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In this paper, we comprehensively review the impacts of single-trap-induced random telegraph noise
(RTN) on FinFET, Ge/Si Nanowire FET and Tunnel FET (TFET). The resulting influences on the therm-
ionic-based current conduction such as FinFET, Si-NW FET and Ge-NW FET (at low drain bias) as well
as interband tunneling dominated current conduction such as TFET and high-drain-biased Ge-NW FET
are extensively addressed in device and circuit level. The location of the trap is shown to have profound
impacts and the impacts vary with bias conditions and trap types. The worst-case analysis of the
stability/performance and leakage/delay for all possible trapping/detrapping RTN combinations are
investigated for FinFET, Si-/Ge-NW FETs and TFET based 6T/8T SRAM cells and logic circuits.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

With aggressive MOSFET scaling, the number of constituent
atoms (including semiconductors, insulator materials and dopant
species) as well as number of defects in a single transistor reduces
to the countable regime with few atomic layers or traps inside the
device [1,2]. The sparse and discrete charge and matter immensely
aggravate device variability and hinder circuit functionality [3,4].
Among the existing variation sources, random telegraph noise
(RTN) caused by the trapping/detrapping of conducting carriers
by/from individual traps at the interface [5–7], exhibits stronger
geometry dependence on active area [8–14] and long-tailed distri-
bution that could exceed the impact of random dopant fluctuation
for planar BULK MOSFETs at 22 nm and beyond [8–10]. In addition,
the increasing importance of RTN with decreasing channel carriers
[12,15–18] poses a stringent obstacle to supply voltage scaling for
low-power applications.

Fig. 1(a) shows the typical syndrome of a two-level drain cur-
rent (ID) fluctuation varying with time in the presence of a single
trap [5,6,19]. In Fig. 1(a), several important parameters are demon-
strated: time-to-capture (sc), time-to-emission (se) and amplitude
ðDIDÞ which indicate the time elapsed to capture and emit a carrier
from the trap point of view and the resulting influence on magni-
tude of ID fluctuation due to the trapping/detrapping of the carrier,
respectively. Over long period of time, the values of sc and se are
random and found to follow Poisson distribution (Fig. 1(b)) [5]
while the magnitude of DID is essentially constant for a given con-
dition. The impact of ID fluctuation due to RTN changes the device
strength similar to other static variation sources (such as random
dopant fluctuation). On the other hand, the transient properties
of time constants (sc and se) in RTN are shown to introduce unique
variations depending on the cell access history (single access or
multiple accesses), trap characteristics and previous states for
SRAM stability and logic delay [9,20–22].

Numerous previous studies focused on the measurement, char-
acterization and theoretical assessment of RTN for planar BULK
MOSFETs. In [8–10,20,23–24], the characteristics of RTN are
examined through extensive measurements from large amount of
well-designed samples. It is found that because of its log-normal
distribution [8–10], RTN induced threshold voltage (VT) variation
may overwhelm the contribution from random dopant fluctuation
at � 3 sigma level which is believed to arise from the complex,
multiple level RTN and the interaction of traps with percolation
path. Furthermore, as reported in [15–18], there exist more
extreme/occasional transistors with significant impact at smaller/
negative gate overdrive. In subthreshold region, in addition to
the sparse carriers to screen the influence of charged trap [12],
the exposed critical current percolation path that dominants the
subthreshold leakage is another important factor for anomalously
larger RTN impact. Various 3D atomistic simulations [25–28] con-
sidering the presence of a single charged trap together with other
variation sources simultaneously are performed for the under-
standing of underlying mechanisms. It is observed that random
dopant fluctuation, in conjunction with specifically located trap
could result in rare but dramatic changes in device characteristics
and larger RTN impact. In addition, evaluations are conducted
extensively for logic circuits with various low operating voltages,
transistor sizes, logic stage numbers, logic gate types and substrate
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biases [29,30]. Small number of samples is shown to exhibit larger
RTN-induced delay fluctuation (10.4% of nominal oscillation fre-
quency at 0.65 V for ring oscillators fabricated in 40 nm CMOS
technology) and the impact can be mitigated by increasing supply
voltage, transistor size and logic stage number. Furthermore, the
susceptibility of cell robustness to RTN for the minimum-sized
SRAM circuits is higher/important than other applications and at-
tracts much attention recently [21,31–39]. Various characteriza-
tion techniques and monitoring metrics such as accelerated
testing [31], alternating-bias measurement [32], dynamic margins
[33], and model approximations [35–39] are proposed for the anal-
ysis of large-scale SRAM chips. It is revealed that a cell skewed to-
ward less read margin is more vulnerable to RTN [38] which could
lead to 50 mV Vmin degradation [32].

Moreover, in order to extend Moore’s law, several emerging de-
vice structures or materials to replace the conventional MOSFETs
are proposed. Among the possible choices, the FinFET and Gate-
All-Around (GAA) transistors offer superior short-channel charac-
teristics and better variability immunity. The use of high-mobility
channel materials (such as Germanium (Ge)) is promising to in-
crease current drive and boost circuit performance. For ultra-
low-voltage applications, Tunnel FET (TFET) that utilizes interband
tunneling as the current conduction mechanism surmounts the
theoretical limitation of thermionic subthreshold slope to offer
lower leakage current while maintaining satisfactory performance
at low-voltage [40,41]. For TFET, several pioneering works macro-
scopically evaluated the effects of interface traps induced after the
consecutive positive-bias and hot-carrier stresses [42–44] as well
as investigated the behaviors of low frequency noise [45,46] and
ambipolarity [47]. In [63], the sensitivity to single-trap-induced
RTN is comprehensively elaborated for TFET under the influence
of a discrete acceptor-type or donor-type trap. It is observed that
significant RTN impacts in TFET comes from the distortion of band
profiles and critical tunneling path that could lead to drastic
leakage degradations. The geometry dependence of RTN and its
cτ

eτ
DIΔ

time

(a)
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Fig. 1. (a) Schematic of transient waveform showing the two-level ID fluctuation
due to RTN in n-type MOSFET and (b) the distribution of emission times at 95 K and
VGS = 1.115 V [5].
interactions with work-function variation are assessed for the first
time. Furthermore, the worst-case predictions resulting from the
trapping/detrapping in each transistor are considered to account
for all possible RTN patterns for TFET-based SRAM cell and various
commonly used sense amplifiers [64].

In this paper, we review the impacts of single-trap-induced RTN
on several emerging transistor candidates such as FinFET [48–61],
Si and Ge GAA nanowire [62] and TFET [63–65], along with the
resulting impacts on SRAM and logic circuits. For the RTN impacts,
the static changes in drain currents by an acceptor-type trap (carry
a negative charge in trapped state) or donor-type trap (carry a po-
sitive charge in detrapped state) for NFET and PFET are considered,
respectively. The dynamic current transition determined by the sc

and se of conducting carriers is not included. This paper is orga-
nized as follows. In Section 2, we describe the impacts of RTN on
FinFETs with trap at various locations and under different device
designs. The resulting influence on FinFET 6T SRAM cells and sev-
eral logic circuits is examined as well. Section 3 discusses and com-
pares the sensitivity of Ge/Si based NanoWire (NW) transistors, 6T
SRAM cells and inverters to RTN. The significant band-to-band tun-
neling current in Ge-NW FETs lead to different drain bias depen-
dence from the Si counterparts. The analysis of RTN for TFET is
illustrated in Section 4. The differences in the RTN immunity as
well as the underlying mechanisms that govern the distinct
impacts between TFET and FinFET are discussed in this section.
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Fig. 2. (a) Dependence of RTN amplitude (DID/ID) on trap location across FinFET
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The worst-case analysis of robustness for TFET based 8T SRAM cell
and commonly used sense amplifiers are described. Finally, we
summarize this review in Section 5.

2. FinFET devices and circuits

Fig. 2 shows the dependence of RTN amplitude (DID=ID where
DID is defined as ID (detrapped) – ID (trapped)) on the position of
a single charged trap placed across FinFET sidewall interface
[48–50]. The sidewall interface is divided into horizontal (from
source to drain denoted in sequence as Region C0, Region B0, Region
A, Region B and Region C) and vertical (along fin height indicated as
z-axis) directions for the location analysis of RTN amplitude. Sim-
ilar to the planar BULK MOSFET at low Vds [25], significant RTN
amplitude is found for the trap located near the middle region
between source and drain (Region A), and the RTN amplitude
decreases toward the source/drain (Regions C and C0)
[48–50,57,58]. The noticeably higher sensitivity to RTN in the
middle region results from the direct influence of the charged trap
on the critical potential barrier that determines the subthreshold
current at low Vds. Across the fin height direction, the trap located
near the bottom of sidewall interface (z = 0 nm) is closer to the
path with higher subthreshold current (due to the fringing drain
field penetration through buried oxide into lightly doped fin chan-
nel, as shown in Fig. 2(b)), thus leading to larger impact of RTN.
However, for the case with significant quantum confinement and
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Fig. 3. Dependence of RTN amplitude for FinFET with various (a) EOT and (b) fin
width (Wfin). The single trap is placed at the center of sidewall interface [48].
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Fig. 4. Comparisons of RTN amplitude for scaled FinFET based on the designs of (a)
the ITRS prediction that scales both EOT and Wfin, and (b) Wfin scaling only. The
FinFETs are designed with comparable S.S. (85 mV/decade), and the single acceptor-
type trap is placed at the center of sidewall interface [48].
volume inversion in the subthreshold regime [57,58], the carrier
distribution is lifted upward, making the spot with larger RTN
amplitude higher accordingly (located around half fin height).

In Figs. 3–5, the geometry dependences and various device de-
signs for scaled SOI FinFET are assessed from the perspective of
RTN amplitude [48,59]. The dependence of RTN amplitude for Fin-
FET on equivalent oxide thickness (EOT) and fin width (Wfin) across
wide range of Vg is shown in Fig. 3. As can be seen, with decreasing
conducting carriers [12], RTN amplitude increases with reduced
screening effect at lower Vg. In subthreshold region, the RTN ampli-
tude is modeled as [59],

DID

ID
¼ 1

ID

@ID

@VT
DVT ¼ 2:3

DVT

S:S:

which is proportional to the trap-induced VT shift ðDVTÞ and inver-
sely proportional to device subthreshold slope (S.S.). As can be seen
in Fig. 3(a), the simplified model shows fairly good agreement with
the simulated results and reveals the factors that determine RTN
amplitude in the subthreshold region. In Fig. 3(a), it is observed that
thinner EOT reduces RTN amplitude owing to better electrostatic
integrity which suppresses the trap-induced potential perturbation
(ðDVTÞ in the inset of Fig. 3(a)), however, decreases S.S. that possibly
increases the value of DID=ID. Specifically, the reduction of DVT with
smaller EOT (3X improvement in RTN amplitude) overwhelms the
decrease in S.S. (cause 1.2X degradation of RTN amplitude), thus
resulting in the better RTN immunity with EOT scaling. Fig. 3(b)
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shows the dependence of RTN amplitude on different fin width de-
signs (Wfin = 6–12 nm). Due to the increases in DVT (resulting from
the close proximity between the interface trap and current conduct-
ing path) and smaller S.S. (see the inset of Fig. 3(b)), FinFETs with
thinner Wfin are more susceptible to RTN, implying a possible con-
cern for scaled FinFET using thin Wfin.

With the observations in Fig. 3, Fig. 4 compares the RTN ampli-
tude of scaled FinFETs for the 22-, 16-, and 11-nm technology
nodes based on the following design strategies: (1) the prediction
of ITRS with both EOT and Wfin scaling (Fig. 4(a)), and (2) consider-
ing Wfin scaling only (Fig. 4(b)). The tables shown in Fig. 4 illustrate
the geometries of various FinFETs with comparable S.S. (85 mV/
decade) for fair comparison. As can be seen in Fig. 4(a), the reduc-
tion of gate area and closer proximity of the interface trap to the
current path lead to higher sensitivity to RTN in scaled FinFET.
Compared with the RTN amplitude shown in the 22-nm node,
1.5X and 2.2X larger RTN amplitude are observed for the 16-nm
and 11-nm node, respectively. On the other hand, significantly lar-
ger degradations in RTN amplitude are found for FinFETs with only
Wfin scaling (Fig. 4(b)). The RTN amplitude of 16-nm (or 11-nm)
node FinFET becomes 1.7X (or 2.5X) inferior to the case in 22-nm
node. In other words, scaling EOT and Wfin simultaneously is sug-
gested to reduce the impact of RTN while sustain satisfactory elec-
trostatic integrity for scaled FinFET devices.
In addition to the device designs with various EOT and Wfin, the
selection of aspect ratio (AR = Hfin/Wfin) for FinFET alters the sus-
ceptibility to RTN amplitude. Fig. 5 demonstrates the impact of
AR on FinFET RTN amplitude in OFF state (Vg = 0 V) for a single
acceptor-type trap placed across the sidewall interface [59]. For
fair comparison, various aspect-ratio FinFETs are evaluated under
a given total effective width (2Hfin + Wfin). Under this criterion, de-
vice with higher AR results in thinner Wfin and better gate control-
lability. Due to its closer distance to interface trap and smaller S.S.,
considerably larger RTN amplitude occurs for the FinFET with
AR = 2.5 than the case with AR = 1. In other words, for a given total
effective width, the FinFET designed with lower aspect ratio exhib-
its better immunity to RTN.

Furthermore, in the presence of other intrinsic variation
sources, the single charged trap in lightly-doped FinFET is shown
to interact with random dopant fluctuation, line edge roughness
or work function variation and extends the RTN distribution tail
to increase the RTN amplitude and its variation [57]. However,
due to the characteristics of volume inversion that conducts cur-
rent away from the influence of interface trap [66], FinFET exhibits
smaller RTN dispersions than those of planar BULK MOSFET which
shows stronger interactions and severer variability from its surface
conduction [25,48].

In Figs. 6–12, we review the impacts of RTN on the cell stability/
performance of FinFET 6T SRAM cells and leakage/delay of several
FinFET logic circuits [48]. For circuit analysis, the single charged
acceptor-type and donor-type trap is considered for NFET and PFET
devices, respectively in the worst position (middle/bottom region
of sidewall interface shown in Fig. 2(a)). Due to the trapping and
detrapping of a charge at the interface trap, each transistor contrib-
utes two-level current fluctuation and results in 2n possible combi-
nations for the circuit-level analysis with n transistors in certain
circuit.

For 6T SRAM cell shown in Fig. 6, there exists 64 possible com-
binations which are binary coded with the cell transistor labeled
from A0 to A5, and the bit values of ‘‘0’’ and ‘‘1’’ represent the
‘‘detrapping’’ and ‘‘trapping’’ states, respectively [48–50]. Hence,
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the ‘‘0’’ cell type means that all six transistors are free from RTN,
whereas the ‘‘63’’ cell type indicates that there is a charged trap
in each and every cell transistor. Fig. 7(a) summarizes the 64 pos-
sible values of READ Static Noise Margin (RSNM) for the 6T FinFET
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SRAM cell at Vdd = 0.4 V, targeting for the operating regime with
higher RTN impact (Fig. 3). The RSNM, as an indicator of cell
robustness in READ operation, is calculated by the maximum
square that can fit inside the READ butterfly curves [67]. Therefore,
larger inverter trip voltage (Vtrip) and smaller READ disturb (Vread,0)
are beneficial for better stability. Among the possible combinations
[48–50], the maximum RSNM occurs in the SRAM cell with sym-
metrical RTN patterns (cell type = 36). In such cell with (PU, PD,
PG) = (0, 0, 1) as shown in Fig. 7(b), the stronger/detrapped pull-
up and pull-down cell transistors combined with weaker/trapped
pass-gate device increases cell trip voltage and suppresses READ
disturb, thus resulting in symmetric/larger margin. Fig. 7(c) shows
the case of minimum RSNM composed of the asymmetrical pair
(cell type = 10 or 17) with smaller RSNM squeezed by the larger
READ disturb and smaller trip voltage from the opposite half cells.
In such RTN configurations, the trapping mechanism happens in
the pull-up and pull-down cell transistors from the opposite half
cells (A5, A4, A3, A2, A1, A0) = (0, 1, 0, 0, 0, 1) or (0, 0, 1, 0, 1, 0).

Fig. 8 shows the WRITE Static Noise Margin (WSNM) variation
caused by RTN at Vdd = 0.4 V [48–50]. The WSNM, relating to the
competition between pass-gate and pull-up cell transistors, in-
creases with stronger pass-gate and weaker pull-up devices. Due
to its mitigated Vwrite,0 (determined by the voltage divider between
pull-up and pass-gate transistors in the side of writing ‘‘0’’) and
higher READ disturb, the cell type 27 with symmetrical RTN pat-
terns (all pull-up and pull-down devices in trapped state whereas
both pass-gate transistors in detrapped state) spans the margin be-
tween WRITE butterfly curves and exhibits the largest WSNM
(Fig. 8(b)). On the other hand, the WSNM (cell type = 52) is limited
by the asymmetrical RTN patterns with (PU, PD, PG) = (0, 0, 1) and
(0, 1, 1) for the side of writing ‘‘1’’ and ‘‘0’’, respectively. In this
type, the margin diminishes with larger Vwrite,0 and smaller Vread,0,
leading to the WSNM that is �34 mV smaller than the maximum
one. Besides, due to its severer Vwrite,0 variations shown in
Fig. 8(b) and (c), WSNM is more vulnerable to RTN than the RSNM
counterpart.

Fig. 9 shows the cell READ access time fluctuations among 64
possible combinations at Vdd = 0.4 V. The cell access time is
estimated from the time required to develop 10%Vdd bit-line
differential voltage and relates to the current through pass-gate
and pull-down transistors. As such, the RTN variations in pull-up
devices (A0/A3) exhibit marginal impact on cell READ performance
while for the cell types with trapping in pass-gate (A2/A5) or
pull-down (A1/A4) cell transistors, the READ current reduces and
directly increases the cell access time.

Fig. 10 shows the impacts of RTN on the leakage/delay of the
FinFET inverter at various Vdd [48,50]. The error bars represent
leakage/delay variations from the four possible RTN combinations
formed by trapping/detrapping in NFET and PFET. As can be seen in
the inset of Fig. 10(a), the leakage variation induced by RTN is
around 24% at Vdd = 0.5 V and gradually increases with Vdd. On
the other hand, the delay variation induced by RTN decreases with
increasing Vdd due to the increasing/extra carriers to screen the
charged trap (Fig. 10(b)). For FinFET inverter delay, the impact of
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RTN significantly increases for Vdd smaller than 0.6 V and reaches
�17% at Vdd = 0.2 V.

Fig. 11 shows the leakage analysis of 2-Way NAND with 16 pos-
sible RTN combinations coming from the trapping/detrapping in
each transistor [48,50]. Fig. 11(a) illustrates the corresponding 16
types with input pattern (A, B) = (1, 1) at Vdd = 0.4 V. Since the leak-
age current is dominated by the OFF transistors (e.g. two PFETs for
(A, B) = (1, 1)), the impact of RTN on 2-Way NAND leakage can be
found for trapping/detrapping happening in P1/P2 devices. More-
over, it can be seen that the PFETs in trapped state degrades the de-
vice strength and in turn, reduces the overall leakage. The impact
of temperature on 2-Way NAND leakage variation is shown in
Fig. 11(b). As can be seen, due to the significant degradation in
S.S. [48], rising temperature from 300 K to 400 K mitigates the
influence of RTN and suppresses the RTN-induced leakage current
variation in 2-Way NAND. Among various input patterns, 2-Way
NAND shows comparable leakage variation �25% which is similar
to the influence in FinFET inverter.

Transmission gate based multiplexers (MUX) are important for
critical data flow elements such as shifters and for the control
portion of microprocessor. Fig. 12(a) shows the impacts of RTN
on 2-To-1 MUX delay with 16 possible RTN combinations (defined
in the inset of Fig. 12(a)) for passing ‘‘1’’ and passing ‘‘0’’ through
input A [48,50]. Due to the difference in gate overdrive (i.e. Vg–Vs
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where VT is similar for NFET/PFET and is neglected for simplicity),
the critical transistor that determines the overall delay suffers the
largest RTN impact and changes depending on the data delivered to
the output node. For pass ‘‘1’’, the initial state in output node is
GND and the resulting gate overdrives are Vdd � Voutput and VinputA

� GND for NFET and PFET, respectively. In such case, P1 transistor
(shown in Fig. 12(b)), with higher/fixed gate overdrive, dominates
the overall delay and exhibits significant RTN impact during pass-
ing ‘‘1’’. On the other hand, N1 device that sustains firm/high gate
overdrive (Vdd � VinputA) determines the overall delay and shows
higher susceptibility to RTN for the case of passing ‘‘0’’. The depen-
dence of delay on Vdd considering pass ‘‘1’’ and pass ‘‘0’’ along with
16 combinations is shown in Fig. 12(b). As expected, the delay var-
iation increases with decreasing Vdd and reaches �16% at
Vdd = 0.2 V.
3. Si/GE Nanowire FETs and circuits

Germanium (Ge) MOSFETs with higher mobility are attractive
for enabling higher current drivability and regarded as promising
candidate to replace conventional silicon (Si) transistors. Gate-
All-Around NanoWire (GAA NW) device structure (inset of
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Fig. 13(a)), with superior gate control, is suitable for the use of Ge
transistors that intrinsically possess higher permittivity and sev-
erer short channel effects. In addition to the subthreshold leakage,
the contribution of band-to-band tunneling current is important
for Ge with smaller band gap. Whether the influence of RTN on
Ge-NW MOSFETs and related circuits differs from the Si counter-
parts is reviewed in this section.

Because of its cylindrically symmetrical structure, the single
acceptor-type is placed laterally from source to drain to assess
the dependence of RTN amplitude on trap location for NW FETs
[62]. Fig. 13 compares the RTN amplitude for Si-NW and Ge-NW
at Vds = 0.01 V. As can be seen, significant RTN amplitude is ob-
served for both Si-NW and Ge-NW FETs with single charged trap
near the middle region between source/drain (Region A) and grad-
ually decreases toward the source and drain regions (Region C’ and
Region C) which is similar to the case of planar BULK MOSFETs [25]
and FinFETs [48–50,57,58]. However, with increasing Vds, distinct
characteristics of RTN amplitude are observed for Ge-NW devices
[62]. It can be seen in Fig. 14 that for trap placed in Region A, the
influence of charged trap is screened through the noticeable
band-to-band tunneling current, thus suppressing RTN amplitude
at Vds = 0.3 V and 1.0 V (especially for the cases around Vg = 0 V).
On the other hand, Ge-NW FET exhibits negative RTN amplitude
at low Vg with single trap placed near drain side (Region C), which
means the current actually increases under the influence of an
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acceptor-type interface trap. The enhanced current results from
the extra band-to-band current generated in the vicinity of drain
side where exhibits perturbed band structure and higher electric
field in the presence of the charged trap [62].

With band-to-band tunneling current, the RTN amplitude of Ge-
NW FET shows higher dependence on Vds that directly alters the
lateral electric field and significantly impacts device characteristics
around the OFF state [62]. Fig. 15 compares the RTN amplitude for
Ge-NW and Si-NW FETs with single trap located near the middle of
source/drain (Region A) at various drain biases. Compared with Si-
NW FET, the RTN amplitude in Ge-NW FET shows stronger depen-
dence on Vds, particularly for the cases at lower Vg where tunneling
leakage dominates the overall current. The increasing tunneling
current at higher Vds provides more carriers to screen the charged
trap and reduces RTN amplitude. On the other hand, the RTN
amplitude of Si-NW FET is nearly insensitive to Vds. Fig. 16 shows
the Vds dependence of RTN amplitude for Ge-NW FET with trap
placed around drain side (Region C). It is found that obvious/larger
negative RTN amplitude (current increase) happens for trap in the
proximity of drain side. Specifically, the maximum OFF-state RTN
amplitude occurs at Vds = 0.4 V where the charged trap demon-
strates the highest distortion on the band structure (electric field)
and induces considerable current increase [62].

Due to its distinct dependence on trap location and Vds, we ad-
dress the impacts of RTN on Ge-NW FET based 6T SRAM cell and
inverter with trap located in Region A or Region C at Vds = 0.3 V
and 1.0 V [62]. Figs. 17 and 18 demonstrate the 64 possible RSNM
formed by trapping/detrapping in each cell transistor (with cell
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type defined in Fig. 6). For trap located in the middle between
source/drain (Fig. 17), the maximum and minimum RSNM of
Ge-NW FET based 6T SRAM cell occur at cell type = 36 and 10 (or
17) at Vdd = 0.3 V, which are identical to the FinFET counterpart
at Vdd = 0.4 V (see Fig. 7). However, at Vdd = 1.0 V, the pull-down
and pass-gate transistors are in strong inversion regime and exhi-
bit negligible RTN impact (with �0% RTN amplitude in Fig. 15(b)).
Thus, the impact of RTN on RSNM is dominated by the fluctuation
of inverter trip voltage and the maximum RSNM happens in the
RTN patterns (cell type = 54) with stronger/detrapped pull-up
and weaker/trapped pull-down cell devices (cell with (PU, PD,
PG) = (0, 1, 1)). Fig. 18 illustrates the 64 possible RSNM configura-
tions for the trap placed around Region C at Vdd = 0.3 V and 1.0 V.
Compared with the results shown in Fig. 17, it is observed that
Ge-NW 6T SRAM cell with single charged trap in Region C shows
smaller RSNM variation than that in Region A. The higher suscep-
tibility of RSNM for the cell with trap in Region A can be explained
in Fig. 14 which reveals larger RTN amplitude across the range of
cell operation (�0.4 V) whereas there exhibits negligible impact
for trap located in Region C. Specifically, at Vdd = 0.3 V, RTN causes
5% and 12% RSNM variations for trap located in Region C and Re-
gion A.

Fig. 19 demonstrates the leakage analysis of Ge-NW and Si-NW
FETs based inverters across various Vdd under the influence of RTN
[62]. It can be seen that for trap placed in Region A, the variation of
leakage in Si-NW inverter is insensitive to the change in Vdd while
the Ge-NW inverter shows increasing impact at lower Vdd

(Vdd < 0.4 V). For trap located in Region C, significant Vdd
dependence of leakage fluctuation is observed in the Ge-NW
inverter which shows the similar trend as found in Fig. 16(b).
The impact of RTN on the leakage of Ge-NW inverter can reach
60% for trap located in Region C at Vdd � 0.4 V.

4. Tunnel FETs and circuits

With the scaling of device dimension and increase in chip
density, the deteriorated power consumption becomes a crucial
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obstacle for state-of-the-art SoC chips and several strategies from
the perspective of technology and system architecture are
proposed to relieve power crisis. Voltage scaling is an effective
approach to reduce the static and dynamic power consumptions.
Because of its higher driving current, the use of high-mobility
hetero-channel MOSFETs facilitates low-Vdd operation while
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maintaining satisfactory performance. Besides, various post-CMOS
alternatives that offer excellent switching characteristics with
steeper subthreshold slope are evaluated recently. Tunnel FET
(TFET), which utilizes band-to-band tunneling as the major
conduction mechanism (inset of Fig. 20(a)), has attracted much
attention because of its capability to surmount the thermionic
limitation and provide sub-60 mV/decade S.S. at room temperature
[40,41]. Fig. 20(b) shows the schematic of a reversely-biased p-i-n
TFET with asymmetrical and distinct source/drain dopant
species and concentrations. From the band profiles showing the
OFF and ON states of TFET (inset of Fig. 20(a)), the applied positive
gate voltage brings down the conduction band in the channel
region (intrinsically doped) below the valance band in the source
side (p-type doped) and enables sufficient states for electron
tunneling from the source, leading to steep/abrupt transition as
shown in Fig. 20(a). As reported in [63,64], similar to the approach
in FinFET, the single charged trap is strategically placed across
the sidewall interface to examine the location dependence of
TFET RTN.
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Fig. 21 shows the position dependence of RTN amplitude for
TFET across various VG. Because of the exponential dependence
of the tunneling current on critical tunneling path (near
source-channel junction) [41], significant RTN impact is found for
trap located in the vicinity of tunneling junction (Region C’ defined
in Fig. 20(b)) and the influence decreases toward the drain side
[63,64]. Fig. 22(a) illustrates the corresponding energy band
diagrams of TFET along the channel length direction with an accep-
tor-type trap at various positions. It is observed that for a nega-
tively-charged trap near the tunneling junction, the band peaks
up in the proximity of trap location, thus shortening the tunneling
length and yielding larger RTN impact. For trap away from the tun-
neling junction, the critical tunneling length is unchanged
(Fig. 22(a)) and exhibits considerably lower impact (Fig. 21). In
such case, the RTN amplitude depends on the distance between
the charged trap and the spot with significant electron (or hole)
generation rate which is similar to the case in conventional planar
MOSFET [25–28] and FinFET [48–50,57,58]. As a result, the shift of
the position with noticeable electron band-to-band generation rate
toward the tunneling junction at higher VG (Fig. 22(b) and (c)) re-
sults in larger RTN amplitude closer to the tunneling junction at
larger VG. This reflects the phenomenon that the peak of RTN
amplitude in different regions (indicated by the dashed arrow
shown in Fig. 21) occurs at smaller VG for trap located away from
the tunneling junction. With increasing VG, the regions with trap
close to the tunneling junction show higher impact. Compared
with the FinFET with largest RTN amplitude (see the red square
in Fig. 21), TFET, with its stronger current dependence on the crit-
ical tunneling length, exhibits significantly higher susceptibility to
RTN for a single acceptor-type trap around the tunneling junction.

In Fig. 23, the device geometry dependence of TFET is addressed
with various EOT and Wfin for a single acceptor-type trap placed
around the tunneling junction. A simple model derived to qualita-
tively describe the behavior of TFET RTN amplitude is shown below
[63,64]:

DID

ID
/ DVG

S:S:

that is proportional to the trap-induced VG shift (DVG) and inver-
sely proportional to the S.S. It can be seen in Fig. 23(a) that TFET
with thinner EOT suffers severer RTN amplitude because of the
significant improvement in S.S. which increases the sensitivity to
the charged trap. On the other hand, scaling Wfin increases DVG

(due to closer proximity) and improves S.S. (S.S. reduction) all of
which make TFET more vulnerable to the existence of an interface
trap. Fig. 24 shows the ID–VG characteristics of TFET with a single
donor-type trap (carry a positive charge in detrapped state) placed
across the sidewall interface along the channel length direction
[63]. As can be seen, drastic degradations in IOFF and significantly
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larger RTN amplitude (inset of Fig. 24(a)) are found. Compared
with the acceptor-type trap which exhibits the highest impact
around the tunneling junction, a donor-type trap gives rise to
considerably larger RTN impact over broad range across the chan-
nel region. The associated energy band diagrams shown in
Fig. 24(b) indicate that the noticeable decrease in critical tunnel-
ing length for the cases with a positively-charged trap inside the
channel region is the cause of higher sensitivity of TFET to the
donor-type trap.

In the following, the impact of RTN on TFET-based 8T SRAM cell
and several sense amplifiers are described with a charged trap
placed at the tunneling junction. Due to the limitation of uni-direc-
tional conduction for pass-gate TFETs [68], the functionality of con-
ventional 6T SRAM cell is hindered and the standard 8T SRAM cell
[69] (Fig. 25(a)) that decouples the READ and WRITE paths are em-
ployed for TFET applications. In such cell, RSNM is decided by the
noise margin of the internal cross-coupled inverter and less de-
pends on the OFF pass-gate transistors. Fig. 25(b) and (c) demon-
strate the RSNM variations due to RTN occurring in the cell
transistors of cross-coupled inverter latch [64]. As can be seen,
the maximum RSNM happens in the symmetrical RTN patterns
with pull-up and pull-down cell transistors in detrapped state,
while the minimum RSNM is composed of the asymmetrical pairs
with (PU, PD) = (0, 1) and (1, 0). With decreasing Vdd, the relative
importance of RSNM increases and can reach 16% at Vdd = 0.3 V
(Fig. 25(c)).

For the analysis of TFET-based sense amplifiers, two commonly
used differential small-signal sense amplifiers are discussed: (1)
Current Latch Sense Amplifier [70] (CLSA, in Fig. 26) and (2) Volt-
age Latch Sense Amplifier [71] (VLSA, in Fig. 27). For the activation
of CLSA and VLSA, the Sense Enable (SE) signal goes to high to sense
the bit-line differential (BL/BLB) voltage through current and
voltage modulation, respectively. The voltage difference in bit-
lines is amplified through the current/voltage mismatch of two
branches inside CLSA and VLSA. With variations, the offset voltage
(VOS) is used as the indicator to quantify the robustness of differen-
tial sense amplifiers [71–73]. In the presence of RTN, the primarily
symmetrical/balanced strength of two branches that connect to the
BL and BLB nodes is altered and the required voltage to compen-
sate the strength imbalance is measured as VOS which should be
smaller than the minimum bit-line differential voltage to ensure
correct sensing operation [72,73].

To assess RTN, the binary-coded definitions of possible trap-
ping/detrapping combinations from the most critical devices of
the sense amplifiers are labeled in Figs. 26(a) and 27(a) [64].
Among the 32 VOS combinations coming from the five selected
transistors that are vulnerable to RTN (Fig. 26(b)), the trapping/
detrapping in the devices connected to BL/BLB (A2 and A3) exhibit
the highest impact on the robustness of CLSA. The maximum value
of VOS occurs in the RTN configuration with A1 and A3 devices in
trapped state (VOS � 80 mV at Vdd = 0.5 V). For VLSA, the RTN in
pull-up (A0/A1) and A4 transistors are shown to have negligible
impact on VOS. It can be seen in Fig. 27(b) that the existence of trap-
ping/detrapping in pull-down devices (A2 or A3) contributes to the
maximum VOS fluctuation (30 mV at Vdd = 0.5 V). Due to its steeper
S.S. and significant modulations in drain current, TFET-based CLSA
requires larger VOS to compensate the impact of RTN and becomes
inferior to VLSA.
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5. Conclusion

This paper reviews the impact of single-trap-induced random
telegraph noise on several promising devices: FinFET, Si/Ge Nano-
wire FETs, TFET and related circuits. In this work, the static change
in drain current is the main concern and evaluated as the worst-
case condition for circuit analysis.

For FinFET, the influence of RTN depends on the relative dis-
tance between the charged trap and dominant current path. As
such, trap located in the middle region between source/drain and
around the bottom of sidewall interface exhibits the highest im-
pact. For Ge Nanowire FET, the position with significant RTN im-
pact could be in the middle region between the source/drain or
near the drain, depending on the drain bias and gate bias that mod-
ulate the contribution of band-to-band tunneling current. Besides,
Ge-NW FET may yield current increase with an acceptor-type trap
due to the distortion of band profile and enhanced electric field for
trap located near the drain. For TFET, the shortening of critical tun-
neling length results in drastically larger RTN amplitude for trap
placed around the tunneling junction and channel region. The de-
sign parameters (thinner EOT and Wfin) used to improve TFET sub-
threshold characteristics are found to increase the susceptibility to
RTN. Compared with FinFET, TFET exhibits drastic IOFF degradation
and higher sensitivity to RTN, particularly in the presence of a do-
nor-type trap inside the channel region. Among various materials,
comparable worst-case RTN amplitude is observed for the Ge-NW
and Si-NW FETs that both conduct current through the thermionic
emission.
For 6T/8T SRAM cells, the possible RTN combinations, resulting
from the trapping/detrapping of each cell transistor are examined
for cell robustness and performance. Specifically, the limiting
RTN patterns with trap placed at the worst position and the result-
ing impacts are demonstrated at various supply voltages. For the
analysis of logic circuits, RTN causes �24–27% and �13–15% vari-
ations in leakage and delay at Vdd = 0.4 V, respectively for FinFET
inverters, 2-Way NAND and 2-To-1 MUX. For Ge-NW FET based in-
verter, significantly larger leakage variation is observed for trap lo-
cated near the drain side around Vdd = 0.4 V. Compared with the
TFET-based VLSA, the robustness of CLSA is inferior and higher
bit-line differential voltage is required to compensate larger VOS.
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