge AðL=RÞU ¼ 0 without loss of generality. The
chemical potentials in the L=R bases are given by

μðL=RÞ ¼ AðL=RÞtðU ¼∞Þ ¼ 1

5πl2s
γ
2
5

ðL=RÞ ~μðyðR=LÞTÞ;

~μðyðL=RÞTÞ ¼
Z

yðL=RÞT

0

dy

y7=5

×

�
−2× 32=3 þ 31=3ð9yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ 81y2

p
Þ2=3

3ð9yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ 81y2

p
Þ1=3

�
;

(31)

where yðL=RÞT ¼ γL=RU
−5=2
T .Wemay now input the numeri-

cal values for relevant coefficients to examine thevalidity of
the background-field expansion in the limit of small
chemical potentials ðμðL=RÞ ≪ TÞ. We first rescale the
chemical potentials by temperature as

μðL=RÞ
T

¼ TR3

5πl2s

�
4π

3

�
2

y
2
5

ðL=RÞT ~μðyðL=RÞTÞ: (32)

By taking yðL=RÞT ¼ yc ¼ 1.5 with the numerical values of
all parameters from (19) to (22), we obtain the ratio to the
critical chemical potential and temperature, which reads

μc
T

¼ μðL=RÞðyðL=RÞT ¼ ycÞ
T

≈ 4.51: (33)

In our setup, it turns out that the small chemical potentials
(μðL=RÞ ≪ T) correspond to ~FðR=LÞUt ≪ 1,which supports the
background-field expansion.Moreover, the expansion is even
valid for intermediate chemical potentials (μðL=RÞ∼T). Recall
that the constraint for the integration constants γL=R now
becomes γL=R ≪ ycU

5=2
T ≈ 4.51 GeV−5=2.

C. DC and AC conductivities

Subsequently, by further fluctuating the full action in
(25) with gauge fields,

ðALðRÞÞμ → ðALðRÞÞμ þ ðaLðRÞÞμ; (34)

the expansion up to the quadratic terms of the fluctuations
can be written as

Sð2Þtot ¼ −C
Z

d4xdUU5=2

�
1

2
ð ~f2V þ ~f2aÞ −

1

8
ð ~f2V ~F2

V þ ~f2a ~F
2
a þ ~F2

V
~f2a þ ~F2

a
~f2VÞ −

1

2
ð ~fV · ~FVÞð ~fa · ~FaÞ

−
1

2
ð ~fV · ~faÞð ~FV · ~FaÞ −

1

2
ð ~fV · ~FaÞð ~fa · ~FVÞ −

1

4
ðð ~fV · ~FVÞ2 þ ð ~fa · ~FaÞ2 þ ð ~fV · ~FaÞ2 þ ð ~fa · ~FVÞ2Þ

�

þ Nc

16

Z
d4xdUϵMNPQRðAaMfaNPfaQR þ AaMfVNPfVQR þ 2AVMfaNPfVQRÞ; (35)

where

~F2ð ~f2Þ ¼ ~FMN
~FMNð ~fMN

~fMNÞ; ~f · ~Fð ~f · ~f or ~F · ~FÞ ¼ ~fMN
~FMNð ~fMN

~fMN or ~FMN
~FMNÞ

fij ¼ ∂iaj − ∂jai; ~Fð ~fÞ ¼ 2πl2sFðfÞ: (36)
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Since only the time components of the gauge fields
AVðaÞtðUÞ are nonzero, we have

F2
VðaÞ ¼ −2ð∂UAVðaÞtÞ2; FVMNFMN

a ¼ −2∂UAVt∂UAat:

(37)

We identify that the cross terms of the vector and axial
fluctuations may generate an axial current proportional to
the product of a vector chemical potential and an axial
chemical potential in the presence of an electric field
similar to the case in [40]. Nevertheless, since ~FVðaÞ ∼
U−5=2 on the boundary as shown in (30), all these cross
terms actually vanish on the boundary. On the other hand,
the cross terms still give rise to the modifications of
equations of motion in the bulk. It turns out that the
derivatives of the vector fluctuation aV with respect to U
can depend on the axial fluctuation aa and vice versa due to
the mixing of the vector and axial gauge fields in the
equations of motion in the presence of both the vector and
axial chemical potentials. It is thus more convenient to
work out conductivities of the vector and axial currents in
the L=R bases, where the left-handed and right-handed
sectors are decoupled.
Now, we should compute σRðLÞ in the L=R bases. The

relevant terms in the D8=D8 actions in the L=R bases read

Sð2Þ
D8=D8

¼ −C
Z

d4xdUU5=2

×

�
1

4
~f2 −

1

8
ð ~f · ~FÞ2 − 1

16
~f2 ~F2

�
L=R

; (38)

where we drop the CS term here since it is irrelevant to
CESE. The actions then lead to decoupled equations of
motion,

∂M

�
U5=2

�
~fMN −

1

2
~FMN ~F · ~f −

1

4
~fMN ~F2

��
L=R

¼ 0:

(39)

Although we start in EF coordinates, it is more convenient
to work in Poincaré coordinates to handle the holographic
renormalization as we evaluate the currents. In Poincaré
coordinates, the AdS5 part of the metric is rewritten as

ds25d ¼
�
U
R

�
3=2

ð−fðUÞðdx0Þ2 þ ðdxiÞ2Þ þ
�
R
U

�
3=2 dU2

fðUÞ ;

(40)

where x0 denotes the Poincaré time. In fact, all equations
previously shown in this section without explicitly speci-
fying the spacetime indices can be applied to both EF
coordinates and Poincaré coordinates, which relies on the
same

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg5dÞ

p ¼ ðU=RÞ9=4 in two coordinates. One can

actually show that AtðUÞ ¼ A0ðUÞ for AU ¼ 0. We will
consider only the electric fluctuation eE3 ¼ f03 along the
x3 direction and further choose the temporal gauge a0 ¼ 0
without loss of generality. By choosing such a gauge,
the ~f · ~F terms in the actions and equations of motion
above should vanish. We then make an ansatz for the
fluctuation as

a3ðU; x0Þ ¼ e−iωx
0

a3ðU;ωÞ: (41)

Hereafter the shorthand notation a3 denotes a3ðU;ωÞ. The
D8=D8 actions now become

Sð2Þ
D8=D8

¼ −
C
2
ð2πl2sÞ2

Z
d4xdUU5=2

×

�
fðUÞj∂Ua3j2 −

�
R
U

�
3 ω2

fðUÞ ja3j
2

�

×

�
1þ 1

2
~F2
U0

�
L=R

: (42)

Also, we obtain a single equation of motion,

CðUÞ∂2
Ua3 þ BðUÞ∂Ua3 þDðUÞa3ðUÞ ¼ 0; for

CðUÞ ¼ fðUÞU5=2

�
1þ 1

2
~F2
U0

�
;

BðUÞ ¼ ∂U

�
U5=2fðUÞ

�
1þ 1

2
~F2
U0

��
;

DðUÞ ¼ U5=2

�
R
U

�
3 ω2

fðUÞ
�
1þ 1

2
~F2
U0

�
: (43)

The near-boundary solution then takes the form

a3ðUÞjU→∞ ¼ að0Þ3 þ að1Þ3

U
þ bð0Þ3

U3=2 þ
að2Þ3

U2
þ bð1Þ3

U5=2 …; (44)

where all higher-order coefficients aðnÞ3 and bðnÞ3 depend on

að0Þ3 and bð0Þ3 , respectively. The two independent coeffi-

cients að0Þ3 and bð0Þ3 will be determined by the incoming-
wave boundary conditions near the horizon as we
numerically solve the equations of motion in (43).
Before proceeding to the evaluation of (43), we should

handle the UV divergence for the D8=D8 actions on the
boundary at U0 → ∞. After removing the divergence by
subtracting proper counterterms, the renormalized actions
become

ðSð2Þ
D8=D8

Þ
ren

¼Cð2πl2sÞ2
Z

d4x

�
3

2
að0Þ�3 bð0Þ3 þOðU−1=2

0 Þ
�

L=R
;

(45)

which give rise to the L=R currents
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ðj3ÞL=R ¼ 3C
2

ð2πl2sÞ2bð0Þ3 jL=R

¼ 2Cð2πl2sÞ2 lim
U→∞

�
U

3
2ðU2∂2

Ua3 þ 2U∂Ua3Þ
�

L=R
:

(46)

The similar treatment to the divergence at the boundary can
be found in [59]. Now, to solve (43) numerically, we have
to impose the incoming-wave boundary conditions at the
horizon by setting

aðUÞL=R ¼
�
1 −

�
UT

U

��
−iω̂

4

aTðUÞL=R (47)

for ω̂ ¼ ω=ðπTÞ. One can show that ∂UaTðUÞjU→Uh
¼

a0TðUhÞ linearly depends on aTðUhÞ by expanding the
equation of motion with the expression in (47) near
the horizon, while the value of aTðUhÞ will not affect
the computation of conductivities. The values of aTðUhÞ
and a0TðUhÞ from the expression in (47) then provide the
proper boundary conditions for the equation of motion. By
using the AdS/CFT prescription, the spectral densities
from (46) are

χL=RðωÞ ¼ Im
3C
2

ð2πl2sÞ2
�
bð0Þ3

að0Þ3

�
L=R

¼ 2Cð2πl2sÞ2U
3
2

TIm lim
Û→∞

×

�
Û

3
2

Û2∂2
Û
a3 þ 2Û∂Ûa3

a3

�
L=R

; (48)

where Û ¼ U=UT and 8Cπ2l4sU
3=2
T ¼ 8NcλT3=ð81MKKÞ.

The zero-frequency limit of the spectral functions
contribute to the DC conductivities as

σL=R ¼ lim
ω→0

χðωÞL=R
ω

: (49)

Since the equations of motion and the currents for left
handed and right handed sectors take the same form, we
only have to compute one of them. By solving the
equations of motion in (43) and employing the relation
in (49), we obtain the DC conductivities in the L=R bases as
shown in Fig. 1, where the increase of chemical potentials
leads to mild enhancement for the conductivities. Here we
define a dimensionless quantity

σ̂i ¼ 81σi=ð8NcλTÞ; (50)

where i ¼ R=L, V, 5 and we will hereafter use this
convention in the paper. Next, by converting the conduc-
tivities in the L=R bases into the V=a bases through (8), we
derive both the normal conductivity σV and the axial one

σ5. Whereas the overall amplitudes of a3ðL=RÞ do not affect
the conductivity, we will choose proper amplitudes such
that E3L ¼ E3R ¼ E3 as the net electric field on the
boundary. As shown in Fig. 2, where we fix the vector
chemical potential and vary the axial one, the normal
conductivity and axial conductivity are slightly enhanced
by the axial chemical potential. Similarly, as shown in
Fig. 3, both the normal and axial conductivities also
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FIG. 2 (color online). The blue and red(dashed) curves corre-
spond to the normal DC conductivity and the axial one with
μV ¼ T, respectively.
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FIG. 1 (color online). The DC conductivities in the L=R bases
versus the chemical potentials scaled by temperature.
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FIG. 3 (color online). The blue and red(dashed) curves corre-
spond to the normal DC conductivity and the axial one with
μA ¼ 0.5T, respectively.
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temperately increase as we fix the axial chemical potential
and increase the vector one.
In Fig. 6, we plot the ratios to the axial conductivity and

the product of the axial and vector chemical potentials. As
shown in Fig. 6 with the fixed vector chemical potentials,
we find that the axial conductivity is approximately linear
to μA for small chemical potentials. One may further
conclude that σ5 ∝ μVμA provided all curves in Fig. 6
coincide. As we gradually reduce μV , the ratios will
converge to a single value, where the small deviations
may come from higher-order corrections in powers of
μVμA=T2 along with the errors stemming from the back-
ground-field expansions when μV=A become larger. The
ratios in Fig. 6 as well correspond to the results by
exchanging the values of μV and of μA, where the reason
will be explained later. Thus, from Fig. 6, we conclude that
the axial conductivity is approximately proportional to the
product of μV and μA for small chemical potentials as
pointed out in [40]. Since only the ~F2

U0 terms are involved
in the computations above, the L=R conductivities are
independent of the signs of L=R chemical potentials. We
may observe interesting symmetries for both σV and σ5.
Under the transformations ðμR → μR; μL → −μLÞ and
ðμR → −μR; μL → μLÞ, which correspond to the exchanges
ðμV → μA; μA → μVÞ and ðμV → −μA; μA → −μVÞ, respec-
tively, both σV and σ5 remain unchanged; they are as well
invariant under the transformation ðμR → −μR; μL → −μLÞ

corresponding to ðμV → −μV; μA → −μAÞ. As proposed in
[40], the leading-log order correction of the normal
conductivity due to small chemical potentials is propor-
tional to μ2V þ μ2A and the axial conductivity is proportional
to μVμA, which preserve the symmetries above. In Fig. 4
and Fig. 5, we also show the agreement of the power-
counting estimations in (12) and the numerical results with
small chemical potentials.
We can further evaluate the AC conductivities for ω ≠ 0

as the responses to a frequency-dependent electric field.
The real part and imaginary part of the L=R conductivities
should be obtained from

Re½σ̂L=RðωÞ� ¼ T2M−1
KKIm lim

Û→∞

×

�
Û

3
2

Û2∂2
Û
a3 þ 2Û∂Ûa3
ωa3

�
L=R

;

Im½σ̂L=RðωÞ� ¼ −T2M−1
KKRe lim

Û→∞

×

�
Û

3
2

Û2∂2
Û
a3 þ 2Û∂Ûa3
ωa3

�
L=R

: (51)

Their combinations then give rise to the normal and axial
AC conductivities. In Fig. 7, we illustrate the real part of the
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FIG. 5 (color online). Power-counting estimation in (12) with
μV ¼ 0.2T.
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FIG. 6 (color online). The red, blue(dashed), and black(dot-
dashed) curves correspond to the cases with μV ¼ T, 0.6T, and 0,
3T. Here μ̂V=A ¼ μV=A=T.
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FIG. 4 (color online). Power-counting estimation in (12) with
μA ¼ 0.01T.
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FIG. 7 (color online). The red(solid), blue(dashed), and green
(dotted) curves correspond to the real part of the normal AC
conductivity with μA ¼ 0.2T, 0.5T, and 0.9T, respectively.
Here μV ¼ T.
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normal AC conductivity with different chemical potentials.
It turns out that the corrections from small chemical
potentials are almost negligible. Our primary interest will
be the axial AC conductivity as shown in Fig. 8 and Fig. 9,
where different values of the axial chemical potentials give
rise to distinct amplitudes in oscillations. We find that the
Reðσ5Þ will be negative in some frequencies. This does not
break the second law of thermodynamics as shown in the
appendix.

IV. ARBITRARY CHEMICAL POTENTIALS

For large chemical potentials, the expansion of back-
ground fields becomes invalid. We thus have to solve the
full DBI action. By considering only the time component of
the background gauge fields, the D8=D8 actions in
Poincaré coordinates take the form

SD8=D8 ¼ −CR9=4

Z
d4xdUU5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2πl2sÞ2ðFL=RÞ20U

q
;

(52)

where the solutions read

ðFR=LÞ0U ¼ αR=Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U5 þ ð2πl2sÞ2α2R=L

q (53)

with integration constants αR=L. In the absence of a vector
chemical potential, we have αR ¼ −αL. By requiring
regularity at the horizon, we obtain

ðAR=LÞ0ðUÞ ¼
Z

U

UT

dU0 αR=L

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU0Þ5 þ ð2πl2sÞ2α2R=L

q (54)

which results in the chemical potentials on the boundary

μR=L ¼ ðAR=LÞ0ðU ¼ ∞Þ ¼ αR=L

3U
3
2

T

2F1

×

�
3

10
;
1

2
;
13

10
;−

ð2πl2sÞ2α2R=L
U5

T

�
: (55)

The result is the same as that found in EF coordinates [46].
Next, we should introduce the electric perturbation. By

considering only the fluctuation a3ðU; x0Þ, the computation
is considerably simplified. Following the same setup in
Sec. III, one can show that the quadratic terms in the probe-
brane actions in Poincaré coordinates now become

Sð2Þ
D8=D8

¼ −Cð2πl2sÞ2
Z

d4xdUU5=2ð1 − ~F2
0UÞ−1=2

×

�
fðUÞj∂Ua3j2 −

�
R
U

�
3 ω2

fðUÞ ja3j
2

�
: (56)

The equation of motion is given by

CfðUÞ∂2
Ua3 þ BfðUÞ∂Ua3 þDfðUÞa3ðUÞ ¼ 0; for

CfðUÞ ¼ fðUÞU5=2ð1 − ~F2
0UÞ−1=2;

BfðUÞ ¼ ∂UðU5=2fðUÞð1 − ~F2
0UÞ−1=2Þ;

DfðUÞ ¼ U5=2

�
R
U

�
3 ω2

fðUÞ ð1 −
~F2
0UÞ−1=2; (57)

where the near-boundary solution takes the same form as
(44). From (53), we find that ðFR=LÞ0U → U−5=2 for
U → ∞, which do not contribute to the on-shell actions
on the boundary. In fact, since ð1 − ~F2

0UÞ−1=2 → 1þ ~F2
0U=2

on the boundary, the boundary action in (56) will be exactly
the same as that in (42). We can then follow the same
procedure to carry out the holographic renormalization and
evaluate the conductivities, where the results are shown in
Fig. 10–16.
As shown in Fig. 10, the result derived from solving the

full DBI action and from the background-field expansion
deviate when the chemical potentials are increased.
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FIG. 8 (color online). The red(solid), blue(dashed), and green
(dotted) curves correspond to the real part of the axial AC
conductivity with μA ¼ 0.2T, 0.5T, and 0.9T, respectively.
Here μV ¼ T.
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FIG. 9 (color online). The red(solid), blue(dashed), and green
(dotted) curves correspond to the imaginary part of the axial AC
conductivity with μA ¼ 0.2T, 0.5T, and 0.9T, respectively.
Here μV ¼ T.
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Although we derive a critical chemical potential ðμcÞL=R ≈
4.51T in (33), the comparison of numerical results in
Fig. 10 may suggest that the background-field expansion is
approximately valid for μL=R < T. In Fig. 11 and Fig. 12,
we present the DC normal and axial conductivities with a
fixed vector chemical potential and with a fixed axial
chemical potential, respectively. Compared to Fig. 2 and

Fig. 3, the increase of conductivities with respect to the
increase of chemical potentials become more pronounced
for large chemical potentials.
Surprisingly, as shown in Fig. 13, the relation σ̂5 ∝ μVμA

still holds even for the cases with large chemical potentials,
where the expected higher-order corrections only result in
negligible contributions. By comparing Fig. 13 with Fig. 6,
we also find small correction for the case with μ ¼ T. In
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FIG. 10 (color online). The DC conductivities in the L=R bases
versus the chemical potentials scaled by temperature. The dashed
red curve and solid blue curve correspond to the result from the
background-field expansion and from solving the full DBI action,
respectively.
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FIG. 11 (color online). The blue and red(dashed) curves
correspond to the normal DC conductivity and the axial one
with μV ¼ 4T, respectively.
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FIG. 12 (color online). The blue and red(dashed) curves
correspond to the normal DC conductivity and the axial one
with μA ¼ 3T, respectively.
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FIG. 13 (color online). The red, blue(dashed), black(dot-
dashed), and green(long-dashed) curves correspond to the cases
with μV ¼ 10T, 8T, 4T, and T. Here μ̂V=A ¼ μV=A=T.
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FIG. 14 (color online). The green(solid), red(long-dashed), and
black(dot-dashed) curves correspond to the real part of the normal
AC conductivity with ðμV; μAÞ ¼ ð4T; 3TÞ, ð4T; TÞ and
ðT; 0.9TÞ. The blue(dashed) curve corresponds to the one with
ðμV; μAÞ ¼ ðT; 0.9TÞ from the background-field expansions.
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FIG. 15 (color online). The real part of the axial AC conduc-
tivity with the colors corresponding to the same cases as Fig. 14.
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Fig. 14–16, we further illustrate the AC conductivities. As
shown in Fig. 14, the mild oscillatory behavior appears as
we turn up the chemical potentials. From Fig. 15 and
Fig. 16, we find that the increase of chemical potentials not
only increases the amplitudes but also leads to phase shifts.

V. DISCUSSIONS

In this paper, we have shown that the CESE exists in the
presence of both vector and axial chemical potentials for
arbitrary magnitudes. In the framework of the SS model
characterizing a strongly coupled chiral plasma, we have
evaluated both the normal and axial DC conductivities
induced by an electric field. Both conductivities are
enhanced by the increase of chemical potentials. In
addition, we have found that the axial conductivity is
approximately proportional to the product of the vector and
axial chemical potentials for arbitrary magnitudes. We have
computed the AC conductivities led by a frequency-
dependent electric field as well. The axial conductivity
oscillates with respect to the frequency of the electric field,
where the amplitude is increased and the phase is shifted
when the chemical potentials are increased.
The observation in Sec. III that the cross terms of the

background gauge fields and fluctuating gauge fields result
in an axial current from the equation of motion in the bulk
may imply that CESE is due to the medium effect in a
thermal background. In this paper, we only consider the
case for μV > μA > 0, which corresponds to the system
with more positive charged fermions than negative charged
fermions and with more right handed fermions than left
handed fermions. The axial current is generated parallel to
the electric field, which is manifested by a positive axial
conductivity. As discussed in the end of Sec. III, all results
remain unchanged for the cases with μA > μV > 0 or with
μV < 0 and μA < 0 based on the symmetries under the
transformations between μV and μA. Our approach can be
easily applied to the cases for μV > 0 > μA or
μV < 0 < μA. The most significant change is that the axial
conductivities will become negative in such cases, which

suggests that the axial currents will be engendered anti-
parallel to the electric fields as mentioned in [40]. Given
that μVμA < 0 corresponding to μ2L > μ2R along with the
monotonic increase of σR=L by turning up μR=L, we directly
obtain σ5 < 0 by definitions in the cases with μV > 0 > μA
or μV < 0 < μA. Notice that the normal conductivities will
be always positive in all the cases since σR=L > 0 for
arbitrary values of the chemical potentials. The entropy
principle for CESE is further discussed in the Appendix.
Moreover, the most intriguing finding in our work is the

relation σ5 ∝ μVμA for arbitrary chemical potentials. From
the weakly coupled approach in [40], it is natural to
anticipate such a relation as the leading-log order contri-
bution for small chemical potentials. Nevertheless, with
large chemical potentials, one may expect the relation
would break down due to the higher-order corrections of
μV=T and μA=T. It turns out that the influence from the
higher-order corrections are negligible in the strongly
coupled scenario at least in the setup of SS model. Since
the axial conductivity here can only be computed numeri-
cally, it is difficult to find the origin of the suppression of
the higher-order corrections. It would be thus interesting to
study CESE in different holographic models such as the
D3=D7 system, where the axial chemical potential is
incorporated via rotating flavor branes as discussed in
[51], to explore the universality of this relation. On the
other hand, we may as well conjecture that there exists
nontrivial resummation which leads to the cancellation of
higher-order corrections in the weakly coupled computa-
tions for the axial conductivity. Also, the coupling depend-
ence of the axial conductivity in the strongly coupled
scenario is distinct from that derived in the weakly coupled
approaches. In our model, we find σ5 ∝ g2YMN

2
c from (30),

while it is found in [40] that σ5 ∝ 1=ðe3 lnð1=eÞÞ in
thermal QED.
From the phenomenological perspective as proposed in

[40], the CESE along with CME can be possibly
observed through the charge azimuthal asymmetry in
heavy ion collisions. Whereas the chemical potential is
small compared to the temperature in high-energy colli-
sions [64], the CESE may be suppressed in such a case.
However, since CESE could exist for arbitrary chemical
potentials as shown in our model, the RHIC beam energy
scan with lower collision energy [65], which can pro-
duces the plasma with the chemical potential comparative
to the temperature, could be promising to measure such
an effect. Although the chemical potentials can be
drastically increased in the low-energy collisions, the
collision energy cannot be too low such that QGP as the
deconfined phase is not formed after the collisions.
Furthermore, due to the rapid depletion of the electric
field with respect to time in heavy ion collisions [39], the
CESE should be more robust in the pre-equilibrium
phase. It is thus desirable to investigate CESE in the
out-of-equilibrium conditions.
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FIG. 16 (color online). The imaginary part of the axial AC
conductivity with the colors corresponding to the same cases
as Fig. 14.
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APPENDIX: ENTROPY PRINCIPLE FOR CESE

As shown in Eq. (8), σ5 can be negative if σR < σL.
However, as is known, the normal transport coefficients
should be always positive definite according to the second
law of thermodynamics. So in this section, we will prove
that negative σ5 will also obey the entropy principle.
Let us start from the relativistic hydrodynamics with

chiral fermions. The energy-momentum and charge
conservation equations read,

∂μTμν ¼ eFνλðJR;λ þ JL;λÞ;
∂μJ

μ
R ¼ 0;

∂μJ
μ
L ¼ 0; (A1)

where JμR and JμL are four vector form of right- and left-
handed currents, Fμν is the field strength tensor. Here we
neglect the chiral anomaly in this discussion for simplicity.
Those quantities can be decomposed as

Tμν ¼ ðϵþ Pþ ΠÞuμuν − ðPþ ΠÞgμν þ πμν; (A2)

and

JμR=L ¼ nR=Luμ þ νμR=L; (A3)

where ϵ, P, nR=L and uμ are the energy density, the pressure,
the number density of right- (left) handed fermions and
fluid velocity, respectively. gμν is the metric and we choose
it as diagfþ;−;−;−g. The dissipative terms Π, πμν and
νμR=L denote the bulk viscous pressure, the shear viscous
tensor and the diffusion currents, respectively. Note that we
have chosen the Landau frame where the heat flux current
in Tμν does not appear.
For simplicity, we neglect the viscosities in the following

discussion and only concentrate on the diffusion currents.

The complete discussion can be found in the Sec II. of [63].
With the help of Gibbs-Duhem relation dϵ ¼ Tdsþ
μRdnR þ μLdnL, with s the entropy density, from
uν∂μTμνþμR∂μJ

μ
RþμL∂μJ

μ
L¼uνeFνλðJR;λþJL;λÞ, we get,

∂μSμ ¼ −
X
i¼R;L

νμi

�
∂μ

μi
T
þ eEμ

T

�
; (A4)

where the electric field is defined in a comoving frame,
Eμ ¼ Fμνuν, Sμ is the covariant entropy flow defined as
[66,67],

Sμ ¼ 1

T
½Puμ þ Tμνuν − μRJ

μ
R − μLJ

μ
L�

¼ suμ −
μR
T
νμR −

μL
T
νμL: (A5)

The second law of thermodynamics requires, ∂μSμ ≥ 0. It
can be satisfied if νμV have the following forms,

νμi ¼
X
j¼R;L

λijðgμν − uμuνÞ
�
∂ν

μj
T
þ eEν

T

�
; (A6)

and

λRRλLL −
1

4
ðλRL þ λLRÞ2 ≥ 0; λRR ≥ 0; λLL ≥ 0;

(A7)

where the factor gμν − uμuν guaranteed uμν
μ
V ¼ 0. We find

the heat and electric conductivities form a unique combi-
nation and share the same transport coefficient [63]. If the
system has a time reversal symmetry, then we get

λRL ¼ λLR; (A8)

which is called Onsager relation and has been proved in
various approaches, e.g. from kinetic theory [63].
Now we turn to the vector and axial vector currents, JμV

and Jμa. Inserting the constraints (A7) and Onsager relation
(A8), yields,

σV ¼ ðλRR þ λLR þ λRL þ λLLÞT ≥ 0;

σ5 ¼ ðλRR þ λRL − λLR − λLLÞT ¼ ðλRR − λLLÞT; (A9)

where σV as a normal conductivity is found to be positive,
but σ5 can be negative.
We find the entropy principle does not constrain σ5

directly and does also not require a positive definite σ5. The
similar conclusion is also obtained for a fluid with the
multiflavor case [63].
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