
0018-9162/14/$31.00 © 2014 IEEE	 Published by the IEEE Computer Society 	 APRIL 2014	 59

RESE ARCH FE ATURE

Active versus Passive
Malware Collection
Ying-Dar Lin, Chia-Yin Lee, Yu-Sung Wu, Pei-Hsiu Ho, and Fu-Yu Wang,
National Chiao Tung University

Yi-Lang Tsai, National Center for High-Performance Computing

An exploration of active and passive malware honeypots reveals that the
two systems yield vastly different malware collections and that peer-to-peer
file sharing is an important, but often overlooked, malware source.

M alware is second only to network-intrusion
techniques as a threat to Internet security.1,2
Viruses, worms, Trojans, back doors, root-
kits, and, more recently, bots3 can spread

indirectly through users who download files from a
malicious URL or share files in a peer-to-peer (P2P)
network, or directly by exploiting vulnerabilities and
entering the host.

Malware countermeasures typically take the form of
automated collection through passive or active honey-
pots. Passive honeypots4,5 gather samples by luring the
malware to a specific system. Active honeypots collect
samples by deliberately linking to or opening malicious
URLs or files. To date, little information is available on
the differences between the collected malware, which
might answer questions such as, are the malware sam-
ples sufficiently disjoint to warrant using both active and
passive systems?

Developing automated collection software requires
understanding exactly how malware behaves in the host
and network, how it propagates, and how it might evade

techniques to detect and collect it. To better understand
malware sources and behavior, we developed Honey-
Inspector, an active honeypot system that we made open
source (http://honeyinspector.sourceforge.net).

Honey-Inspector collects malware from malicious
websites as well as from shared P2P files, which are
becoming a popular channel for malware propagation.
Collecting malware from P2P file sharing generates vol-
umes of suspicious programs, which Honey-Inspector
prunes uses antivirus scanners. The remaining programs
execute in a virtual machine, and Honey-Inspector ana-
lyzes how they alter the host or compromise the network.
Through the virtual machine, a closed execution en-
vironment, we can extensively examine the detected
malware’s characteristics.

We also conducted tests to compare malware collection
samples from Honey-Inspector and from the passive hon-
eypot system at the National Center for High-Performance
Computing (NCHC) in Taiwan. The system, which operates as
part of the international Honeynet Project (www.honeynet.
org/node/157), consists of 3,600 server honeypots deployed

r4wux.indd 59 3/20/14 11:40 AM

	 60	 COMPUTER

RESE ARCH FE ATURE

across nine academic networks. Network traffic volume is
approximately 100 Gbytes per hour.

We conducted our experiment to answer three questions:

•	 What types, or distribution, of malware do the two
approaches collect, and are the resulting collections
disjoint or overlapping?

•	 How timely is malware capture? For example, can
either approach capture malware that does not yet
have a defined signature in a scanner database?

•	 How strong is the degree of host and network activity
(activeness) of the malware that each system captures?

Knowing the answers to these questions will enable us to
more intelligently plan strategies that can collect more and
newer malware and detect it earlier.

MALWARE COLLECTION
Honeypots can be on either the server or client side. A
server honeypot passively lures a malware attack by exhib-
iting a variety of popular services with set vulnerabilities.4,5
The passive honeypot system at NCHC, for example, uses
vulnerabilities from the US National Institute of Standards
and Technology’s National Vulnerability Database (http://
nvd.nist.gov). The main disadvantage is that passive hon-
eypots often cannot capture malware designed to exploit
client-side vulnerabilities.

Client honeypots evolved in 2002 primarily to address
this gap. A client honeypot typically comprises deliberately
vulnerable client software that actively interacts with In-
ternet services to attract malware designed to attack the
client side.

Client honeypots are either high or low interaction.
High-interaction honeypots come with a full client

software stack. The vulnerabilities they exhibit are more
realistic, but the honeypot setup is more complex, and
runtime overhead is high. Examples of high-interaction
honeypots are Honey-Client (www.honeyclient.org/
trac), HoneyMonkey,7 and Capture-HPC (https://projects.
honeynet.org/capture-hpc). Honey-Inspector is also a
high-interaction honeypot. Its virtual machine imitates
application behaviors and responses realistically enough
to deceive the malware into seeing it as an actual system.

Low-interaction honeypots12 emulate client software
vulnerabilities instead of running a client software stack.
They are easier to set up but cannot always capture mal-
ware that targets vulnerabilities outside the emulation.

Table 1 gives the comparative characteristics of
Honey-Client, HoneyMonkey, Capture HPC, and Honey-
Inspector. Only HoneyMonkey and Honey-Inspector
collect malware from sources other than malicious
URLs. Honey-Inspector adds P2P files but omits email
collection primarily because malware spreading via
email is passive in nature in the sense that a victim does
not actively solicit mails carrying malicious contents.

MALWARE DETECTION AND ANALYSIS
Malware detection is based on the malware’s behavior or
on its signature.13

Behavior-based detection can expose malware that
is previously unknown and thus has no recognizable
signature. The challenge in this detection approach is
determining at runtime what features to observe, which
slows detection speed.

Table 1. Comparison of client honeypots and Honey-Inspector.

Item HoneyMonkey HoneyClient Capture-HPC Honey-Inspector

Collection sources

 Malicious URLs ✓ ✓ ✓ ✓

 Email ✓

 Shared P2P files ✓

Observation of malware’s host behavior

 File system ✓ ✓ ✓ ✓

 Registry ✓ ✓ ✓ ✓

 System configuration ✓ ✓

 System process ✓ ✓

Observation of malware’s network behavior

 Network traffic ✓ ✓ ✓ ✓

r4wux.indd 60 3/20/14 11:40 AM

	 APRIL 2014	 61

Signature-based detection tries to characterize malware
as a signature, which it stores in a signature database. By
reviewing the database, it can quickly detect if a program
is malicious (has one of the established signatures), but it
cannot detect unknown malware whose signature is not
defined in the database.

Client honeypot systems tend to use behavior-based de-
tection only because malware known by signature-based
detection systems would present little threat to most clients
due to the widespread use of antivirus software on the
clients. Honey-Inspector also uses behavior-based detec-
tion but inserts signature-based scanning before detection.
Signature-based scanners can reduce the volumes of suspi-
cious programs that amass from adding P2P file sharing
as a collection source, leaving less for the slower behavior-
based detection to sift through.

INSIDE HONEY-INSPECTOR
As Figure 1 shows, three modules handle the workflow in
Honey-Inspector: Proactive Malware Capture and Detec-
tion (PMC&D), Host Behavior Analysis (HBA), and Network
Behavior Analysis (NBA). The PMC&D module proactively
collects suspicious samples, such as executable files, from
P2P file sharing and Web browsing. It then uses scanners to
divide the samples into benign or malicious, storing mali-
cious samples in the database.

The HBA and NBA modules observe how malware be-
haves after it executes on the virtual machine. Does it modify
the file system or registry on the virtual machine? Does it
launch network attacks? The HBA module compares snap-

shots of the virtual machine’s file system and registry before
and after execution. Meanwhile, the NBA module sniffs and
records network traffic in the virtual machine environment.
If the HBA and NBA modules do not reveal any malicious
behavior, Honey-Inspector considers the program benign.

Honey-Inspector does not compromise the Internet in
any way. The PMC&D module does not invoke sample
execution, and the browsing rate is controlled. Although
the NBA and HBA modules require executing a collected
sample, our analysis environment—our group of virtual
machines—is a closed network.

Proactive malware capture and detection
Figure 2a shows the activities in the PMC&D module. Cur-
rently, we use the Avast, Avira AntiVir, Kaspersky, and
Nod32 antivirus scanners because their false negative rates
are less than 2.4 percent.14 If any of these scanners suspects
the program is malware, the PMC&D module stores the
sample and detection results in the database.

Host behavior analysis
As Figure 2b, shows, the HBA module sets up a new virtual
machine and copies the clean registry and file system. It
then executes the suspicious sample and uses the DiffReg
and DiffFS modules to check for infection in the registry
and file system and identify any modifications. By compar-
ing these modifications against a clean virtual machine
image, we can identify the malware. As a final task, the
HBA module stores results (before and after execution) in
the database.

Figure 1. Malware collection, detection, and analysis in Honey-Inspector. After (1) connecting to the Internet, Honey-Inspector
begins malware capture through the Proactive Malware Capture and Detection (PMC&D) module, which (2) collects suspicious
files and (3) stores them in the database. The module then (4) triggers the Host Behavior Analysis (HBA) and Network Behav-
ior Analysis (NBA) modules to analyze host and network behavior, respectively, and (5) stores results in the database. (6) The
interface displays results.

2. Capture suspicious �les

3. Store malware

1. Connection

Internet

Interface

Database

PMC&D

4a. Trigger HBA

4b. Trigger NBA 6. Display results

5a. Store results (host behavior)

HBA

4a. Trigger HBA

5b. Store results (network behavior)

NBA

r4wux.indd 61 3/20/14 11:40 AM

	 62	 COMPUTER

RESE ARCH FE ATURE

Network behavior analysis
Figure 2c depicts the tasks to detect if a malicious pro-
gram has generated network traffic. The NBA module
sets up a new virtual machine and executes a suspicious
program. It then uses the Netsniff module to monitor the
virtual machine’s network traffic. If a suspicious program
generates network traffic, such as sending an email or
ICMP packet, Netsniff will sniff the packet traces and
store them in the database.

EXPERIMENTAL RESULTS
To gather data on the malware from Honey-Inspector and
the passive honeypot system at NCHC, we ran Honey-
Inspector on a PC with several virtual machines and
observed malware collection, detection, and analysis for a
month. During the same month, we collected 354 unique
malware samples from the passive honeypot system. We ob-
served 800 unique malware samples from Honey-Inspector.

Types of captured malware
Figure 3 shows the types of malware the two systems cap-
tured. Overall, Honey-Inspector captured more Trojans but
fewer bots than the NCHC system.

Bots made up 79 percent of the passive honeypot system’s
captured malware, with the remainder comprising worms,

Trojans, and other malware types. Bots spread by scanning
computer vulnerabilities through the network, making it easy
for the passive honeypot system to capture them. In contrast,
Honey-Inspector captured mostly Trojans (59 percent), with
bots, worms, and other malware making up the remaining 41
percent. Because Honey-Inspector actively seeks potentially
malicious binary files from multiple sources, it is more likely
to find a Trojan, which hides inside an outwardly harmless
program. The passive honeypot system, on the other hand,
waits until a Trojan initiates a remote attack, which explains its
small percentage of captured Trojans. The passive honeypot
system’s malware distribution is consistent with the results
from a related study.18

An analysis of the malware sources revealed that mal-
ware from P2P file-sharing software exceeded malware
from websites by several orders of magnitude primarily
because the method that peers employ to search for content
makes them vulnerable. Indeed, P2P file sharing was the
dominant source of malware.

Timeliness
Figure 4 shows the capture time of malware using Honey-
Inspector and the passive honeypot system. Time begins
when the malware’s signature is defined in the antivirus
scanner’s database and ends when the collection module

Figure 2. Workflow in Honey-Inspector’s three modules. The (a) PMC&D module’s main tasks are to collect malware samples, send
them to antivirus scanners, and store suspected malware in the database. The (b) HBA and (c) NBA modules analyze the suspected
malware’s behavior in the host and network after it executes in the virtual machine (VM).

Search
suspicious URLs

Save suspicious �les

Download �les from
suspicious URLs

Delete suspicious �les

Store detection rtesults
(a)

Are
suspicious �les

malicious?

Search suspicious
 keywords for
P2P software

Download �les from
suspicious URLs

Store detection rtesults

Remove the malware

Di�Reg

(b)

Di�FS

Yes

No

Execute the malware

Copy the unsoiled registry
and the tile system

Setup a new VM

(c)

Execute the malware

End

Set up a new VM

Netsni�

r4wux.indd 62 3/20/14 11:40 AM

	 APRIL 2014	 63

first finds the malware. A high number reflects poorly on
the collection system because antivirus scanners have
known of the malware since day zero. A negative number
reflects favorably because the system has found the mal-
ware before day zero.

We used Kaspersky’s malware signature database in our
experiment because Kaspersky is one of the most popular
antivirus scanners on the market and (more important),
to our knowledge, the only one that publicizes signature
definition time for each malware.

Because the antivirus scanner’s signature database is
updated periodically, we can establish if the antivirus scan-
ner has detected the signature and, if not, how long it takes

until a new signature is added. We analyzed this timeline
to identify when each scanner first recognized a day-zero
malware.

As Figure 4 shows, Honey-Inspector collected 84 percent
of its malware after the signature definition appeared in
the Kaspersky database. However, it collected 16 percent
of its malware before signature definition, as opposed to
zero percent for the passive system. These results show
that Honey-Inspector is timelier than the passive honeypot
system in collecting new malware types.

Figure 5 shows the capture time for collecting bots.
Again, Honey-Inspector collected about 84 percent of bots
whose signature was already in the Kaspersky database,
and 16 percent before the signature appeared. The pas-
sive honeypot system collected bots more than 100 days

Figure 3. Distribution of captured malware for (a) Honey-Inspector and (b) NCHC's passive honeypot system. Honey-Inspector
captured more Trojans because it actively seeks potentially malicious binary files, while the passive system captured more bots
because bots scan the network for vulnerabilities, such as those in a passive honeypot.

Figure 4. Capture time of malware for Honey-Inspector and
the passive honeypot system. Day 0 represents the day that
the signature is defined in the Kaspersky antivirus scanner’s
database of malware signatures. Unlike the passive honeypot
system, Honey-Inspector identified 16 percent of its collected
malware before day 0 and often identified malware hundreds
of days before then (negative numbers).

Figure 5. Capture time of bots for Honey-Inspector and the
passive honeypot system. Honey-Inspector consistently
captured bots earlier.

(a) (b)

Trojans
59%

Trojans
5%

Bots
12%

Bot
79%

Others
21%

Others
13%

Worms
8%

Worms
3%

–101~–200

90
80
70
60
50
40
30
20
10

0

Malware’s capture-time distribution

Da
ys

 af
te

r s
ign

at
ur

e d
e�

ne
d i

n K
as

pe
rsk

y d
at

ab
as

e

–1~–100
0~100

101~200

201~300

301~500

501~1,000

1,001~2,000

2,001~2,500

Over 2,500

Unknown

Honey-Inspector
Passive honeypot system

–1~–100

100

90

80

70

60

50

40

30

20

10

0

Bots’ capture-time distribution

Ca
pt

ur
e t

im
e (

%
)

0~100

101~200

201~300

301~500

501~1,000

1,001~2,000

2,001~2,500

Honey-Inspector
Passive honeypot system

r4wux.indd 63 3/20/14 11:40 AM

	 64	 COMPUTER

RESE ARCH FE ATURE

after their signatures were defined in the Kaspersky da-
tabase, with most bots collected from 2,001 to 2,500 days
afterward. Relative to the passive honeypot system, Honey-
Inspector can capture much newer bots.

Even more significant is the lack of collection overlap.
Fewer than 1 percent of the bots collected were common
to both systems. This result could be because a one-month
collection time is too short to identify overlaps.

Behavior analysis results
Table 2 shows the results of analyzing the collected mal-
ware’s behavior, which we grouped into four classes. Each
class also reflects the degree of activeness. Malware with
network behavior exhibits strong activeness because it can
attack remote hosts through the network, while malware
with host behavior has a limited ability to do harm.

For the passive system, 98 percent of the samples fell
into class A or B with only 2 percent in the remaining
classes. One explanation is that the passive system lures
malware to infect hosts through network behaviors, so
malware is likely to exhibit these behaviors. In compari-
son, 77 percent of Honey-Inspector’s malware samples fell
into class A or class B, but 23 percent fell into class C or D.
Overall, we can see that Honey-Inspector is more balanced
between collecting malware with strong activeness and
collecting malware with weak activeness. On the other
hand, the passive honeypot system is mostly ineffective in
collecting malware with weak activeness.

Comparing Honey-Inspector with the passive server
honeypot gave us some answers to the three questions
we posed at the beginning of our experiment. We

were able to identify the type and distribution of the mal-
ware collected by an active (Honey-Inspector) and passive
honeypot system, and we learned that the collections are
mostly disjoint, although a longer evaluation period might
yield different results.

We answered the collection timeliness question as well,
finding that Honey-Inspector can capture much newer mal-
ware than the passive honeypot system. Finally, we observed
differences in the activeness between the collected sam-

ples. Honey-Inspector’s captured malware exhibited both
strong and weak activeness, but the malware from the pas-
sive system exhibited only strong activeness. In a nutshell,
Honey-Inspector was able to yield a more diverse collection
of malware in a shorter period of time. We can also see that
the passive honeypot system alone was far from being a com-
prehensive solution for malware collection.

We plan to extend the malware collection period to dis-
cover if we can generalize these findings. We also plan to
collect malware from more sources, such as shared links
on social networks, and refine malware behavior analy-
sis to enhance the system’s overall collection ability. Both
Honey-Inspector and the passive honeypot system cap-
tured malware with strong activeness. It is unclear whether
Honey-Inspector would subsume the passive honeypot
system to some degree in this regard. A more detailed study
on the composition of the collected malware may help
answer the question.

Acknowledgments
This work was supported in part by the National Communi-
cations Commission (NCC), National Science Council (NSC),
and Chunghwa Telecom Co. of Taiwan.

References
1.	 N. Provos et al., “The Ghost in the Browser: Analysis

of Web-Based Malware,” Proc. Workshop Hot Topics in
Understanding Botnets (HotBots 07), 2007; http://static.
usenix.org/event/hotbots07/tech/full_papers/provos/
provos.pdf.

2.	 M. van Gundy and H. Chen, “Noncespaces: Using
Randomization to Enforce Information Flow Tracking
and Thwart Cross-Site Scripting Attacks,” Proc. 16th
Ann. Network and Distributed System Security Symp.
(NDSS 09), 2009; https://www.isoc.org/isoc/conferences/
ndss/09/pdf/03.pdf.

3.	 C. Kanich et al., “The Heisenbot Uncertainty Problem:
Challenges in Separating Bots from Chaff,” Proc. 1st
Usenix Workshop in Large-scale Exploits and Emergent
Threats, 2008; https://www.usenix.org/legacy/events/
leet08/tech/full_papers/kanich/kanich.pdf.

Table 2. Percentage of collected malware across four behavior classes.

Class Passive honeypot system (%) Honey-Inspector (%)

Class A: Malware exhibits both host behavior and network behavior
(strong activeness)

67 48

Class B: Malware exhibits only network behavior (strong activeness) 31 29

Class C: Malware exhibits only host behavior (weak activeness) 1 12

Class D: Malware exhibits no behavior (weak activeness) 1 11

r4wux.indd 64 3/20/14 11:40 AM

	 APRIL 2014	 65

4.	 P. Baecher et al., “The Nepenthes Platform: An Efficient
Approach to Collect Malware,” Proc. 9th Recent Advances
in Intrusion Detection Conf., 2006, pp. 165–184.

5.	 L. Spitzner, Honeypots: Tracking Hackers, Addison-
Wesley, 2002.

6.	 Y. M. Wang, “Strider HoneyMonkeys: Active Client-Side
Honeypots for Finding Web Sites That Exploit Browser
Vulnerabilities,” Works in Progress: 14th Usenix Security
Symp., 2007; www.usenix.org/event/sec05/wips/wang.pdf.

7.	 Y. Alosefer and O. Rana, “Honeyware: A Web-Based
Low Interaction Client Honeypot,” Proc. 3rd Int’l Conf.
Software Testing, Verification, and Validation Workshops
(ICSTW 10), 2010, pp. 410–417.

8.	 N. Idika and A.P. Mathur, “A Survey of Malware Detection
Techniques,” CS Dept., Purdue Univ., 2007; www.serc.
net/system/files/SERC-TR-286.pdf.

9.	 “On-demand Detection of Malicious Sof tware,”
AV-Comparatives Lab, 2012; www.av-comparatives.
org/images/docs/avc_fdt_201203_en.pdf.

10.	 S. Chamotra et al., “Data Diversity of a Distributed
Honey-Net-Based Malware Collection System,” Proc.
Int’l Conf. Emerging Trends in Networks and Computer
Comm. (ETNCC 11), 2011, pp.125–129.

Yin-Dar Lin is a professor in the Department of Computer
Science at National Chiao Tung University, Hsinchu, Taiwan,
and founder and director of the university’s Network Bench-
marking Lab and Embedded Benchmarking Lab. His research
interests include the design, analysis, implementation, and
benchmarking of network protocols and algorithms; quality
of service; network security; deep-packet inspection; P2P
networking; and embedded hardware/software codesign.
Lin received a PhD in computer science from the University
of California, Los Angeles. He is an IEEE Fellow. Contact
him at ydlin@cs.nctu.edu.tw or www.cs.nctu.edu.tw/~ydlin.

Chia-Yin Lee is a postdoctoral researcher in National Chiao
Tung University’s Information & Communication Technol-
ogy Laboratory. His research interests include cryptography,
network security, and image processing. Lee received a PhD
in computer science from National Chung Cheng University,

Chiayi, Taiwan. He is a member of IEEE. Contact him at
neko@nctu.edu.tw.

Yu-Sung Wu is an assistant professor in the Department
of Computer Science at National Chiao Tung University,
where he leads the Laboratory of Security and Systems.
His research interests include security, dependability, and
systems. Wu received a PhD in electrical and computer en-
gineering from Purdue University. He is a member of IEEE
and ACM. Contact him at ysw@cs.nctu.edu.tw or www.
cs.nctu.edu.tw/~ysw.

Pei-Hsiu Ho is a postdoctoral researcher in the Department
of Computer Science at National Chiao Tung University. Her
current research interests include cryptographic protocols
and mobile security. Ho received a PhD in computer science
from National Sun Yat-sen University, Kaohsiung, Taiwan.
Contact her at peyhsiu@gmail.com.

Fu-Yu Wang is a project manager in National Chiao Tung
University’s Network Benchmarking Laboratory. His re-
search interests include network and mobile security. Wang
received an MS in computer science and information engi-
neering from the Chung-Hua University, Hsinchu, Taiwan.
Contact him at sagual@nbl.org.tw.

Yi-Lang Tsai is researcher in the National Center for High-
Performance Computing; founder and director of the Cloud
Security Alliance Taiwan Chapter; leader of the Honeynet
Project, Taiwan Chapter; and leader of the Information
Security Incident Response Team, which handles secu-
rity incidents for the Taiwan Academic Network (TANet)
and Taiwan Advanced Research & Education Network
(TWAREN). His research interests include honeypot-related
technologies and cloud security technologies for industry,
government, and academia. Tsai received an MS in electrical
engineering from National Cheng Kung University, Tainan,
Taiwan. Contact him at yilang@nchc.narl.org.tw.

IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

For submission information and author guidelines,
please visit www.computer.org/internet/author.htm

Engineering and Applying the Internet

	 Selected CS articles and columns are available
	 for free at http://ComputingNow.computer.org.

r4wux.indd 65 3/20/14 11:40 AM

