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It is well-known that the halved graphs of a bipartite distance-
regular graph are distance-regular. Examples are given to
show that the converse does not hold. Thus, a natural question
is to find out when the converse is true. In this paper we
give a quasi-spectral characterization of a connected bipartite
weighted 2-punctually distance-regular graph whose halved
graphs are distance-regular. In the case the spectral diameter
is even we show that the graph characterized above is distance-
regular.
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1. Introduction

The study of characterizing the graphs whose eigenvalues and/or multiplicities sat-
isfy a prescribed identity has a long history. For example, a well-known and real-world
applicable theory asserts that a connected graph is bipartite if and only if its largest eigen-
value and smallest eigenvalue have the same absolute value. Recently, the eigenvectors,
especially the one associated with the largest eigenvalue, are also taking into consider-
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ation, for instances, in mathematical theory: [18,19,15,16,13,22]; in applications: [7,4].
See [6, pp. 65–69] for more applications. In this paper, we will give a (quasi-spectral)
characterization of graphs when an identity involving eigenvalues, multiplicities, the
eigenvector corresponding to the largest eigenvalue, and partial graph structure is satis-
fied. The details are as follows.

Throughout this paper, let G be a connected graph with vertex set V , order n = |V |,
diameter D, and distance function ∂. The adjacency matrix A of G is the binary matrix
indexed by V , where the entry (A)uv = 1 if ∂(u, v) = 1, and (A)uv = 0 otherwise. Assume
that A has d+1 distinct eigenvalues λ0 > λ1 > · · · > λd with corresponding multiplicities
m0 = 1, m1, . . . , md. The spectrum of G is denoted by spG = {λm0

0 , λm1
1 , . . . , λmd

d }, and
the parameter d is called the spectral diameter of G. Note that D � d [3]. As is known,
there is a sequence of orthogonal polynomials p0, p1, . . . , pd with respect to the inner
product 〈 , 〉G (formally defined in the beginning of the next section), where deg pi = i

and 〈pi, pi〉G = pi(λ0) for 0 � i � d [15]. Let α be the eigenvector of A associated
with λ0 such that αtα = n and all entries of α are positive. Note that α is usually
called the Perron vector, and α = (1, 1, . . . , 1)t if and only if G is regular. For u ∈ V ,
let αu be the entry corresponding to u in the eigenvector α. For 0 � i � d, define the
weighted distance-i matrix Ãi of G to be the matrix indexed by V such that the entry
(Ãi)uv = αuαv if ∂(u, v) = i, and (Ãi)uv = 0 otherwise. In particular, for the case G

is regular, Ãi is binary and is the so-called distance-i matrix Ai of G. For an integer
h � d, we say that G is weighted h-punctually distance-regular if Ãh = ph(A). Define
δ̃i =

∑
u,v(Ãi◦Ãi)uv/n, where “◦” is the entrywise product of matrices. A bipartite graph

with bipartition (X,Y ) is called (k1, k2)-biregular if every vertex in X has degree k1 and
every vertex in Y has degree k2. The distance-i graph of G is the graph whose adjacency
matrix is the distance-i matrix of G. For a connected bipartite graph G with bipartition
(X,Y ), the halved graphs GX and GY are the two connected components of the distance-2
graph of G. It is well-known that the halved graphs of a bipartite distance-regular graph
are distance-regular [5, Proposition 4.2.2]. Examples 5.1–5.3 show that the converse does
not hold, that is, a connected bipartite graph whose halved graphs are distance-regular
may not be distance-regular. Thus, a natural question is to find out when the converse
is true. Our main result is the following.

Theorem 1.1. Let G be a connected bipartite graph with bipartition (X,Y ). Suppose that
G is weighted 2-punctually distance-regular with even spectral diameter, and both halved
graphs GX and GY are distance-regular. Then G is distance-regular.

In addition to the main result, we believe that Proposition 3.3, Theorem 3.4, Propo-
sition 4.5 and Theorem 5.6 are of independent interest.

This paper is organized as follows. In the next section we provide some simple but
useful lemmas for bipartite graphs. In Section 3, we present some results related to
the spectral excess theorem [15], and characterize the graphs with δ̃i = pi(λ0) for
i ∈ {0, 1} (Lemma 3.7). In particular, this lemma is very useful for checking the reg-
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ularity or biregularity of a graph. In Section 4, we study the concepts of weighted
punctual distance-regularity and weighted partial distance-regularity, which can be re-
garded as generalizations of the concepts of punctual distance-regularity and partial
distance-regularity [11,10]. In Section 5, we prove Theorem 1.1.

2. Some results for bipartite graphs

In this section we provide some simple but useful lemmas to be used later on. These re-
sults are related to the concept of orthogonal polynomials. The basic idea is to generalize
the study of distance-regular graphs (see [3,5,24]).

2.1. Three-term recurrence

From the spectrum spG = {λm0
0 , λm1

1 , . . . , λmd

d } we consider the (d + 1)-dimensional
vector space Rd[x] of real polynomials of degree at most d with inner product

〈p, q〉G :=
d∑

i=0

mi

n
p(λi)q(λi) = tr

(
p(A)q(A)

)
/n.

The predistance polynomials p0, p1, . . . , pd of G are orthogonal polynomials satisfying
deg pi = i and 〈pi, pi〉G = pi(λ0) for 0 � i � d [15]. Moreover, they satisfy a three-term
recurrence of the form

xpi = ci+1pi+1 + aipi + bi−1pi−1 (1)

for 0 � i � d, where ci+1, ai, bi−1 are scalars in R, called the preintersection numbers
of G, with b−1 = cd+1 := 0 [12]. Note that ai + bi + ci = λ0 for 0 � i � d, where
c0 := 0 and bd := 0 [8]. If G is bipartite, then ai = 0 for 0 � i � d [11], and thus
xpi = ci+1pi+1 + bi−1pi−1. By this observation, the predistance polynomials of bipartite
graphs satisfy a three-term recurrence of the form

x2pi = Xi+2pi+2 + Yipi + Zi−2pi−2 (2)

for 0 � i � d, where Xi+2 := ci+1ci+2, Yi := bici+1 + bi−1ci and Zi−2 := bi−2bi−1. By
directly computing, it follows that Xi + Yi + Zi = λ2

0 for 0 � i � d.

2.2. The ‘odd’ or ‘even’ part

The sum of all predistance polynomials gives the Hoffman polynomial H [20]:

H(x) := n

d∏ x− λi

λ0 − λi
= p0 + p1 + · · · + pd, (3)
i=1
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no matter whether the graph is regular or not. For a proof, see for instance [9]. Hoffman
[20] proved that a connected graph G is regular if and only if H(A) = J , the all-ones
matrix. The following result, given first in [14, p. 117] (see also [22, Lemma 2.1]) gives a
generalization to nonregular graphs.

Lemma 2.1. Let G be a connected graph with adjacency matrix A and Perron vector α.
Then, H(A) = ααt. Moreover, G is regular if and only if H(A) = J , the all-ones
matrix. �

By the construction of Ãi, Lemma 2.1 and (3), any connected graph G has the property
that

Ã0 + Ã1 + · · · + ÃD = H(A) = p0(A) + p1(A) + · · · + pd(A). (4)

If G is bipartite, then we can rewrite (4) (in Lemma 2.2) more precisely by only taking
the ‘odd’ or ‘even’ part, which was also considered in [11]. Define Ãodd =

∑
odd i Ãi,

podd =
∑

odd i pi and δ̃odd =
∑

odd i δ̃i. Similarly for Ãeven, peven and δ̃even. For two n×n

real symmetric matrices M and N , define the inner product

〈M,N〉 := 1
n

tr(MN) = 1
n

∑
u,v

(M ◦N)uv.

Then Ã0, Ã1, . . . , ÃD are orthogonal, and δ̃i = 〈Ãi, Ãi〉. Hence 〈Ã∗, Ã∗〉 = δ̃∗ and
〈p∗(A), p∗(A)〉 = p∗(λ0) for ∗ ∈ {odd, even}. If G is bipartite, then pi is odd or even
only depending on its degree i being odd or even [11]. The following lemma is proved
by (4) and the fact that (pi(A))uv = 0 if ∂(u, v) and i have distinct parity (since bipartite
graphs contain no odd cycle).

Lemma 2.2. If G is bipartite, then Ãodd = podd(A) and Ãeven = peven(A). Moreover, by
taking norms, δ̃odd = podd(λ0) and δ̃even = peven(λ0). �
Remark 2.3. Observe that podd = (H(x) −H(−x))/2, H(λ0) = n and H(λd) = 0. Thus
for bipartite graphs, we deduce that δ̃odd = δ̃even = podd(λ0) = peven(λ0) = n/2.

3. The spectral excess theorem

The spectral excess theorem [15] asserts that δ̃d � pd(λ0) if G is regular, and equality
is attained if and only if G is distance-regular. See [9,17] for short proofs, and [11,10] for
some generalizations. The parameter pd(λ0) is called the spectral excess of G, which can
be expressed in terms of the spectrum, which is

pd(λ0) = n

π2

(
d∑ 1

miπ2

)−1

,

0 i=0 i
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where πi =
∏

j �=i |λi −λj | for 0 � i � d [15]. The following lemma gives an expression of
pd−1(λ0) for bipartite graphs in terms of the spectrum. The proof is essentially identical
to [9, p. 8–9], except the setting of the polynomials hi.

Lemma 3.1. Let G be a connected bipartite graph. Then

pd−1(λ0) = n

(
2 +

d−1∑
i=1

(hi(λ0) + (−1)d−1hi(−λ0))2

mihi(λi)2

)−1

,

where hi =
∏

j �=0,i,d(x− λj) for 1 � i � d− 1. �
For 0 � i � d, define Ã�i =

∑
j�i Ãj , p�i =

∑
j�i pj and δ̃�i =

∑
j�i δ̃j . Similarly

for Ã�i, p�i and δ̃�i. The parameter δ̃D is referred to as the average weighted excess
and p�D(λ0) as the generalized spectral excess of G. Recently, the authors [22] proved
the following ‘weighted’ version of the spectral excess theorem for nonregular graphs. In
fact, the approach of giving weights, the entries of the Perron vector, to the vertices of a
nonregular graph has been recently used many times in the literature (see, for instance,
[18,19,15,16,13]).

Theorem 3.2. (See [22].) Let G be a connected graph with diameter D. Then δ̃D �
p�D(λ0) with equality if and only if ÃD = p�D(A). Moreover, suppose further that
D = d. Then equality holds if and only if G is distance-regular. �

Define Ãodd
�i =

∑
odd j�i Ãj , δ̃odd

�i =
∑

odd j�i δ̃j and podd
�i =

∑
odd j�i pj . Similarly

for Ã∗
Ω, δ̃∗Ω and p∗Ω, where (Ω, ∗) ∈ {(�i, even), (�i, odd), (�i, even)}. Summing the

recurrence relation (1) from the terms with index i + 1 to d, it follows that

xp�i+1 = bipi + λ0p�i+1 − ci+1pi+1

[10, Proposition 2.5]. Note that if Ã�i+1 = p�i+1(A) and ∂(u, v) < i for u, v ∈ V , then
(Ap�i+1(A))uv = 0 = (λ0p�i+1(A))uv, and thus bi(pi(A))uv = ci+1(pi+1(A))uv. Using
this fact, we have the following result.

Proposition 3.3. Let G be a connected bipartite graph and i � d− 1. Then Ã�i = p�i(A)
if and only if Ãj = pj(A) for 0 � j � i.

Proof. The sufficiency is clear. To prove necessity, we only need to show that Ãi = pi(A)
(the remaining follows by similar argument). If ∂(u, v) � i, then (Ãi)uv = (pi(A))uv by
assumption. Suppose ∂(u, v) < i. If ∂(u, v) and i have different parity, then (Ãi)uv =
0 = (pi(A))uv. Suppose that ∂(u, v) and i have the same parity. Then bi(pi(A))uv =
ci+1(pi+1(A))uv = 0. Since bi �= 0 for i � d−1, it follows that (Ãi)uv = 0 = (pi(A))uv. �
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In [22], the authors posed the problem of characterizing the graphs which satisfy
equality in Theorem 3.2 (or equivalently, ÃD = p�D(A)), and gave a simple solution:
regular graphs with diameter 2 (in fact, these graphs are the so-called distance-polynomial
graphs [25]). Under the condition D = d, such graphs are distance-regular (Theorem 3.2).
Here we complete this characterization for bipartite graphs.

Theorem 3.4. A connected bipartite graph with ÃD = p�D(A) is distance-regular.

Proof. Note that the assumption is equivalent to Ã�D−1 = p�D−1(A). By Proposi-
tion 3.3, Ãi = pi(A) for 0 � i � D − 1. By Lemma 2.2, it follows that p∗�D+1(A) is the
zero matrix, where ∗ ∈ {odd, even} has the same parity as D + 1. This happens only for
the case D = d, since otherwise p∗�D+1(λ0) = 0, contradicting the fact that pi(λ0) > 0
for 0 � i � d. The remaining follows from Theorem 3.2. �

Let

ProjNM := 〈N,M〉
〈N,N〉N

denote the projection of M onto Span{N}. Lemmas 3.5–3.6 present some inequalities
related to the spectral excess theorem. The proofs are essentially the same as in [17,
Lemma 1].

Lemma 3.5. Let G be a connected graph. For 0 � i � d,

(i) δ̃�i � p�i(λ0) with equality if and only if Ã�i = p�i(A), and
(ii) δ̃�i � p�i(λ0) with equality if and only if Ã�i = p�i(A). �
Lemma 3.6. Let G be a connected bipartite graph. For 0 � i � d and ∗ ∈ {odd, even},

(i) δ̃∗�i � p∗�i(λ0) with equality if and only if Ã∗
�i = p∗�i(A), and

(ii) δ̃∗�i � p∗�i(λ0) with equality if and only if Ã∗
�i = p∗�i(A). �

A natural question motivated by Lemmas 3.5–3.6 is to study the relation between the
parameters δ̃i and pi(λ0) for 0 � i � d−1 (the case i = d is given in Theorem 3.2). We give
some results in the following. Note that p0 = 1 and p1 = λ0x/k (by the Gram–Schmidt
procedure), where k is the average degree of G. Moreover,

〈Ã1, A〉 = 1
n

∑
u,v

(Ã1)uv = 1
n
1tÃ11 = 1

n
1tDAD1 = λ0, (5)

where 1 is the all-ones vector, and D is the diagonal matrix with entries Duu = αu

for u ∈ V . The first part of Lemma 3.7 is simple, but plays a crucial role in proving
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the regularity of a graph, which follows from the inequality δ̃�0 � p�0(λ0) mentioned in
Lemma 3.5. In fact, it can also be derived by the Cauchy–Schwarz inequality:

∑
u∈V α4

u �
(
∑

u∈V α2
u)2/n = n. The second part of Lemma 3.7 characterizes the graphs satisfying

δ̃1 = p1(λ0), which is useful for checking the regularity or biregularity of a graph.

Lemma 3.7. Let G be a connected graph. Then

1. δ̃0 � 1 (= p0(λ0)) (which is equivalent to
∑

u∈V α4
u � n), with equality if and only if

any of the following conditions holds:
(i) Ã0 = I (= p0(A)),
(ii) G is regular.

2. δ̃1 � λ2
0/k (= p1(λ0)), with equality if and only if any of the following conditions

holds:
(i) Ã1 = p1(A),
(ii) G is regular or biregular.

Proof. We only need to prove the second part. Computing ProjÃ1
p1(A) by the same

argument as in [17, Lemma 1] and (5), it follows that δ̃1 � p1(λ0), with equality if and
only if Ã1 = p1(A). Now it remains to show that (i) ⇔ (ii). To prove necessity, we give
the weight αu to the vertex u ∈ V , and the weight αuαv to the edge connecting u and v.
Since Ã1 = p1(A) = λ0A/k, all edges receive the same weight, λ0/k. If G is not bipartite,
then it contains an odd cycle, and all vertices on this cycle must have the same weight.
The assumption ‘G is connected’ deduces that all vertices are of the same weight. Thus
G is regular. For the case G is bipartite, the condition ‘all edges receive the same weight’
implies that vertices in the same partite set have the same weight. Thus G is biregular.
Now we prove sufficiency. If G is regular, then clearly p1(A) = λ0A/k = A = Ã1. Suppose
that G is (k1, k2)-biregular with bipartition (X,Y ), where |X| = n1, |Y | = n2. Note that
λ0 =

√
k1k2, n1k1 = n2k2 and the Perron vector

α =
(
α′, . . . , α′︸ ︷︷ ︸

n1

α′′, . . . , α′′︸ ︷︷ ︸
n2

)t
,

where α′ =
√

n1+n2
2n1

and α′′ =
√

n1+n2
2n2

. Thus

p1(A) = λ0

k
A =

√
k1k2(n1 + n2)
n1k1 + n2k2

A = n1 + n2

2√n1n2
A = α′α′′A = Ã1. �

The next question is to discuss the relation between δ̃2 and p2(λ0). We give the
answer under the assumption G is regular, and provide an example to show that the
regularity condition is necessary. Thus, there is no hope to determine the order of δ̃2 and
p2(λ0) uniformly. Lemma 3.8 is proved by the inequality δ̃�2 � p�2(λ0) mentioned in
Lemmas 3.5 and 3.7.
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Lemma 3.8. Let G be a connected regular graph. Then δ̃2 � p2(λ0), with equality if and
only if Ã2 = p2(A). �
Example 3.9. (See [22].) Let P3 be a path of three vertices, with spectrum {

√
2, 0,−

√
2}.

Then D = d = 2, p0 = 1, p1 = 3
√

2x/4, p2 = 3(x2−4/3)/4, and δ̃2 = 3/8 < 1/2 = p2(λ0).

4. Weighted punctual and partial distance-regularity

The concepts of punctual distance-regularity and partial distance-regularity have been
recently studied [11,10]. In this paper, we study two concepts, which are basically the
same as that in [11,10], except that here we drop the regularity assumption, and the
use of weighted distance matrices is taking into account. A connected graph is called
weighted h-punctually distance-regular if Ãh = ph(A); and is called weighted m-partially
distance-regular if Ãi = pi(A) for i � m. Note by Lemma 3.7 that the regularity con-
dition is actually not necessary in the concept of partial distance-regularity. Clearly,
the concepts of weighted 0-punctual distance-regularity and weighted 0-partial distance-
regularity are identical. However, the weighted 1-punctual distance-regularity and the
weighted 1-partial distance-regularity are not equivalent. For example, by Lemma 3.7,
the path graph P3 of three vertices is weighted 1-punctually distance-regular, but not
weighted 1-partially distance-regular. The following result indicates that the concepts of
weighted 2-punctual distance-regularity and weighted 2-partial distance-regularity coin-
cide.

Proposition 4.1. Let G be a connected graph. Then Ã2 = p2(A) if and only if G is
weighted 2-partially distance-regular.

Proof. We only need to prove necessity. Since Ã2 = p2(A) = aA2 + bA+ cI for some real
numbers a, b, c with a �= 0, we conclude that A2 has a constant diagonal, which implies
that G is regular. The remaining follows from Lemma 3.7. �

Proposition 4.2 states an equivalent condition of the weighted 2-punctual distance-
regularity for bipartite graphs with spectral diameter d � 3. Note that the assumption
d � 3 is necessary, since otherwise the path graph P3 of three vertices gives a counterex-
ample. The proof follows from Proposition 3.3, Lemma 3.5 and Proposition 4.1.

Proposition 4.2. Let G be a connected bipartite graph with spectral diameter d � 3. Then
δ̃�2 = p�2(λ0) if and only if G is weighted 2-punctually distance-regular. �

Lemma 4.3 demonstrates that for a connected bipartite weighted 2-punctually
distance-regular graph, its two halved graphs have the same spectrum (with appropriate
spectral diameter), and, under further assumption, it gives a lower bound or exact value
of the diameter, depending on the parity of its spectral diameter.
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Lemma 4.3. Let G be a connected bipartite graph with bipartition (X,Y ), diameter D,
spectral diameter d and Ã2 = p2(A). Then the halved graphs GX and GY have the same
spectrum, and are of spectral diameter 
d/2�. Suppose further that at least one of GX

and GY has spectral diameter which is equal to its diameter. Then D � d− 1 for odd d,
and D = d otherwise.

Proof. Since G is bipartite, p2 is even, that is, p2 = ax2 + b for some real numbers a, b
with a �= 0. Let X1 and Y1 be adjacency matrices of GX and GY , respectively. Note that

A =
(

0 B

BT 0

)
for some square matrix B (since G is regular by Proposition 4.1). Hence(

X1 0
0 Y1

)
= Ã2 = p2(A) = aA2 + bI =

(
aBBT + bI 0

0 aBTB + bI

)
.

Since BBT and BTB have the same characteristic polynomial (see for instance [26,
Theorem 2.8]), GX and GY have the same spectrum. Note that if λ is an eigenvalue
of A with eigenvector u then aλ2 + b is an eigenvalue of Ã2 with the same eigenvector.
Thus Ã2 has �(d+ 1)/2
 = 
d/2�+ 1 distinct eigenvalues, and so do GX and GY . Hence
GX and GY are of spectral diameter 
d/2�. If at least one of GX and GY has spectral
diameter which is equal to its diameter, we derived that d � D � 2
d/2�, as claimed. �

At the end of this section, we give some results for connected bipartite graphs with
δ̃d−1 = pd−1(λ0). Lemma 4.4 follows from Lemma 3.6. The proof of Proposition 4.5 is
basically identical to [17, Proposition 2] (it is not difficult to prove this characterization
by backward induction on i, using the recurrence relation (2), Lemmas 2.2, 4.4 and 3.7).

Lemma 4.4. Let G be a connected bipartite graph. Then δ̃d−1 � pd−1(λ0), with equality
if and only if Ãd−1 = pd−1(A). �
Proposition 4.5. Let G be a connected bipartite graph with δ̃d−1 = pd−1(λ0). Then Ãi =
pi(A) for all i with the opposite parity of d. In particular, G is regular if d is odd, and
biregular otherwise. �
5. Proof of the main result

It is well-known that the halved graphs of a bipartite distance-regular graph are
distance-regular [5, Proposition 4.2.2]. We first provide three examples to show that
the converse does not hold, that is, a connected bipartite graph whose halved graphs
are distance-regular may not be distance-regular. Here we omit the computation details
which are straightforward by definitions.
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Example 5.1 (Weighted 2-punctually distance-regular and odd spectral diameter).
Consider the Möbius–Kantor graph, i.e., the generalized Petersen graph G(8, 3) [23],
with spectrum {31,

√
34
, 13, (−1)3, (−

√
3)4, (−3)1}. Then D = 4 < 5 = d, p0 = 1, p1 = x,

p2 = x2 − 3, p3 = 2(x3 − 5x)/5, p4 = (x4 − 10x2 + 15)/6, p5 = (x5 − 56x3/5 + 21x)/18,
Ãi = pi(A) for i ∈ {0, 1, 2, 4}, and both halved graphs are distance-regular with spectrum
{61, 04, (−2)3}.

Example 5.2 (Not weighted 2-punctually distance-regular and even spectral diameter).
Consider the Hoffman graph with spectrum {41, 24, 06, (−2)4, (−4)1}, which is cospectral
to the Hamming 4-cube but not distance-regular [20,5]. Then D = d = 4, p0 = 1, p1 = x,
p2 = (x2−4)/2, p3 = (x3−10x)/6, p4 = (x4−16x2 +24)/24, Ãi = pi(A) for i ∈ {0, 1, 3},
and its two halved graphs are the complete graph K8 and the complete multipartite graph
K2,2,2,2, which are both distance-regular.

Example 5.3 (Not weighted 2-punctually distance-regular and odd spectral diame-
ter). Consider the graph obtained by deleting a 10-cycle from the complete bipartite
graph K5,5, with spectrum {31, ((

√
5 + 1)/2)2, ((

√
5 − 1)/2)2, ((−

√
5 + 1)/2)2, ((−

√
5 −

1)/2)2, (−3)1}. Then D = 3 < 5 = d, p0 = 1, p1 = x, p2 = 3(x2 − 3)/5, p3 =
12(x3−19x/3)/49, p4 = (x4−48x2/5+49/5)/11, p5 = (x5−543x3/49+2820x/147)/33,
Ãi = pi(A) for i ∈ {0, 1}, and both halves graphs are the complete graphs K5, which are
distance-regular.

The following result is related to [5, Proposition 4.2.2] (in the case that d is even).

Theorem 5.4. Let G be a connected bipartite graph with bipartiton (X,Y ) and spectral
diameter d. Suppose that Ãi = pi(A) for even i, where 0 � i � d. Then G is weighted
2-punctually distance-regular and both halved graphs GX and GY are distance-regular
with diameter 
d/2�.

Proof. By assumption, Ã0 = p0(A) = I and Ã2 = p2(A) = aA2 + bI for some real
numbers a, b with a �= 0. Then G is regular and weighted 2-punctually distance-regular.
By Lemma 4.3, GX and GY have the same spectrum, and are of spectral diameter 
d/2�.
Since p2i is even, we can assume p2i = fi(ax2 + b) for some fi ∈ R[x] of degree i. Thus,
for 0 � i � 
d/2�,

(
Xi 0
0 Yi

)
= Ã2i = p2i(A) = fi

(
aA2 + bI

)
= fi(Ã2) =

(
fi(X1) 0

0 fi(Y1)

)
,

where Xi and Yi are distance-i matrices of GX and GY , respectively. Therefore, GX and
GY are distance-regular with diameter 
d/2�. �

Now we are ready to prove the main result, Theorem 1.1.
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Theorem 5.5. Let G be a connected bipartite graph with bipartition (X,Y ) and spectral di-
ameter d. Suppose that G is weighted 2-punctually distance-regular and both halved graphs
GX and GY are distance-regular with diameter 
d/2�. Then δ̃� = p�(λ0), where � = d−1
if d is odd, and � = d otherwise. In particular, if d is even, then Theorem 1.1 holds.

Proof. First note by Proposition 4.1 that G is regular. By Lemma 4.3, GX and GY have
the same spectrum, and are of spectral diameter 
d/2�. Thus GX and GY have the same
(pre)distance-polynomials f ′

i , 0 � i � 
d/2�. Since GX and GY are distance-regular,

Ã2i =
(
Xi 0
0 Yi

)
=

(
f ′
i(X1) 0

0 f ′
i(Y1)

)
= f ′

i(Ã2) = f ′
i

(
p2(A)

)
= g2i(A)

for 0 � i � 
d/2�, where Xi and Yi are distance-i matrices of GX and GY , respectively,
and g2i ∈ R[x] is even of degree 2i. Since G is regular, Ã�J = g�(A)J = g�(λ0)J . Then
each row of Ã� has exactly g�(λ0) ones, and thus δ̃� = g�(λ0). Now it remains to show
that g� = p�. Note that 〈g�, g�〉G = 〈g�(A), g�(A)〉 = 〈Ã�, Ã�〉 = δ̃� = g�(λ0). For every
polynomial p ∈ R�−1[x], 〈g�, p〉G = 〈Ã�, p(A)〉 = 0. By the uniqueness of the predistance
polynomials, it follows that g� = p�. Moreover, if d is even, then by Theorem 3.2, G is
distance-regular. �

Putting Proposition 4.5, Theorems 3.2, 5.4 and 5.5 together, we can conclude the
following theorem.

Theorem 5.6. Let G be a connected bipartite graph with bipartition (X,Y ) and spectral
diameter d. Then the following conditions are equivalent.

(i) Ãi = pi(A) for even i, where 0 � i � d;
(ii) δ̃� = p�(λ0), where � = d− 1 if d is odd, and � = d otherwise;
(iii) G is weighted 2-punctually distance-regular and both halved graphs GX and GY are

distance-regular with diameter 
d/2�. �
Applying a result in [1, Theorem 4.2], Theorem 5.6(i) seems to be improved to the

condition that only i ∈ {0, d− 2} is necessary when d is even. Unfortunately, there is a
flaw in the proof of this result [2].

Note that the Möbius–Kantor graph (Example 5.1) with odd spectral diameter satis-
fies Theorem 5.6(i)–(iii) with D = d − 1. The following example shows that a bipartite
graph with odd spectral diameter satisfying Theorem 5.6(i)–(iii) and D = d needs not
to be distance-regular.

Example 5.7. Consider the regular bipartite graphs on 20 vertices obtained from the
Desargues graph by the Godsil–McKay switching, which is not distance-regular with
spectrum {31, 24, 15, (−1)5, (−2)4, (−3)1} [21]. Then D = d = 5, p0 = 1, p1 = x, p2 =
x2 − 3, p3 = (x3 − 5x)/2, p4 = (x4 − 9x2 + 12)/4, p5 = (x5 − 11x3 + 22x)/12, Ãi =
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pi(A) for i ∈ {0, 1, 2, 4}, and both halved graphs are distance-regular with spectrum
{61, 14, (−2)5}.
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