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Abstract—We propose adaptive capacity-region-aware algo-
rithms for medium access control in wireless networks. In
particular, the proposed algorithms are aware of the information-
theoretic capacity region of a multiple access channel. According
to the proposed algorithms, a node dynamically adjusts its
channel access strategy based on the previous strategies of other
nodes and the channel feedback. A strategy is composed of
a transmission threshold and an aggression level. We propose
symmetric learning algorithms for maximizing throughput. In
addition, we propose asymmetric learning algorithms to strike
a good balance between throughput and fairness. Furthermore,
we propose novel methods to properly choose a finite number
of available data transmission rates. We use both analytical
results and simulation results to justify the usage of the proposed
algorithms.

Index Terms—Medium access control, capacity region, infor-
mation theory, wireless networks.

I. INTRODUCTION

W IRELESS local area networks (LANs) are widely
deployed due to the large capacity and the low cost

of deployment. Nodes in a wireless LAN share a common
media. Based on the conventional (0, 1, e) collision model,
only one node can successfully transmit data in a time slot. If
two or more nodes concurrently transmit data, the access point
cannot successfully receive/decode any information from the
nodes. It turns out that the collision model is too conservative.
According to network information theory [1], multiple nodes
could simultaneously and successfully transmit distinct data
to the access point as long as the corresponding rate vector is
inside the capacity region of the multiple access channel.

In the last decade, many works on wireless medium access
control (MAC) with multipacket reception (MPR) capability
emerged. Many of the works on MPR assumed that the
data transmission rate is constant and the multiple access
channel is completely characterized by the MPR matrix [2]. In
particular, the total number of packets that can be successfully
received/decoded by the access point in a time slot statistically
depends only on the total number of nodes that transmit
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packets in the time slot. In this paper, we study the more
general case in which the data transmission rate changes with
the instantaneous channel gain and the total number of bits
that can be successfully received/decoded by the access point
in a time slot depends on the data transmission rates of all
nodes in the network.

In this paper, we proposed capacity-region-aware, adaptive
medium access control algorithms to improve the throughput
and the fairness. The proposed algorithms explicitly exploit
the information-theoretic capacity region of a multiple access
channel. According to the proposed algorithms, in the end
of a time slot, the access point broadcasts not only the list
of the nodes that successfully transmit in the current time slot
but also their current channel access strategies. Upon receiving
the broadcast information, a node could dynamically adjust its
own strategy of channel access in order to improve the network
throughput. In particular, the strategy of a node in a time slot
consists of a transmission threshold and an aggression level.
The transmission threshold is used to determine whether or not
a node can transmit data based on the instantaneous channel
gain. The aggression level is used to control the transmission
rate of a node so that the access point has a better chance to
simultaneously receive/decode data from two or more nodes.
We design and evaluate a variety of approaches for a node
to dynamically tune its transmission strategy. Our simulation
results show that the proposed algorithms could significantly
outperform the slotted ALOHA protocol and the GDP protocol
[3]. We also show that the network throughput of the proposed
distributed algorithms could be as large as 80% of the network
throughput of the ideal centralized algorithm.

Our major technical contributions include the following.
First, to the best of our knowledge, our work is the first
distributed algorithm of medium access control that explicitly
exploits the information-theoretic capacity region of a multiple
access channel in the literature. In addition, we propose using
both the transmission threshold and the aggression level to
decide the data transmission rate of a node. Furthermore, we
propose efficient learning algorithms for a node to update its
strategy of channel access based on the previous strategies of
other nodes and the channel feedback. We also propose novel
methods to properly choose a finite number of available data
transmission rates.

The rest of the paper is organized as follows. Section II
covers the related work. In Section III, we present the formal
system models. In Section IV, we propose the symmetric
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learning algorithm that is design to maximize the network
throughput of wireless medium access control. In Section
V, we present the asymmetric learning algorithm, which is
designed to strike a good balance between throughput and
fairness in a heterogeneous wireless local area network. In
Section VI, we propose novel methods to properly choose a
finite number of available data transmission rates. In Section
VII, we show simulation results that justify the usage of the
proposed approach. Our conclusions are included in Section
VIII. Related mathematical proofs are included in the Ap-
pendix.

II. RELATED WORK

Adaptive algorithms were proposed to reduce the packet
collision probability and improve the network throughput in
wireless LANs. He, Sun, Ma, Vasilakos, Yuan, and Gong
[4] proposed a semi-random backoff scheme in which a
node adopts deterministic backoff after a successful packet
transmission. Hauksson and Alanyali [5] proposed a random
access mechanism with adaptive backoff for minimizing the
packet delay and the packet loss probability. Lee, Chiang, and
Calderbank [6] used a persistence-probabilistic model where
a node adjusts its persistence probability according to its local
information and message passing. Mohsenian-Rad, Huang,
Chiang, and Wong [7] proposed distributed fast-converging
algorithms where a node updates its transmission probability
with message passing. In addition, they [8] proposed an
ALOHA-type random access protocol where a node updates
its transmission probability without message passing. Lin and
Feng [9] proposed an adaptive reservation-assisted collision
resolution (ARCR) protocol that combines the conventional
DCF scheme in the IEEE 802.11 standard with piggyback.

Cross-layer design for medium access control based on the
properties of wireless channels had been proposed to improve
the network performance. Wang and Kar [10] proposed two
cross-layer algorithms where the rates of end-to-end sessions
are adjusted at the transport layer and the link attempt proba-
bilities are adjusted at the link layer. Zheng, Pun, Ge, Zhang,
and Poor [11] proposed a distributed opportunistic scheduling
algorithm that includes channel estimation. Eshet and Liang
[12] proposed a MAC protocol named randomly ranked mini
slots (RRMS) where each node generates its rank per mini
slot and the node with the highest rank can transmit data. Su
and van der Schaar [13] proposed a distributed random access
mechanism based on bio-inspired learning.

Utilizing multipacket reception (MPR) capability had been
seen as a promising direction to increase the network through-
put without increasing the required bandwidth. With MPR
capability, multiple nodes are allowed to transmit concurrently.
There are three well-known classes of distributed algorithms
for medium access control: ALOHA, CSMA, and tree/stack
splitting. Seo and Leung [14] proposed contention resolu-
tion algorithms for the multi-packet reception system where
retransmission probability depends on the system backlog.
Minero and Franceschetti [15] proposed a random access
scheme for slotted ALOHA system with MPR capability in
which nodes dynamically adjust their transmission rates and
transmission probabilities. Guo, Wang, and Wu [16] analyzed
the system capacity under the assumption that each node

can successfully receive packets from at most k nodes. Gau
[17] [18] analyzed the saturation/unsaturation throughput for
the slotted ALOHA wireless networks with MPR capability.
Dua [19] analyzed the performance of a user-centric slotted
ALOHA network with MPR capability based on the queue
size of a node. Yim, Mehta, Molisch, and Zhang [20] pro-
posed utilizing the current local channel information to limit
received signal power for the realization of MPR. Celik,
Zussman, Khan, and Modiano [3] proposed an alternative
backoff mechanism in which the transmission probability
depends on the system state. Huang, Letaief, and Zhang [21]
proposed a random access scheme in which nodes dynamically
adjust the transmission probability according to the network
population and the channel state information. Gau [22] used
Poisson random traffic model to analyze the performance of
the slotted nonpersistent CSMA protocol with MPR capability.
Gau and Chen [23] derived novel analytical results for the
performance of the classic tree/stack splitting algorithm in
finite wireless networks with MPR. In addition, Gau [24]
proposed the tree/stack splitting with remainder algorithm for
distributed media access control in a wireless network with
an arbitrary MPR channel matrix. Instead of SINR at the
receiver or the MPR channel matrix, in this paper, we adopt
network information theory [1] to determine whether or not
data transmission in a time slot is successful.

Game theory has been widely used for medium access
control. However, game theory is beyond the scope of this
paper. Cui, Chen, and Low [25] modeled the behaviors of
nodes as a game where each node observes some contention
measure signals to determine the transmission probability. Jin
and Kesidis [26] treated the competition between nodes as a
non-cooperative game where nodes can choose their backoff
contention window sizes. Inaltekin and Wicker [27] proposed
a random access game where the transmission probability of
each node will be determined based on game theory. Chen,
Low, and Doyle [28] proposed a game-theoretic random access
scheme where each node adjusts the persistence probability
based on the conditional collision probability. Cho, Hwang,
and Tobagi [29] proposed using game theory to design robust
random access protocols for wireless networks. Nuggehalli,
Sarkar, Kulkarni, and Rao [30] performed a game-theoretic
analysis of quality-of-service in wireless medium access con-
trol. A survey on game-theoretic approaches for multiple
access in wireless networks can be found in [31].

Power control has been extensively studied for sum rate
maximization in a wireless network. Recently, Tan, Chiang,
Srikant [32] studied the problem of sum rate maximization by
power control in a wireless network, which is a NP-hard prob-
lem. They focused on finding approximately optimal solutions
that can be efficiently computed. While they treat interference
as noise and do not use successive interference cancellation,
we study the case in which successive interference cancellation
is used for the access point to decode packets from distinct
nodes in a time slot. An introduction to power control in
wireless networks can be found in [32] and reference therein.
It is expected that dynamically tuning both the aggression
level and the transmission power could further improve the
system performance at the cost of an increase in computational
complexity. However, joint optimization of aggression level
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Fig. 1. Network model.

and transmission power is beyond the scope of this paper.

III. SYSTEM MODELS

In Figure 1, we show our network model. There are N ≥ 2
nodes and an access point (AP) in the network. The time
domain is divided into time slots of fixed length. The length of
a time slot is smaller than the coherence time of the wireless
channel. Without loss of essential generality, it is assumed that
the length of a time slot equals one. Time slot t is the time
interval [t, t+ 1], ∀t ≥ 0. Let W be the bandwidth, P be the
maximum transmission power of a node in a time slot, Pi(t)
be the transmission power of node i at time slot t, and σ2

be the power spectral density of the additive white Gaussian
noise. Let gi(t) be the channel gain from node i to the AP
in time slot t. For each fixed i, gi(t)’s are independent and
identically distributed continuous random variables. Define
Fi(u) = P{gi(t) ≤ u}, ∀i, t, u. Let 1

λi
be the expected

value of gi(t), ∀i, t. When it is clear from the context, gi(t) is
abbreviated by gi. Let A(t) be the set that is composed of the
indexes of the nodes that transmit data in time slot t. Let Ri(t)
be the data transmission rate of node i in time slot t. Note
that if i /∈ A(t), Ri(t) = 0. According to network information
theory [1], (R1(t), R2(t), .., RN (t)) is in the capacity region
if and only if

Ri(t) < W · log2(1 +
Pi(t) · gi(t)

σ2
), ∀i∑

i∈S

Ri(t) < W · log2(1 +
1

σ2

∑
i∈S

Pi(t) · gi(t)),

∀S ⊂ A(t). (1)

If (R1(t), R2(t), .., RN (t)) is in the above capacity region,
all nodes that transmit data in time slot t successfully deliver
their data to the access point. Otherwise, it is assumed that
the access point fails to receive/decode any data in time slot
t. Since it is desired to maximize the sum rate of all nodes
in each time slot, in this paper, we focus on the case in
which Pi(t) = P , ∀i, t. As shown in Figure 2, when N = 2,
the capacity region is a pentagon. As long as (R1(t), R2(t))
is inside the pentagon, the concurrent data transmission is

1
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Fig. 2. Capacity region for N = 2.

successful. In contrast, when a conventional time-division
multiple-access scheme is used, for the access point to suc-
cessfully receive/decode data in time slot t, (R1(t), R2(t))
has to be inside the triangle bounded by the dashed line, the
x-axis, and the y-axis.

We study the saturation case in which a node always has
data to transmit. The strategy of a node in a time slot is
composed of a transmission threshold and an aggression level.
Let xi(t) be the transmission threshold of node i in time slot
t. Let αi(t) be the aggression level of node i in time slot t.
Note that 0 ≤ αi(t) ≤ 1. Let ϵ > 0 be a very small real
number. If gi(t) < xi(t), node i does not transmit any data in
time slot t. On the other hand, if gi(t) ≥ xi(t), node i will
transmit data with rate αi(t) ·W · log2(1+

P ·gi(t)
σ2 )− ϵ in time

slot t. In this paper, to make the presentation concise, that a
node transmits with rate R means the node transmits with rate
R− ϵ.

It is assumed that at the beginning of time slot t, the AP
broadcasts a pilot signal for each node i to obtain the value of
gi(t) through channel estimation. There are two approaches
for node i to transmit the value of (gi(t), xi(t), αi(t), Ri(t))
to the access point in time slot t. In the first approach,
there exists a mini slot at the beginning of a time slot.
A mini slot is composed of S ≥ N orthogonal channels.
Different nodes use distinct orthogonal channels to transmit
the value of (gi(t), xi(t), αi(t), Ri(t)) to the access point at
the beginning of time slot t. In the second approach, the value
of (gi(t), xi(t), αi(t), Ri(t)) is included in the header of the
data packet transmitted from node i to the access point in time
slot t. When the first approach is used, there is no collision
in a mini slot. When the second approach is used, in a time
slot, if the rate vector is not within the capacity region, the
AP does not know the current strategies and each node has to
estimate the current strategies of other nodes.

Let ζ(t) ∈ {0, 1, 2} be the channel feedback in time slot
t. In particular, if no nodes transmit data and therefore the
channel is idle in time slot t, ζ(t) = 0. In addition, if at least
one node successfully transmits data in time slot t, ζ(t) = 1.
If some nodes transmit data but none of them succeed in time
slot t, ζ(t) = 2. At the end of time slot t, the AP broadcasts
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the value of ζ(t). In addition, if the rate vector is within the
capacity region in time slot t, the AP broadcasts the values of
A(t) and (xi(t), αi(t), Ri(t))’s, 1 ≤ i ≤ N .

In this paper, we study the problem of distributed medium
access control based on the information-theoretic capacity
region. In particular, to optimize the network throughput or
the fairness index, a node independently and dynamically
adjusts its data transmission rate based on the information
broadcast by the access point in the previous time slots and
its own channel gain in the current time slot. Since we
focus on distributed medium access control, a node has to
adjust the data transmission rate without knowing the current
channel gains of other nodes. We propose adjusting the data
transmission rate through strategy learning.

IV. SYMMETRIC LEARNING ALGORITHMS

In this section, we propose the symmetric learning algorithm
for capacity-region-aware wireless medium access control.
Based on the algorithm, each node dynamically adjusts its
strategy based on the previous strategies of other nodes and
the channel feedback. There are two variants for the symmetric
learning algorithm. The first variant is called Learn-from-the-
best, while the second variant is called Learn-from-betters.
For illustration purposes, we divide the algorithm into three
parts: the main function and two additional functions. We first
introduce the main function. Consider node i in time slot t. At
the beginning of the time slot, the access point broadcasts pilot
signals for each node to estimate the corresponding channel
gain. If gi(t) ≥ xi(t), Ri(t) = αi(t) × log2(1 +

P ·gi(t)
σ2 ) and

node i transmits data to the access point with rate equals Ri(t)
till the end of time slot t. Otherwise, node i does not transmit
any data in time slot t and Ri(t) = 0. In the end of time
slot t, the access point broadcasts the values of ζ(t), A(t),
and (xi(t), αi(t), Ri(t))’s, 1 ≤ i ≤ N . Pseudo codes for the
above procedure are included in Algorithm 1.

We now explain how a node updates its strategy when
ζ(t) = 0. Let f2 ∈ (0, 1) be a real number. Note that ζ(t) = 0
implies that none of the nodes transmit data in time slot t.
Therefore, when ζ(t) = 0, to increase the probability that at
least one node transmits data in time slot t+1, the transmission
threshold at time slot t + 1 is set to a small real number. In
particular, xi(t+ 1) is set to f2 ·minj:1≤j≤N xj(t).

We now elaborate on how a node updates its strategy when
ζ(t) = 1. Note that ζ(t) = 1 implies that one or more nodes
successfully transmit data in time slot t. In a time slot, the
strategy of node i is said to be better than the strategy of
node j, if the data rate of node i is greater than the data rate
of node j. The best strategy in a time slot is defined to be the
strategy used by the node with the maximum data rate in the
time slot. Let i∗ be the index of the node with the best strategy
in time slot t. Let f1 > 1 be a real number. When the Learn-
from-the-best algorithm is used, node i adopts the best strategy
in time slot t as its strategy in time slot t+ 1. In addition, to
further increase the network throughput, node i∗ increases its
aggression level. In particular, αi∗(t+1) = αi∗(t) · f1. When
the Learn-from-betters algorithm is used, node i first calculates
the arithmetic average of the strategies which are better than
the strategy of node i. Then, node i adopts the average as the

Algorithm 1 : The proposed algorithm (for node i in time
slot t)
Input: P , σ2, and W .
Output: Ri(t).

1: if t == 0 then
2: f1 = 1.01, f2 = 0.9.
3: xi(0) = 0, αi(0) = 0.1.
4: end if
5: Ri(t) = 0.
6: Obtain the value of gi(t) through channel estimation.
7: if gi(t) ≥ xi(t) then
8: Ri(t) = αi(t)× log2(1 +

P ·gi(t)
σ2 ).

9: Transmit data at rate equals Ri(t) till the end of the
time slot.

10: else
11: Wait until the end of the time slot.
12: end if
13: At time (t + 1), obtain the values of ζ(t), A(t), and

(xi(t), αi(t), Ri(t))’s broadcast from the access point.
14: if ζ(t) == 0 then
15: // none of the nodes transmitted data
16: xi(t+ 1) = f2 ·minj:1≤j≤N xj(t).
17: αi(t+ 1) = αi(t)
18: end if
19: if ζ(t) == 1 then
20: // one or more nodes successfully transmitted data
21: Calculate (xi(t+ 1), αi(t+ 1)) by Algorithm 2.
22: end if
23: if ζ(t) == 2 then
24: // a collision occurs
25: Calculate (xi(t+ 1), αi(t+ 1)) by Algorithm 3.
26: end if

strategy in time slot t+ 1. In addition, to further increase the
network throughput, node i∗ increases its aggression level. In
particular, αi∗(t+1) = αi∗(t) ·f1. Pseudo codes for the above
procedure are included in Algorithm 2.

We now elaborate on how a node updates its strategy when
ζ(t) = 2. Note that ζ(t) = 2 means that one or more nodes
transmit data in time slot t but none of them succeed. Thus,
it is desired for nodes to decrease their aggression levels. Let
f2 ∈ (0, 1) be a real number. When the Learn-from-the-best
algorithm is used, the minimum value among the aggression
levels that are used by active nodes in time slot t is seen as
the best aggression level for time slot t. Therefore, αi(t+ 1)
is set to minj:j∈A(t) αj(t) · f2. For node i /∈ A(t), in order
to increase its transmission probability, xi(t + 1) is set to
minj:j∈A(t) xj(t). When the Learn-from-betters algorithm is
used, a node first calculates α(t), which is the arithmetic
average of the aggression levels used by active nodes in time
slot t. Then, αi(t+1) is set to α(t) ·f2. For i /∈ A(t), in order
to increase its transmission probability, node i calculates x(t),
the arithmetic average of the transmission thresholds used by
active nodes in time slot t. Then, xi(t+1) is set to x(t). Pseudo
codes for the above procedure are included in Algorithm 3.

Node j is said to be the winner of time slot t, if ζ(t) = 1
and Rj(t) > Ri(t), ∀i ̸= j. Recall that channel gains
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Algorithm 2 : Calculating xi(t + 1) and αi(t + 1), when
ζ(t) = 1 (for node i)
Output: xi(t+ 1) and αi(t+ 1).

1: i∗ = argmaxi:i∈S(t) Ri(t)
2: if LearnFromTheBest == True then
3: xi(t+ 1) = xi∗(t).
4: if i == i∗ then
5: αi∗(t+ 1) = αi∗(t) · f1.
6: else
7: αi(t+ 1) = αi∗(t).
8: end if
9: end if

10: if LearnFromBetters == True then
11: // find out all the nodes that perform better than node

i in time slot t
12: Φi(t) = {j|Rj(t) > Ri(t)}.
13: if |Φi(t)| ≥ 1 then
14: xi(t+ 1) = 1

|Φi(t)|
∑

j:j∈Φi(t)
xj(t).

15: αi(t+ 1) = 1
|Φi(t)|

∑
j:j∈Φi(t)

αj(t).
16: else
17: // increase the aggression level of the best node in

time slot t
18: xi(t+ 1) = xi(t).
19: αi(t+ 1) = αi(t) · f1.
20: end if
21: end if

are realizations of continuous random variables. Therefore,
the probability that two channel gains are identical is zero.
Similarly, the probability that the data transmission rates of
two nodes in a time slot are equivalent is zero. Let w(t)
be the index of the winner in time slot t. In order to study
how aggression levels change with time, define α′(t) =
1
N

∑N
i=1 |αi(t)− αi(t− 1)|. We now show two theorems for

the proposed symmetric learning algorithms.
Theorem 1: For the Learn-from-the-best algorithm, if

ζ(t) = ζ(t + 1) = 1 and w(t) = w(t + 1), αi(t + 2) >
αi(t+ 1), ∀i.

Proof: See Appendix.
Consider the Learn-from-the-best algorithm. The above

theorem corresponds to a sufficient condition for all nodes to
simultaneously increase their aggression levels. In particular,
if there exist two consecutive time slots in which the AP
successfully receives data and the winners are the same, each
node increases its aggression level right after the two time
slots.

Theorem 2: When either the Learn-from-the-best algorithm
or the Learn-from-betters algorithm is used, if xi(0) = 0, ∀i,
α′(t) > 0, ∀t.

Proof: See Appendix.
Consider either the Learn-from-the-best algorithm or the

Learn-from-betters algorithm. According to the above theo-
rem, if the initial threshold of each node is zero, in each time
slot, at least one node changes its aggression level. Therefore,
if the set of current strategies corresponds to a local optimal
point, it is assured that the set of the updated strategies will
be different. Namely, the algorithm will not be trapped in a

Algorithm 3 : Calculating xi(t + 1) and αi(t + 1), when
ζ(t) = 2 (for node i)
Output: xi(t+ 1) and αi(t+ 1).

1: if LearnFromTheBest == True then
2: αi(t+ 1) = f2 ·minj:j∈A(t) αj(t).
3: if i ∈ A(t) then
4: xi(t+ 1) = xi(t).
5: else
6: xi(t+ 1) = minj:j∈A(t) xj(t).
7: end if
8: end if
9: if LearnFromBetters == True then

10: α(t) = 1
|A(t)|

∑
j:j∈A(t) αj(t).

11: αi(t+ 1) = α(t) · f2.
12: if i ∈ A(t) then
13: xi(t+ 1) = xi(t).
14: else
15: x(t) = 1

|A(t)|
∑

j:j∈A(t) xj(t).
16: xi(t+ 1) = x(t).
17: end if
18: end if

local optimal point forever.

V. ASYMMETRIC LEARNING ALGORITHMS

In this section, we propose the asymmetric learning al-
gorithm that is designed to strike a good balance between
throughput and fairness. In contrast, the symmetric learn-
ing algorithm is designed to maximize the throughput. The
asymmetric learning algorithm is based on the symmetric
learning algorithm. As the symmetric learning algorithm, the
asymmetric learning algorithm has two variants: Learn-from-
the-best and Learn-from-betters. Between the two variants,
we focus on the Learn-from-the-best algorithm. The major
difference between the asymmetric learning algorithm and the
symmetric learning algorithm lies in the procedure of setting
the initial aggression levels. Let µi be the expected value of
the maximum achievable transmission rate of node i in a time
slot. Recall that Fi(u) is the cumulative density function of the
continuous random variable gi. Then, according to information
theory and probability theory,

µi = E[W log2(1 +
P · gi
σ2

)]

=

∫ ∞

0

W log2(1 +
P · u
σ2

) dFi(u). (2)

Note that the integral in the right-hand side of the second
equality is the Riemann-Stieltjes integral.

Let α ∈ (0, 1) be a real number. According to the asym-
metric learning algorithm,

αi(0) = α · min1≤j≤N µj

µi
. (3)

Note that min1≤j≤N µj

µi
∈ [0, 1] and therefore αi(0) ∈ [0, 1]. In

addition, to improve fairness, nodes with worse channels have
larger initial aggression levels.

We now elaborate on the procedure for a node to update its
transmission strategy. When ζ(t) = 0, the update procedure of
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the asymmetric learning algorithm is the same as that of the
symmetric learning algorithm. Recall that when ζ(t) = 1, the
node with the largest data transmission rate in time slot t is
said to be the winner in time slot t. When ζ(t) = 1, in order to
increase the throughput, node i increases its aggression level
if (and only if) the total number of times being the winner
up to time slot t is an even number. In this case, αi(t+1) =
αi(t)·f1, where f1 > 1, ∀i. When ζ(t) = 2, to avoid persistent
collisions, nodes decrease their aggression levels. In particular,
αi(t+ 1) = αi(t) · f2, where 0 < f2 < 1, ∀i.

VI. A FINITE NUMBER OF AVAILABLE TRANSMISSION
RATES

In this section, we study the case in which the set of
available transmission rates is finite and predetermined. We
propose novel methods to determine the values of the available
transmission rates. Let K ≥ 1 be an integer. Let R1, R2, .., RK

be positive real numbers. In addition, Ri < Ri+1, ∀1 ≤ i ≤
K − 1. R1, R2, .., RK are called the available transmission
rates. Consider a node in a time slot. Let X be the maximum
achievable transmission rate for the node in the time slot.
If X < R1, the node does not transmit data in the time
slot. If there exists an integer j ∈ {1, 2, ..,K − 1} such that
X ∈ [Rj , Rj+1), the node transmits with rate Rj in the time
slot. If X ≥ RK , the node transmits with rate RK in the
time slot. Let Y be a random variable that represents the
transmission rate of the node in the time slot.

We focus on homogeneous Rayleigh fading networks in
which Fi(u) = 1 − e−λu, ∀1 ≤ i ≤ N, u ≥ 0. Since the
analysis for all time slots are the same, it is sufficient to
consider a time slot. Let (R∗

1(N), R∗
2(N), .., R∗

K(N)) be the
optimal value of (R1, R2, .., RK), when there are N nodes
in the network. When N = 1, we abbreviate R∗

i (1) by R∗
i ,

∀1 ≤ i ≤ K.

A. When K = 1 and N = 1

We first consider the case in which K = 1 and N = 1.
Let G be a random variable that represents the channel gain
of the node in the time slot. Then, the random variable
G is exponentially distributed with mean 1

λ . According to
information theory, X = W log2(1 + P ·G

σ2 ). If X ≥ R1,
Y = R1. Otherwise, Y = 0. Let fX(·) be the probability
density function of the random variable X . Since X =
W log2(1 +

P ·G
σ2 ), we have

fX(x) =
λσ2 ln 2

PW
e−

λσ2

P (2
x
W −1)2

x
W . (4)

Moreover,

E[Y ] =

∫ R1

0

0 · fX(x) dx+

∫ ∞

R1

R1 · fX(x) dx

= R1 ·
∫ ∞

R1

fX(x) dx. (5)

In order to find the maximum value of E[Y ], we define
g(R1) = R1 ·

∫∞
R1

fX(x) dx. Then,

dg(R1)

dR1

=

∫ ∞

R1

fX(x)dx−R1fX(R1)

= e−
λσ2

P (2
R1
W −1)(1− λσ2 ln 2

PW
R12

R1
W )

= e−
λσ2

P (2
R1
W −1)(

−λσ2 ln 2

PW
)(R1 · 2

R1
W − PW

λσ2 ln 2
).

(6)

In order to find the roots of g′(R1), we define h(R1) as
follows.

h(R1) = R1 · 2
R1
W − PW

λσ2 ln 2
. (7)

Then, h′′(R1) = ln 2
W 2

R1
W (2 + ln 2

W R1). Since h′′(R1) > 0,
∀R1 ≥ 0, h(R1) is a convex function in [0,∞). In addition,
h(0) = − PW

λσ2 ln 2 < 0. Thus, h(R1) has a unique root in
(0,∞).

Since e−x > 0, ∀x, and that h(R1) has a unique root in
(0,∞), based on Equation (6), g′(R1) has a unique root in
(0,∞). Namely, g(R1) has a unique interior local optimal
point in (0,∞), denoted by L∗.

We now show that L∗ is also the unique global optimal
point for g(R1) in [0,∞). Clearly, g(L∗) > 0 and g(0) = 0.
In addition,

lim
R1→∞

g(R1) = lim
R1→∞

R1e
−λR1

= 0. (8)

Therefore, for g(R1), L∗ is also the unique global optimal
point in [0,∞). We set R∗

1 = L∗. The value of L∗ can be
found by numerical methods such as the Newton-Raphson
method [33].

B. When K = 1 and N ≥ 2

We now propose a novel method to determine the optimal
values for the available transmission rates, when K = 1 and
N ≥ 2. Based on the principle of symmetry, it is assumed
that as time goes to infinity, the aggression levels of N nodes
converge to the same number αN . We use the following
method to derive the approximated value of αN . First, based
on Equation (1), we have

αN log2

N∏
i=1

(1 +
Pgi
σ2

) < log2(1 +
P

σ2

N∑
i=1

gi). (9)

Replacing gi in the above equation by 1
λ , we have

αN log2(1 +
P

σ2λ
)N < log2(1 +

PN

σ2λ
). (10)

Since nodes learn to maximize their transmission rates, we
substitute the inequality in the above equation by equality and
get the following equation.

αN = log(1+ P
σ2λ

)N (1 +
PN

σ2λ
). (11)
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In addition, X = αN ·W · log2(1 + P ·G
σ2 ). Then,

fX(x) =
λσ2 ln 2

PαNW
e−

λσ2

P (2
x

αNW −1)2
x

αNW . (12)

Moreover,

E[Y ] = R1 ·
∫ ∞

R1

fX(x)dx. (13)

In order to find the maximum value of E[Y ], we have

dg(R1)

dR1
= e−

λσ2

P (2
R1

αNW −1) × (
−λσ2 ln 2

PαNW
)×

(RN
1 · 2

R1
αNW − PαNW

λσ2 ln 2
). (14)

In order to find the roots of g′(R1), we define v(R1) as
follows.

v(R1) = R1 · 2
R1

αNW − PαNW

λσ2 ln 2
. (15)

Then, based on Equation (7) and the definition of R∗
1, we have

v(αNR∗
1) = αN × h(R∗

1)

= αN × 0

= 0. (16)

Hence, we set the value of R∗
1(N) as follows.

R∗
1(N) = αN ·R∗

1. (17)

C. When K ≥ 2

In this section, we first consider the case in which N = 1
and K = 2. Let g2(R1, R2) be the expected value of the
transmission rate of the node in a time slot. Then,

g2(R1, R2)

= R1

∫ R2

R1

fX(x)dx+R2

∫ ∞

R2

fX(x)dx. (18)

Thus,

∂g2(R1, R2)

∂R1
= e−

λσ2

P (2
R1
W −1)(1− λσ2 ln 2

PW
R12

R1
W )

−e−
λσ2

P (2
R2
W −1). (19)

In addition,

∂g2(R1, R2)

∂R2
= e−

λσ2

P (2
R2
W −1)[

λσ2 ln 2

PW
(R1 −R2)2

R2
W + 1].

(20)
Based on Calculus, (R∗

1, R
∗
2) is a root of the following two

equations.

e−
λρ2

P (2
R2
W −1)

= e−
λσ2

P (2
R1
W −1) × (1− λσ2 ln 2

PW
R12

R1
W ). (21)

R1 = R2 −
PW

λσ2 ln 2
2−

R2
W . (22)

Based on (22) and (21), R∗
2 must be a root of f(R2), which

is defined as follows.

f(R2)

= e−
λρ2

P (2
R2
W −1) − e−

λσ2

P (2
(
R2
W

− P
λσ2 ln 2

2
−R2

W )−1) ×

[1− (
λσ2 ln 2

PW
R2 − 2−

R2
W )2

R2
W − P

λσ2 ln 2
2−

R2
W

].

(23)

Theorem 3: f(R2) has one root in [0,W log2
P

λσ2 ln 2 ], if
P

λσ28 ln 2 > 1.
Proof: See Appendix.
Note that P

λσ2 corresponds to the average signal-to-noise
ratio. We use the binary search method to find out a root of
f(R2) in [0,W log2

P
λσ2 ln 2 ]. Next, R∗

2 is set to the root. Note
that the function f is not convex or concave. Given the value
of R∗

2, the value of R∗
1 can be obtained based on Equation

(22).
We now consider the case in which N ≥ 2 and K = 2.

In this case, the optimal value of (R1, R2) has to satisfy the
following equation.

e−
λρ2

P (2
R2

αNW −1) = e−
λσ2

P (2
R1

αNW −1)×
(1− λσ2 ln 2

PαNW R12
R1

αNW )

R1 = R2 − PαNW
λσ2 ln 22

− R2
αNW .

(24)

Similar to the case in which N ≥ 2 and K = 1, we have
R∗

1(N) = αN ·R∗
1 and R∗

2(N) = αN ·R∗
2.

For the general case where K ≥ 3, we can find out the
optimal values for the available transmission rates by solving
the following set of equations.

e−
λσ2

P (2
R2
W −1) = e−

λσ2

P (2
R1
W −1)(1− λσ2 ln 2

PW R12
R1
W )

e−
λσ2

P (2
Rk+1

W −1) = e−
λσ2

P (2
Rk
W −1)×

(1 + λσ2 ln 2
PW (Rk−1 −Rk)2

Rk
W ), 2 ≤ k ≤ K − 1

RK−1 = RK − PW
λσ2 ln 22

−RK
W .

(25)

VII. SIMULATION RESULTS

In this section, we show simulation results. We wrote a
C++ program to obtain simulation results. The transmission
power of a node is P = 1, while the power spectral density
of the additive white Gaussian noise is σ2 = 0.01. The
bandwidth is W = 20 MHz. We first study a symmetric
Rayleigh fading network in which the channel gain of a node
is an exponentially distributed random variable with mean 1.
We compare the proposed algorithms with the ideal centralized
algorithm, the slotted ALOHA protocol, and the GDP protocol
[3]. When the Learn-from-the-best algorithm, the Learn-from-
betters algorithm, the slotted ALOHA protocol, or the GDP
protocol is used, in a time slot, as long as the rate vector
is within the capacity region, the access point successfully
receives/decodes all packets transmitted in the time slot. The
ideal centralized algorithm calculates the maximum sum rate
of a time slot based on the instantaneous channel gains in
the time slot and Equation (1). It is used to obtain an upper
bound for the throughput of a distributed medium access
control algorithm. Recall that N is the total number of nodes
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Fig. 3. Performance comparison of MAC algorithms.
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Fig. 4. Throughput of slotted ALOHA with different aggression levels.

in the network. When the slotted ALOHA protocol is used,
the transmission probability of each node is 1

N . When the
GDP protocol is used, after a successful transmission, a node
sets the next transmission probability to ps. On the other
hand, after an unsuccessful transmission, a node sets the
next transmission probability to pf . When either the slotted
ALOHA protocol or the GDP protocol is used, all nodes
always have the same aggression level. Namely, αi(t) = α(t),
∀i, t, and α(t) is a constant. Unless explicitly stated, f1 = 1.1
and f2 = 0.9 in this section.

Figure 3 shows the network throughput for the proposed
symmetric learning algorithms, the slotted ALOHA proto-
col with α(t) = 0.5, the GDP protocol with two sets of
parameters, and the ideal centralized algorithm. In terms of
the network throughput, the proposed learning algorithms
significantly outperform the slotted ALOHA protocol and
the GDP protocol with (ps, pf , α(t)) = ( 1

N , 1.5
N , 0.5). In

addition, the proposed Learn-from-the-best algorithm with
(f1, f2) = (1.01, 0.9) outperforms the GDP protocol with
(ps, pf , α(t)) = (1, 1, 1

N ). For example, the throughput of the
Learn-from-the-best algorithm with (f1, f2) = (1.1, 0.9) is
about 2.6 times larger than that of the GDP protocol with
(ps, pf , α(t)) = ( 1

N , 1.5
N , 0.5) and about 3.8 times larger

than that of the slotted ALOHA protocol. The performance
improvement is due to that nodes could dynamically adjust
their transmission rates based on the previous strategies used
by other nodes. As long as the vector of transmission rates
is within the capacity region, nodes continuously attempt to
increase their transmission rates. When (f1, f2) = (1.1, 0.9),
the throughput of the Learn-from-the-best algorithm could be
as large as 79.75% of the throughput of the ideal centralized
algorithm. When (f1, f2) = (1.1, 0.9), the throughput of the
Learn-from-betters algorithm could be as large as 82.83%
of the throughput of the ideal centralized algorithm. When
(f1, f2) = (1.01, 0.9), the throughput of the Learn-from-
the-best algorithm is almost identical to that of the Learn-
from-betters algorithm. The proposed algorithms outperform
the slotted ALOHA protocol and the GDP protocol, since
the proposed algorithms have more strategies to choose. The
slotted ALOHA protocol has only one strategy, since the
transmission probability is fixed. The GDP protocol has two
strategies, since there are two possible transmission proba-
bilities. Each of the proposed algorithms has infinitely many
strategies, since the aggression level is a real number in the
interval [0, 1]. Since the GDP protocol does not explicitly take
the information-theoretic capacity region into consideration, it
is possible to modify the GDP protocol to further improve
the performance. However, such modifications are beyond the
scope of the paper. We also study the performance of the
SAPC algorithm [32], which is a fast power control algo-
rithm that treats multiuser interference as noise and does not
adopt successive interference cancellation (SIC). All the other
studied algorithms adopt SIC, which increases the network
throughput. Distributed optimal power control with SIC is
beyond the scope of this paper.

Figure 4 shows the impacts of the aggression levels on the
throughput of the slotted ALOHA protocol. We can see that
the slotted ALOHA protocol reaches the maximum throughput
when α(t) = 0.5. If the value of α(t) decreases from 0.5,
the throughput decreases since each node reduces its data
transmission rate. If the value of α(t) increases from 0.5, the
transmission rate vector becomes more likely to be outside the
capacity region. Therefore, the throughput decreases. Figure 5
shows the impacts of the aggression levels on the throughput
of the GDP protocol with (ps, pf ) = ( 1

N , 1.5
N ). Based on the

simulation results, the throughput of the GDP protocol with
(ps, pf ) = ( 1

N , 1.5
N ) is maximized when α(t) = 0.5.

Figure 6 shows the impacts of x(0) on the network through-
put, when the proposed symmetric learning algorithm is used.
The smaller the value of x(0) is, the larger the network
throughput is. In other words, allowing more nodes to transmit
at time zero can increase the network throughput. Based on
the proposed symmetric learning algorithm, nodes learn to
adjust their transmission rates so that a number of nodes
could successfully transmit at the same time. It should be
noted that different nodes might transmit at different rates
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Fig. 5. Throughput of the GDP protocol with different aggression levels.
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Fig. 6. Throughput under different values of x(0).

in a time slot. Figure 7 shows the impacts of α(0) on the
network throughput, when the proposed symmetric learning
algorithm is used. Unlike x(0), α(0) has no impacts on the
network throughput. If the value of α(0) is too large, the
initial transmissions would fail. In this case, nodes will learn to
decrease their aggression levels to make future transmissions
successful. On the other hand, if the value of α(0) is too
small, in the first few time slots, many nodes will transmit
successfully but the average throughput will be small. In this
case, nodes will learn to increase their aggression levels in
order to increase the network throughput.

Since α′(t) = 1
N

∑N
i=1 |αi(t) − αi(t − 1)|, it can be

seen as a random variable denoted by α′. Figure 8 shows
the cumulative density function of α′. For both the Learn-
from-the-best algorithm and the Learn-from-betters algorithm,
P{α′ ≤ 0} = 0, which means that at least one node changes
its aggression level in each time slot. The probability that a
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node keeps its aggression level unchanged when the Learn-
from-the-best algorithm is used is larger than that when the
Learn-from-betters algorithm is used. We now elaborate on
this observation. When the Learn-from-the-best algorithm is
used, as the total number of nodes increases, the probability
that a node keeps its aggression level unchanged increases. For
the Learn-from-the-best algorithm, based on Theorem 1, the
aggression level of a node increases only if a specific node is
the winner in two consecutive time slots. As the total number
of nodes increases, the probability that a node has the largest
data transmission rate at two consecutive time slots decreases.
In contrast, when the Learn-from-betters algorithm is used, the
node that has the largest transmission rate in a time slot will
increase its aggression level. We have also found that when
the Learn-from-the-best algorithm is used, nodes change their
aggression less frequently but the average amount of a change
is larger. In contrast, when the Learn-from-betters algorithm
is used, nodes change their aggression levels more frequently
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Fig. 10. Jain’s fairness index for the proposed learning algorithms.

but the average amount of a change is smaller.
Figure 9 shows the throughput of each node in two networks

when either the symmetric learning algorithm or the asymmet-
ric learning algorithm is used. Case 1 corresponds to the first
network, while case 2 corresponds to the second network. In
case 1, the mean channel gains of node 1 and node N are set to
1.0 and 0.1, respectively. The mean channel gain of each of the
other nodes is set to 0.5. In case 2, the mean channel gain of
node i is set to 1

i , ∀1 ≤ i ≤ N . When the symmetric learning
algorithm is used, the throughput of a node depends on its
relative channel quality (in terms of the average channel gain)
in the network. In contrast, when the asymmetric learning
algorithm is used, the throughput of a node is independent
of its relative channel quality in the network. It is due to that
when the asymmetric learning algorithm is used, a node sets
its initial value of aggression level based on its relative channel
quality in the network.

In Figure 10, we show Jain’s fairness index [34] when either
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Fig. 11. Throughput in an asymmetric network.
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Fig. 12. Throughput when there are a finite number of available transmission
rates

the symmetric learning algorithm or the asymmetric learning
algorithm is used in the first network mentioned above. As
expected, regardless of the total number of nodes in the net-
work, the fairness index of the asymmetric learning algorithm
is larger than that of the symmetric learning algorithm. Figure
11 shows the network throughput for the symmetric learning
algorithm, the asymmetric learning algorithm, and the ideal
centralized algorithm. Note that the ideal centralized algorithm
is only used to obtain an upper bound for the throughput
performance of distributed algorithms. We can see that the
throughput of the asymmetric learning algorithm is slightly
lower than that of the symmetric learning algorithm. The sym-
metric learning algorithm is designed to maximize the network
throughput and does not take fairness into consideration. On
the other hand, the asymmetric learning algorithm is designed
to strike a good balance between throughput and fairness.

In Figure 12, we show the impacts of the total number of
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Fig. 14. The impacts of f1 on the network throughput

available transmission rates on the network throughput. In the
figure, the total number of thresholds corresponds to the total
number of available transmission rates. When the total number
of available transmission rates is not explicitly stated, all
positive real numbers are available transmission rates. When
the total number of available transmission rates is finite, we
use the algorithm in Section VI to determine the near-optimal
values for the available transmission rates. As expected, as
the total number of available transmission rates increases,
the network throughput increases. When there is only one
available transmission rate, the corresponding throughput is
about 53.89% of the ideal centralized algorithm. When there
are two available transmission rates for a node to select, the
associated throughput is about 66.32% of the ideal centralized
algorithm. When system complexity is a primary concern, we
could use the proposed learning algorithms with a few number
of available transmission rates.
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Fig. 15. The impacts of f2 on the network throughput

In Figure 13, we show the impacts of strategy estimation
on the network throughput and the erasure probability, when
xi(0) = 0 and αi(0) = 0.1, ∀i. The erasure probability is the
probability that none of the nodes successfully transmit data to
the AP in a time slot. The strategy estimation algorithm works
as follows. Let ξ(i, t) be the last time up to time t when the
access point successfully received data from node i. If there is
no collision at time t, each node knows the current strategies
used by all active nodes in the network. On the other hand, if
a collision occurs at time t, node j treats the strategy used by
node i at time ξ(i, t) as the strategy used by node i at time
t. In this case, the age of the estimated strategy for node i at
time t is defined to be t − ξ(i, t). We find that the network
throughput when strategy estimation is used is slightly smaller
than the network throughput when the strategies are always
known. Meanwhile, the erasure probability when strategy
estimation is used is also smaller than that when the strategies
are always known. When strategies are always known, nodes
increase their aggression levels too fast and therefore the
erasure probability is larger. The figure also shows that the
mean age of the estimated strategy is approximately one. This
means the quality of strategy estimation is quite good. With
a good strategy estimation algorithm, not always knowing the
strategies does not lead to a significant decrease in the network
throughput.

In Figure 14, we show the impacts of f1 on the network
throughput. As f1 increases from 1.01 to 1.2, the network
throughput decreases. When f1 is too large, nodes increase
their transmission rates too aggressively and therefore the
updated rate vector becomes outside the capacity region.
In Figure 15, we show the impacts of f2 on the network
throughput. As f2 increases from 0.7 to 0.9, the network
throughput increases. In contrast, as f2 increases from 0.95
to 0.99, the network throughput decreases.

VIII. CONCLUSIONS

We have proposed capacity-region-aware learning algo-
rithms for medium access control in wireless networks. The
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proposed algorithms explicitly take into consideration the
information-theoretic capacity region of a multiple access
channel. When the proposed algorithms are used, a node
continuously tunes its strategy based on the previous strategies
of other nodes and the channel feedback. A strategy is
composed of two parts. The first part is the transmission
threshold, while the second part is the aggression level. We
have proposed symmetric learning algorithms to maximize
the network throughput. In addition, we have proposed asym-
metric learning algorithms to strike a good balance between
throughput and fairness. Furthermore, we have studied the
case in which the total number of available transmission
rates is finite and proposed a novel scheme to determine the
values of the available transmission rates. We have found
that the network throughput depends on the initial value of
the transmission threshold. In particular, in our study, the
optimal value of the transmission threshold is zero. In contrast,
since the aggression levels are dynamically adjusted, the
network throughput is almost independent of the initial values
of aggression levels. We have used analytical results and
simulation results to justify the usage of the proposed medium
access control algorithms. Future work includes dynamically
adjusting the transmission threshold and the aggression level
based on the current queue size. Another promising direction
of future research is dynamically tuning both the aggression
level and the transmission power to further improve the system
performance. Modifying the proposed learning algorithms
based on game theory and/or mechanism design to guarantee
that selfish nodes will not misbehave is also an interesting
topic of future research. Optimizing the parameters in the
proposed learning algorithms based on the total number of
nodes and the characteristics of wireless channels remains an
open problem for future research.

APPENDIX

Theorem 1: For the Learn-from-the-best algorithm, if
ζ(t) = ζ(t + 1) = 1 and w(t) = w(t + 1), αi(t + 2) >
αi(t+ 1), ∀i.

Proof:
1. Since ζ(t) = ζ(t + 1) = 1 and w(t) = w(t + 1), there

exists an integer i such that i = w(t) = w(t+1). Then, based
on the Learn-from-the-best algorithm, we have αj(t + 1) =
αi(t), ∀j ̸= i, αi(t + 1) = αi(t) · f1, αj(t + 2) = αi(t +
1), ∀j ̸= i, and αi(t+ 2) = αi(t+ 1) · f1.

2. Then, αj(t + 2) = αi(t + 1) = αi(t) · f1 > αi(t) =
αj(t+ 1), ∀j ̸= i. Namely, αj(t+ 2) > αj(t+ 1), ∀j ̸= i.

3. Similarly, αi(t + 2) = αi(t + 1) · f1 = αi(t) · (f1)2 >
αi(t) · f1 = αi(t+ 1). Namely, αi(t+ 2) > αi(t+ 1).

4. Based on 2 and 3, we have completed the proof.
QED.
Theorem 2: When either the Learn-from-the-best algorithm

or the Learn-from-betters algorithm is used, if xi(0) = 0, ∀i,
α′(t) > 0, ∀t.

Proof:
1. Since xi(0) = 0, ∀i, ζ(t) ∈ {1, 2}.
2. When ζ(t) = 1, αw(t)(t + 1) = f1 · αw(t)(t). Thus,

α′(t) = 1
N [

∑
i ̸=w(t) |αi(t+ 1)− αi(t)|+ (f1 − 1) · αw(t)(t)].

Since (f1 − 1) · αw(t)(t) > 0, α′(t) > 0.

2. When ζ(t) = 2 and the Learn-from-the-best algo-
rithm is used, αi(t + 1) = f2 · minj:j∈A(t) αj(t), ∀i. Thus,
α′(t) = 1

N

∑N
i=1 |f2 · minj:j∈A(t) αj(t) − αi(t)|. Since f2 ·

minj:j∈A(t) αj(t) < αi(t), ∀i, α′(t) > 0.
3. When ζ(t) = 2 and the Learn-from-betters algorithm is

used, αi(t + 1) = f2 · ᾱ(t), ∀i. Thus, α′(t) = 1
N

∑N
i=1 |f2 ·

ᾱ(t) − αi(t)|. It is impossible that αi(t) = f2 · ᾱ(t), ∀i.
Therefore, α′(t) > 0.

4. Based on 2, 3, 4, we have completed the proof.
QED.
Theorem 3: f(R2) has one root in [0,W log2

P
λσ2 ln 2 ], if

P
λσ28 ln 2 > 1.

Proof:

1. Since 0 < 2−
P

λσ2 ln 2 < 1, e−
λσ2

P (2
− P

λσ2 ln 2 −1) > 1.
Therefore, f(0) = 1 − e−

λσ2

P (2
− P

λσ2 ln 2 −1)(1 + 2−
P

λσ2 ln 2 ) <
1− 1(1 + 0) = 0. Thus, f(0) < 0.

2. Since P
8λσ2 ln 2 > 1, log2

8λσ2 ln 2
P < 0. In addition, e−x >

0, ∀x. Therefore, f(W log2
P

λσ2 ln 2 ) = e−
λσ2

P ( P
λσ2 ln 2

−1) −
1
2e

−λσ2

P ( P
2λσ2 ln 2

−1) × log2
8λσ2 ln 2

P > 0 + 1
2 · 0 · 0 = 0. Thus,

f(W log2
P

λσ2 ln 2 ) > 0.
3. Based on Equation (23), the function f is a continuous

function in (0,∞).
4. Based on 1, 2, and the theorem of intermediate value for

continuous functions, the continuous function f has one root
in [0,W log2

P
λσ2 ln 2 ].

QED.
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