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An exploration of active and passive malware honeypots reveals that the 
two systems yield vastly different malware collections and that peer-to-peer 
file sharing is an important, but often overlooked, malware source.

M alware is second only to network-intrusion 
techniques as a threat to Internet security.1,2 
Viruses, worms, Trojans, back doors, root-
kits, and, more recently, bots3 can spread 

indirectly through users who download files from a 
malicious URL or share files in a peer-to-peer (P2P) 
network, or directly by exploiting vulnerabilities and 
entering the host.

Malware countermeasures typically take the form of 
automated collection through passive or active honey-
pots. Passive honeypots4,5 gather samples by luring the 
malware to a specific system. Active honeypots collect 
samples by deliberately linking to or opening malicious 
URLs or files. To date, little information is available on 
the differences between the collected malware, which 
might answer questions such as, are the malware sam-
ples sufficiently disjoint to warrant using both active and 
passive systems?

Developing automated collection software requires 
understanding exactly how malware behaves in the host 
and network, how it propagates, and how it might evade 

techniques to detect and collect it. To better understand 
malware sources and behavior, we developed Honey-
Inspector, an active honeypot system that we made open 
source (http://honeyinspector.sourceforge.net). 

Honey-Inspector collects malware from malicious 
websites as well as from shared P2P files, which are 
becoming a popular channel for malware propagation. 
Collecting malware from P2P file sharing generates vol-
umes of suspicious programs, which Honey-Inspector 
prunes uses antivirus scanners. The remaining programs 
execute in a virtual machine, and Honey-Inspector ana-
lyzes how they alter the host or compromise the network. 
Through the virtual machine, a closed execution en-
vironment, we can extensively examine the detected 
malware’s characteristics.

We also conducted tests to compare malware collection 
samples from Honey-Inspector and from the passive hon-
eypot system at the National Center for High-Performance 
Computing (NCHC) in Taiwan. The system, which operates as 
part of the international Honeynet Project (www.honeynet. 
org/node/157), consists of 3,600 server honeypots deployed 
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across nine academic networks. Network traffic volume is 
approximately 100 Gbytes per hour.

We conducted our experiment to answer three questions:

•	 What types, or distribution, of malware do the two 
approaches collect, and are the resulting collections 
disjoint or overlapping?

•	 How timely is malware capture? For example, can 
either approach capture malware that does not yet 
have a defined signature in a scanner database? 

•	 How strong is the degree of host and network activity 
(activeness) of the malware that each system captures?

Knowing the answers to these questions will enable us to 
more intelligently plan strategies that can collect more and 
newer malware and detect it earlier.

MALWARE COLLECTION
Honeypots can be on either the server or client side. A 
server honeypot passively lures a malware attack by exhib-
iting a variety of popular services with set vulnerabilities.4,5 
The passive honeypot system at NCHC, for example, uses 
vulnerabilities from the US National Institute of Standards 
and Technology’s National Vulnerability Database (http://
nvd.nist.gov). The main disadvantage is that passive hon-
eypots often cannot capture malware designed to exploit 
client-side vulnerabilities. 

Client honeypots evolved in 2002 primarily to address 
this gap. A client honeypot typically comprises deliberately 
vulnerable client software that actively interacts with In-
ternet services to attract malware designed to attack the 
client side. 

Client honeypots are either high or low interaction. 
High-interaction honeypots come with a full client 

software stack. The vulnerabilities they exhibit are more 
realistic, but the honeypot setup is more complex, and 
runtime overhead is high. Examples of high-interaction 
honeypots are Honey-Client (www.honeyclient.org/
trac), HoneyMonkey,7 and Capture-HPC (https://projects.
honeynet.org/capture-hpc). Honey-Inspector is also a 
high-interaction honeypot. Its virtual machine imitates 
application behaviors and responses realistically enough 
to deceive the malware into seeing it as an actual system.

Low-interaction honeypots12 emulate client software 
vulnerabilities instead of running a client software stack. 
They are easier to set up but cannot always capture mal-
ware that targets vulnerabilities outside the emulation.

Table 1 gives the comparative characteristics of 
Honey-Client, HoneyMonkey, Capture HPC, and Honey-
Inspector. Only HoneyMonkey and Honey-Inspector 
collect malware from sources other than malicious 
URLs. Honey-Inspector adds P2P files but omits email 
collection primarily because malware spreading via 
email is passive in nature in the sense that a victim does 
not actively solicit mails carrying malicious contents.

MALWARE DETECTION AND ANALYSIS
Malware detection is based on the malware’s behavior or 
on its signature.13

Behavior-based detection can expose malware that 
is previously unknown and thus has no recognizable 
signature. The challenge in this detection approach is 
determining at runtime what features to observe, which 
slows detection speed.

Table 1. Comparison of client honeypots and Honey-Inspector.

Item HoneyMonkey HoneyClient Capture-HPC Honey-Inspector

Collection sources

 Malicious URLs ✓ ✓ ✓ ✓

 Email ✓

 Shared P2P files ✓

Observation of malware’s host behavior

 File system ✓ ✓ ✓ ✓

 Registry ✓ ✓ ✓ ✓

 System configuration ✓ ✓

 System process ✓ ✓

Observation of malware’s network behavior

 Network traffic ✓ ✓ ✓ ✓
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Signature-based detection tries to characterize malware 
as a signature, which it stores in a signature database. By 
reviewing the database, it can quickly detect if a program 
is malicious (has one of the established signatures), but it 
cannot detect unknown malware whose signature is not 
defined in the database. 

Client honeypot systems tend to use behavior-based de-
tection only because malware known by signature-based 
detection systems would present little threat to most clients 
due to the widespread use of antivirus software on the 
clients. Honey-Inspector also uses behavior-based detec-
tion but inserts signature-based scanning before detection. 
Signature-based scanners can reduce the volumes of suspi-
cious programs that amass from adding P2P file sharing 
as a collection source, leaving less for the slower behavior-
based detection to sift through.

INSIDE HONEY-INSPECTOR
As Figure 1 shows, three modules handle the workflow in 
Honey-Inspector: Proactive Malware Capture and Detec-
tion (PMC&D), Host Behavior Analysis (HBA), and Network 
Behavior Analysis (NBA). The PMC&D module proactively 
collects suspicious samples, such as executable files, from 
P2P file sharing and Web browsing. It then uses scanners to 
divide the samples into benign or malicious, storing mali-
cious samples in the database. 

The HBA and NBA modules observe how malware be-
haves after it executes on the virtual machine. Does it modify 
the file system or registry on the virtual machine? Does it 
launch network attacks? The HBA module compares snap-

shots of the virtual machine’s file system and registry before 
and after execution. Meanwhile, the NBA module sniffs and 
records network traffic in the virtual machine environment. 
If the HBA and NBA modules do not reveal any malicious 
behavior, Honey-Inspector considers the program benign.

Honey-Inspector does not compromise the Internet in 
any way. The PMC&D module does not invoke sample 
execution, and the browsing rate is controlled. Although 
the NBA and HBA modules require executing a collected 
sample, our analysis environment—our group of virtual 
machines—is a closed network.

Proactive malware capture and detection
Figure 2a shows the activities in the PMC&D module. Cur-
rently, we use the Avast, Avira AntiVir, Kaspersky, and 
Nod32 antivirus scanners because their false negative rates 
are less than 2.4 percent.14 If any of these scanners suspects 
the program is malware, the PMC&D module stores the 
sample and detection results in the database.

Host behavior analysis
As Figure 2b, shows, the HBA module sets up a new virtual 
machine and copies the clean registry and file system. It 
then executes the suspicious sample and uses the DiffReg 
and DiffFS modules to check for infection in the registry 
and file system and identify any modifications. By compar-
ing these modifications against a clean virtual machine 
image, we can identify the malware. As a final task, the 
HBA module stores results (before and after execution) in 
the database.

Figure 1. Malware collection, detection, and analysis in Honey-Inspector. After (1) connecting to the Internet, Honey-Inspector 
begins malware capture through the Proactive Malware Capture and Detection (PMC&D) module, which (2) collects suspicious 
files and (3) stores them in the database. The module then (4) triggers the Host Behavior Analysis (HBA) and Network Behav-
ior Analysis (NBA) modules to analyze host and network behavior, respectively, and (5) stores results in the database. (6) The 
interface displays results.
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Network behavior analysis 
Figure 2c depicts the tasks to detect if a malicious pro-
gram has generated network traffic. The NBA module 
sets up a new virtual machine and executes a suspicious 
program. It then uses the Netsniff module to monitor the 
virtual machine’s network traffic. If a suspicious program 
generates network traffic, such as sending an email or 
ICMP packet, Netsniff will sniff the packet traces and 
store them in the database.

EXPERIMENTAL RESULTS
To gather data on the malware from Honey-Inspector and 
the passive honeypot system at NCHC, we ran Honey-
Inspector on a PC with several virtual machines and 
observed malware collection, detection, and analysis for a 
month. During the same month, we collected 354 unique 
malware samples from the passive honeypot system. We ob-
served 800 unique malware samples from Honey-Inspector. 

Types of captured malware
Figure 3 shows the types of malware the two systems cap-
tured. Overall, Honey-Inspector captured more Trojans but 
fewer bots than the NCHC system. 

Bots made up 79 percent of the passive honeypot system’s 
captured malware, with the remainder comprising worms, 

Trojans, and other malware types. Bots spread by scanning 
computer vulnerabilities through the network, making it easy 
for the passive honeypot system to capture them. In contrast, 
Honey-Inspector captured mostly Trojans (59 percent), with 
bots, worms, and other malware making up the remaining 41 
percent. Because Honey-Inspector actively seeks potentially 
malicious binary files from multiple sources, it is more likely 
to find a Trojan, which hides inside an outwardly harmless 
program. The passive honeypot system, on the other hand, 
waits until a Trojan initiates a remote attack, which explains its 
small percentage of captured Trojans. The passive honeypot 
system’s malware distribution is consistent with the results 
from a related study.18

An analysis of the malware sources revealed that mal-
ware from P2P file-sharing software exceeded malware 
from websites by several orders of magnitude primarily 
because the method that peers employ to search for content 
makes them vulnerable. Indeed, P2P file sharing was the 
dominant source of malware.

Timeliness
Figure 4 shows the capture time of malware using Honey-
Inspector and the passive honeypot system. Time begins 
when the malware’s signature is defined in the antivirus 
scanner’s database and ends when the collection module 

Figure 2. Workflow in Honey-Inspector’s three modules. The (a) PMC&D module’s main tasks are to collect malware samples, send 
them to antivirus scanners, and store suspected malware in the database. The (b) HBA and (c) NBA modules analyze the suspected 
malware’s behavior in the host and network after it executes in the virtual machine (VM).
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first finds the malware. A high number reflects poorly on 
the collection system because antivirus scanners have 
known of the malware since day zero. A negative number 
reflects favorably because the system has found the mal-
ware before day zero.

We used Kaspersky’s malware signature database in our 
experiment because Kaspersky is one of the most popular 
antivirus scanners on the market and (more important), 
to our knowledge, the only one that publicizes signature 
definition time for each malware.

Because the antivirus scanner’s signature database is 
updated periodically, we can establish if the antivirus scan-
ner has detected the signature and, if not, how long it takes 

until a new signature is added. We analyzed this timeline 
to identify when each scanner first recognized a day-zero 
malware.

As Figure 4 shows, Honey-Inspector collected 84 percent 
of its malware after the signature definition appeared in 
the Kaspersky database. However, it collected 16 percent 
of its malware before signature definition, as opposed to 
zero percent for the passive system. These results show 
that Honey-Inspector is timelier than the passive honeypot 
system in collecting new malware types.

Figure 5 shows the capture time for collecting bots. 
Again, Honey-Inspector collected about 84 percent of bots 
whose signature was already in the Kaspersky database, 
and 16 percent before the signature appeared. The pas-
sive honeypot system collected bots more than 100 days 

Figure 3. Distribution of captured malware for (a) Honey-Inspector and (b) NCHC's passive honeypot system. Honey-Inspector 
captured more Trojans because it actively seeks potentially malicious binary files, while the passive system captured more bots 
because bots scan the network for vulnerabilities, such as those in a passive honeypot.

Figure 4. Capture time of malware for Honey-Inspector and 
the passive honeypot system. Day 0 represents the day that 
the signature is defined in the Kaspersky antivirus scanner’s 
database of malware signatures. Unlike the passive honeypot 
system, Honey-Inspector identified 16 percent of its collected 
malware before day 0 and often identified malware hundreds 
of days before then (negative numbers).

Figure 5. Capture time of bots for Honey-Inspector and the 
passive honeypot system. Honey-Inspector consistently 
captured bots earlier.
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after their signatures were defined in the Kaspersky da-
tabase, with most bots collected from 2,001 to 2,500 days 
afterward. Relative to the passive honeypot system, Honey-
Inspector can capture much newer bots. 

Even more significant is the lack of collection overlap. 
Fewer than 1 percent of the bots collected were common 
to both systems. This result could be because a one-month 
collection time is too short to identify overlaps. 

Behavior analysis results
Table 2 shows the results of analyzing the collected mal-
ware’s behavior, which we grouped into four classes. Each 
class also reflects the degree of activeness. Malware with 
network behavior exhibits strong activeness because it can 
attack remote hosts through the network, while malware 
with host behavior has a limited ability to do harm.

For the passive system, 98 percent of the samples fell 
into class A or B with only 2 percent in the remaining 
classes. One explanation is that the passive system lures 
malware to infect hosts through network behaviors, so 
malware is likely to exhibit these behaviors. In compari-
son, 77 percent of Honey-Inspector’s malware samples fell 
into class A or class B, but 23 percent fell into class C or D. 
Overall, we can see that Honey-Inspector is more balanced 
between collecting malware with strong activeness and 
collecting malware with weak activeness. On the other 
hand, the passive honeypot system is mostly ineffective in 
collecting malware with weak activeness.

Comparing Honey-Inspector with the passive server 
honeypot gave us some answers to the three questions 
we posed at the beginning of our experiment. We 

were able to identify the type and distribution of the mal-
ware collected by an active (Honey-Inspector) and passive 
honeypot system, and we learned that the collections are 
mostly disjoint, although a longer evaluation period might 
yield different results. 

We answered the collection timeliness question as well, 
finding that Honey-Inspector can capture much newer mal-
ware than the passive honeypot system. Finally, we observed 
differences in the activeness between the collected sam-

ples. Honey-Inspector’s captured malware exhibited both 
strong and weak activeness, but the malware from the pas-
sive system exhibited only strong activeness. In a nutshell, 
Honey-Inspector was able to yield a more diverse collection 
of malware in a shorter period of time. We can also see that 
the passive honeypot system alone was far from being a com-
prehensive solution for malware collection. 

We plan to extend the malware collection period to dis-
cover if we can generalize these findings. We also plan to 
collect malware from more sources, such as shared links 
on social networks, and refine malware behavior analy-
sis to enhance the system’s overall collection ability. Both 
Honey-Inspector and the passive honeypot system cap-
tured malware with strong activeness. It is unclear whether 
Honey-Inspector would subsume the passive honeypot 
system to some degree in this regard. A more detailed study 
on the composition of the collected malware may help 
answer the question. 
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