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Abstract

In this paper, we propose a honeycomb mesh variation, called a spider web network.

Assume that m and n are positive even integers with mP 4. A spider web network

SWðm; nÞ is a 3-regular bipartite planar graph with bipartition C and D. We prove that

the honeycomb rectangular mesh HREMðm; nÞ is a spanning subgraph of SWðm; nÞ. We

also prove that SWðm; nÞ � e is hamiltonian for any e 2 E and SWðm; nÞ � fc; dg re-

mains hamiltonian for any c 2 C and d 2 D. These hamiltonian properties are optimal.
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1. Introduction

Throughout this paper, we assume that m; n are positive even integers with

mP 4. We use ½r�s to denote rðmod sÞ.
Network topology is a crucial factor for an interconnection network since it

determines the performance of the network. Many interconnection network

topologies have been proposed in the literature for the purpose of connecting a
large number of processing elements. Network topology is always represented

by a graph where the nodes represent processors and the edges represent the

links between processors. One of the most popular architectures is mesh-con-

nected computers [1]. Each processor is placed into a square or rectangular grid
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and connected by a communication link to its neighbors in up to four direc-

tions.
It is well known that there are three possible tessellations of a plane with

regular polygons of the same kind: square, triangular and hexagonal, corre-

sponding to dividing a plane into regular squares, triangles and hexagons,

respectively. Some computer and communication networks have been built

based on this observation. The square tessellation is the basis for mesh-con-

nected computers. The triangular tessellation is the basis for defining hexag-

onal meshed multiprocessors [2,3]. The hexagonal tessellation is the basis for

defining honeycombed meshes [4,5].
Stojmenovic [5] introduced three different honeycomb meshes, the honey-

comb rectangular mesh, honeycomb rhombic mesh and honeycomb hexagonal

mesh. Most of these meshes are not regular. Moreover, any honeycomb mesh is

not hamiltonian unless it is small in size [6]. To remedy these drawbacks, the

honeycomb rectangular torus, honeycomb rhombic torus and honeycomb

hexagonal torus are proposed [5]. Any such torus is 3-regular. However, all

honeycomb tori are not planar. In this paper, we propose a variation of

honeycomb meshes, called a spider web network.
In the following section, we give some graph terms that are used in this pa-

per and a formal definition of spider web networks. The spider graph SWðm; nÞ
is a bipartite graph with bipartition C and D. Moreover, the honeycomb

mesh HREMðm; nÞ forms a spanning subgraph of SWðm; nÞ. In Section 3, we

prove that SWðm; nÞ � e is hamiltonian for any e 2 E. In Section 4, we prove

that SWðm; nÞ � fc; dg remains hamiltonian for any c 2 C and d 2 D.

These hamiltonian properties are optimal. A conclusion is given in the final

section.
2. Spider web networks

Usually, computer networks are represented by graphs where nodes repre-

sent processors and edges represent the links between processors. In this paper,

a network is represented as an undirected graph. For the graph definition and

notation, we follow [7]. G ¼ ðV ;EÞ is a graph if V is a finite set and E is a subset
of fða; bÞjða; bÞ is an unordered pair of V g. We say that V is the node set and E
is the edge set of G. Two nodes a and b are adjacent if ða; bÞ 2 E.

The honeycomb rectangular mesh HREMðm; nÞ is the graph with the node set

fði; jÞj06 i < m; 06 j < ng such that ði; jÞ and ðk; lÞ are adjacent if they satisfy

one of the following conditions:

1. i ¼ k and j ¼ l� 1;

2. j ¼ l and k ¼ iþ 1 if iþ j is odd; and
3. j ¼ l and k ¼ i� 1 if iþ j is even.
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For example, a honeycomb rectangular mesh HREMð8; 6Þ is shown in Fig. 1.

A spider web network SWðm; nÞ, where m, n are even integers with mP 4,
nP 2, is the graph with the vertex set fði; jÞj06 i < m; 06 j < ng such that ði; jÞ
and ðk; lÞ are adjacent if they satisfy one of the following conditions:

1. i ¼ k and j ¼ l� 1;

2. j ¼ l and k ¼ ½iþ 1�m if iþ j is odd or j ¼ n� 1; and

3. j ¼ l and k ¼ ½i� 1�m if iþ j is even or j ¼ 0.

For example, a spider graph SWð8; 6Þ is shown in Fig. 2(a). Another layout
of SWð8; 6Þ is shown in Fig. 2(b) with the dashed lines indicating the edges of

SWðm; nÞ that are not in HREMðm; nÞ. Obviously, HREMðm; nÞ is a spanning

subgraph of SWðm; nÞ. The inner cycle of SWðm; nÞ is hð0; 0Þ; ð1; 0Þ; . . . ;
ðm� 1; 0Þ; ð0; 0Þi whereas the outer cycle of SWðm; nÞ is hð0; n� 1Þ; ð1; n� 1Þ;
. . . ; ðm� 1; n� 1Þ; ð0; n� 1Þi. It is obvious that any spider web network is a

planar 3-regular bipartite graph. A vertex ði; jÞ is labeled black when iþ j is

even and white if otherwise.

One of the major requirements of designing the network topology is a
network�s hamiltonian properties. For example, the ‘‘token ring’’ approach is
Fig. 1. HREM(8,6).

Fig. 2. SW(8,6).
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used in distributed operating systems. Fault tolerance is also desirable in

massive parallel systems that have a relatively high probability of failure.
A path is a sequence of consecutive adjacent nodes. A path is usually de-

limited by hx0; x1; x2; . . . ; xn�1i. We use P�1 to denote the path hxn�1; xn�2; . . . ;
x1; x0i if P is the path hx0; x1; x2; . . . ; xn�1i. A path is called a hamiltonian path if

its nodes are distinct and span V . A cycle is a path of at least three nodes such

that the first node is the same as the last node. A cycle is called a hamiltonian

cycle if its nodes are distinct except for the first node and the last node and if

they span V . A hamiltonian graph is a graph with a hamiltonian cycle. The

honeycomb rectangular mesh HREMð8; 6Þ is not hamiltonian because
degHREMð8;6Þð0; 0Þ ¼ 1.

A graph G ¼ ðV ;EÞ is 1-edge hamiltonian if G� e is hamiltonian for any

e 2 E. Obviously, any 1-edge hamiltonian graph is hamiltonian. A 1-edge

hamiltonian graph G is optimal if it contains the least number of edges among

all 1-edge hamiltonian graphs with the same number of vertices as G. A graph

G ¼ ðV ;EÞ is 1-node hamiltonian if G� v is hamiltonian for any v 2 V . A 1-

node hamiltonian graph G is optimal if it contains the least number of edges

among all 1-node hamiltonian graphs with the same number of vertices as G. A
graph G ¼ ðV ;EÞ is 1-hamiltonian if it is 1-edge hamiltonian and 1-node

hamiltonian. A 1-hamiltonian graph G is optimal if it contains the least number

of edges among all 1-hamiltonian graphs with the same number of vertices as

G. The study of optimal 1-hamiltonian graphs is motivated by the design of

optimal fault-tolerant token rings in computer networks. Numbers of optimal

1-hamiltonian graphs have been proposed [8–10]. Obviously, degGðxÞP 3 for

any vertex x in a 1-edge hamiltonian, 1-node hamiltonian, or 1-hamiltonian

graph G.
However, any bipartite graph is not 1-hamiltonian. Any cycle of a bipartite

graph contains the same number of vertices in each partite set. Thus, the de-

letion of a vertex from a hamiltonian bipartite graph results in a non-hamil-

tonian graph. Let G be a bipartite graph with bipartition C and D. We use

FðGÞ to denote ffc; dgjc 2 C; d 2 Dg. A hamiltonian bipartite graph is 1p-

hamiltonian if G� F remains hamiltonian for any F 2 FðGÞ. Obviously,

degGðxÞP 3 for any vertex x in a 1p-hamiltonian graph G. A 1p-hamiltonian

graph G is optimal if it contains the least number of edges among all 1p-
hamiltonian graphs with the same number of vertices as G.
3. A recursive property of SW(m; n)

Using the definition of a spider web network, SWðm; nþ 2Þ can be

constructed from SWðm; nÞ as follows: Let S denote the edge subset
fðði; n� 1Þ; ð½i� 1�m; n� 1ÞÞji ¼ 0; 2; 4; . . . ;m� 2g of SWðm; nÞ. Let SW�ðm; nÞ
denote the spanning subgraph of SWðm; nÞ with edge set EðSWðm; nÞÞ � S. Let
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V n ¼ fði; kÞj06 i < m; k ¼ n; nþ 1g, and En ¼ fðði; kÞ; ði; k þ 1ÞÞj06 i < m; k ¼
n � 1; ng [ fðði; nÞ; ð½i � 1�m; nÞÞji ¼ 0; 2; 4; . . . ;m � 2g [ fðði; n þ 1Þ; ð½i þ 1�m;
nþ 1ÞÞj06 i < mg. Then V ðSWðm; nþ 2ÞÞ ¼ V ðSWðm; nÞÞ [ V n, EðSWðm; nþ
2ÞÞ ¼ ðEðSWðm; nÞÞ � SÞ [ En. For this reason, we can view SWðm; nÞ as a

substructure of SWðm; nþ 2Þ if there is no confusion.

Let F 0 � V ðSW�ðm; nÞÞ [ EðSW�ðm; nÞÞ be a faulty set with jF 0j6 2, such

that F 0 contains an edge in EðSW�ðm; nÞÞ if jF 0j ¼ 1 and F 0 � FðSW�ðm; nÞÞ if

jF 0j ¼ 2. Suppose that C is a hamiltonian cycle of SWðm; nÞ � F 0, in which

ði; n� 1Þ is fault free for some 06 i < m. Now, we are going to construct a

hamiltonian cycle of SWðm; nþ 2Þ as follows:
Case 1: there is some edge in S \ EðCÞ. We can pick an edge ððr;

n� 1Þ; ð½r � 1�m; n� 1ÞÞ 2 C for some even integer 06 r < m� 1. For 06 i6
m� 2, we define e� ¼ ðð½r þ i�m; n� 1Þ; ð½r þ iþ 1�m; n� 1ÞÞ, and Qi as
Qi ¼ hð½r þ i�m; nþ 1Þ; ð½r þ iþ 1�m; nþ 1Þi if ½r þ i�2 ¼ 0;

Qi ¼ hð½r þ i�m; nþ 1Þ; ð½r þ iþ 1�m; nþ 1Þi if ½r þ i�2 ¼ 1 and e� 2 C;

Qi ¼ hð½r þ i�m; nþ 1Þ; ð½r þ i�m; nÞ; ð½r þ iþ 1�m; nÞ; ð½r þ iþ 1�m; nþ 1Þi
if otherwise:
Then set the path Q as hðr; nþ 1Þ; Q0; ð½r þ 1�m ; nþ 1Þ;Q1; ð½r þ 2�m; nþ 1Þ . . .
ð½r � 2�m; nþ 1Þ;Qm�2; ð½r � 1�m; nþ 1Þi.

Now we perform the following algorithm on C:
Algorithm 1 (Extend ðCÞ)

1. Replace those edges ðði; n� 1Þ; ð½i� 1�m; n� 1ÞÞ 2 C, where i 6¼ r and i is

even, with the path hði; n� 1Þ; ði; nÞ; ð½i� 1�m; nÞ; ð½i� 1�m; n� 1Þi.
2. Replace the edge ððr; n� 1Þ; ðr � 1; n� 1ÞÞ with the path hðr; n� 1Þ;

ðr; nÞ; ðr; nþ 1Þ;Q; ðr � 1; nþ 1Þ; ðr � 1; nÞ; ðr � 1; n� 1Þi.

Obviously, the resultant of Algorithm 1 is a hamiltonian cycle of

SWðm; nþ 2Þ � F 0.

Case 2: there is no edge in S \ EðCÞ. Obviously, ðði; n� 1Þ; ði� 1; n� 1ÞÞ 2 C
for every odd i with 16 i < m. The hamiltonian cycle of SWðm; nþ 2Þ � F 0 can

be easily constructed by replacing every ðði; n� 1Þ; ði� 1; n� 1ÞÞ, where i is

odd and 16 i < m, with the path hði; n� 1Þ; ði; nÞ; ði; nþ 1Þ; ði� 1; nþ 1Þ;
ði� 1; nÞ; ði� 1; n� 1Þi.

Thus, we have the following theorem.
Theorem 3.1. Let F 0 � V ðSW�ðm; nÞÞ [ EðSW�ðm; nÞÞ be a faulty set with
jF 0j6 2, such that F 0 contains an edge in EðSW�ðm; nÞÞ if jF 0j ¼ 1 and F 0 �
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FðSW�ðm; nÞÞ if jF 0j ¼ 2. Suppose that ði; n� 1Þ with 06 i < m is faulty free,
then SWðm; nþ 2Þ � F 0 is hamiltonian if SWðm; nÞ � F 0 is hamiltonian.

4. SWðm; nÞ is 1-edge hamiltonian

For j ¼ 0 or n� 1, Ijði; kÞ denotes hði; jÞ; ð½iþ 1�m; jÞ; ð½iþ 2�m; jÞ; . . . ; ðk; jÞi,
and I�1

j ði; kÞ denotes hðk; jÞ; ð½k � 1�m; jÞ; ð½k � 2�m; jÞ; . . . ; ði; jÞi. In addition, let

Hiðj; kÞ denote the path hði; jÞ; ði; jþ 1Þ; ði; jþ 2Þ; . . . ; ði; kÞi, and H�1
i ðj; kÞ ¼

hði; kÞ; ði; k � 1Þ; . . . ; ði; jÞi for 06 i < m, 06 j; k < n.

Theorem 4.1. SWðm; nÞ is 1-edge hamiltonian for any even integers m, n with
mP 4, nP 2.

Proof. We prove this theorem by induction. We first prove SWðm; 2Þ is 1-edge

hamiltonian. Let e be an edge of SWðm; 2Þ. By the symmetric property of

SWðm; 2Þ, we may assume that e is either ðð0; 0Þ; ðm� 1; 0ÞÞ or ðði; 0Þ; ði; 1ÞÞ
with i 6¼ 0;m� 1. Obviously, hð0; 0Þ; I0ð0;m� 1Þ; ðm� 1; 0Þ; ðm� 1; 1Þ; I�1

1 ð0;
m� 1Þ; ð0; 1Þ; ð0; 0Þi forms a hamiltonian cycle of SWðm; 2Þ � e.

Consider SWðm; 4Þ. Let e 2 EðSWðm; 4ÞÞ. There are three cases: (1)

e ¼ ðði; jÞ; ð½iþ 1�m; jÞÞ for 06 i < m if j ¼ 0; 3, or i ¼ 0; 2; 4; . . . ;m� 2 if j ¼ 1,
or i ¼ 1; 3; . . . ;m� 1 if j ¼ 2; (2) e ¼ ðði; jÞ; ði; jþ 1ÞÞ for 06 i < m, j ¼ 0; 2; (3)

e ¼ ðði; 1Þ; ði; 2ÞÞ for 06 i < m. In Case 1 and Case 2, we may assume that

e 2 EðSW�ðm; 2ÞÞ since the inner cycle and the outer cycle are symmetric. Be-

cause SWðm; 2Þ is 1-edge hamiltonian, there exists a hamiltonian cycle of

SWðm; 4Þ � e using Theorem 3.1. For Case 3, suppose e ¼ ðð0; 1Þ; ð0; 2ÞÞ using

the symmetric property of SWðm; 4Þ. Let Pi ¼ hðiþ 1; 0Þ; ði; 0Þ;Hið0; n� 1Þ;
ði; n� 1Þ; ði� 1; n� 1Þ;H�1

i�1ð0; n� 1Þ; ði� 1; 0Þi. Obviously, hð0; 0Þ; ð0; 1Þ; ð1;
1Þ;H1ð1; 3Þ; ð1; 3Þ; ð0; 3Þ; ð0; 2Þ; ðm � 1; 2Þ; ðm � 1; 3Þ; ðm � 2; 3Þ;H�1

m�2ð1; 3Þ; ðm�
2; 1Þ; ðm � 1; 1Þ; ðm � 1; 0Þ; ðm � 2; 0Þ; Pm�3; ðm � 4; 0Þ; Pm�5; ðm � 6; 0Þ; . . . ; P3;
ð2; 0Þ; ð1; 0Þ; ð0; 0Þi forms a hamiltonian cycle of SWðm; 4Þ � e. Thus, SWðm; 4Þ
is 1-edge hamiltonian.

By inductive hypothesis, assume SWðm; kÞ is 1-edge hamiltonian for some

even integer k with kP 4. Let e be an edge of SWðm; k þ 2Þ. Since the inner
Fig. 3. Illustration of Theorem 4.1.
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cycle and the outer cycle of SWðm; k þ 2Þ are symmetrical, we may assume that

e is in SW�ðm; kÞ. Then there exists a hamiltonian cycle of SWðm; kÞ � e. Ap-
plying Theorem 3.1, SWðm; k þ 2Þ � e is hamiltonian.

Hence any spider web network SWðm; nÞ is 1-edge hamiltonian. Fig. 3 gives

an illustration. h
5. SW(m; n) is 1p-hamiltonian

Lemma 5.1. SWðm; 2Þ is 1p-hamiltonian for mP 4.

Proof. Let F 2 FðSWðm; 2ÞÞ. By the symmetric property of SWðm; 2Þ, we may

assume that ð0; 0Þ 2 F . So, the other vertex in F is ðx; yÞ, where xþ y is odd.

Define two paths:
piðk; k þ 1Þ ¼ hði� 1; kÞ; ði� 1; k þ 1Þ; ði; k þ 1Þ; ði; kÞ; ðiþ 1; kÞi;
qiðk þ 1; kÞ ¼ hði� 1; k þ 1Þ; ði� 1; kÞ; ði; kÞ; ði; k þ 1Þ; ðiþ 1; k þ 1Þi:
To simplify the notation, pi ¼ pið0; 1Þ and qi ¼ qið1; 0Þ.
Suppose that y ¼ 1. Then we have a hamiltonian cycle of SWðm; 2Þ � F :
hð1; 0Þ; ð2; 0Þ; p3; ð4; 0Þ; p5; ð6; 0Þ; . . . ; ðx; 0Þ; ðxþ 1; 0Þ; pxþ2;

ðxþ 3; 0Þ; pxþ4; . . . ; ðm� 1; 0Þ; ðm� 1; 1Þ; ð0; 1Þ; ð1; 1Þ; ð1; 0Þi:
Suppose that y ¼ 0. There exists a hamiltonian cycle of SWðm; 2Þ � F :
hð0; 1Þ; ð1; 1Þ; q2; ð3; 1Þ; q4; ð5; 1Þ; . . . ; ðx; 1Þ; ðxþ 1; 1Þ; qxþ2; ðxþ 3; 1Þ; . . . ;
qm�3; ðm� 2; 1Þ; ðm� 2; 0Þ; ðm� 1; 0Þ; ðm� 1; 1Þ; ð0; 1Þi:
Hence SWðm; 2Þ is 1p-hamiltonian. h

Lemma 5.2. There exist m
2
� 1 disjoint paths, Pn1 ; P

n
2 ; . . . ; P

n
m
2
�1, that span

SW�ðm; nÞ � fð0; 0Þg such that Pnl joins ð2l; n� 1Þ to ð2lþ 1; n� 1Þ for 16

l < m
2
� 1, and Pnm

2
�1 joins ð0; n� 1Þ to ðm� 2; n� 1Þ.

Proof. We prove this lemma by induction. For n ¼ 2, we set P 2
l as

hð2l; 1Þ; ð2lþ 1; 1Þi for 16 l < m
2
� 1, and set P 2

m
2
�1 as hð0; 1Þ; ð1; 1Þ; ð1; 0Þ; I0ð1;

m� 1Þ; ðm� 1; 0Þ; ðm� 1; 1Þ; ðm� 2; 1Þ. Obviously, P 2
l �s satisfy the requirement

of the lemma for 06 l6 m
2
� 1. Now assume that the lemma holds for n ¼ k,

where k is even. Then, there exist m
2
� 1 disjoint paths, Pk1 ; P

k
2 ; . . . ; P

k
m
2
�1, that span

SW�ðm; kÞ � fð0; 0Þg such that Pkl joins ð2l; k � 1Þ to ð2lþ 1; k � 1Þ for

16 l < m
2
� 1, and Pkm

2
�1 joins ð0; k � 1Þ to ðm� 2; k � 1Þ.

Now, we set Pkþ2
l as hð2l; k þ 1Þ; ð2lþ 1; k þ 1Þi for 16 l < m

2
� 1. Define

fi ¼ hði; k � 1Þ; ði; kÞ; ðiþ 1; kÞ; ðiþ 1; k � 1Þ; Pkðiþ1Þ=2; ðiþ 2; k � 1Þi and set Pkþ2
m
2
�1

as:
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hð0;kþ 1Þ; ð1;kþ 1Þ; ð1;kÞ; ð2;kÞ; ð2;k� 1Þ;Pk1 ; ð3;k� 1Þ; f3; ð5;k� 1Þ;
f5; ð7;k� 1Þ; . . . ; fm�5; ðm� 3;k� 1Þ; ðm� 3;kÞ; ðm� 2;kÞ; ðm� 2;k� 2Þ;
ðPkm

2
�1Þ

�1
; ð0; k� 1Þ; ð0;kÞ; ðm� 1; kÞ; ðm� 1;kþ 1Þ; ðm� 2;kþ 1Þi:
Pkþ2
l , 16 l6 m

2
� 1, satisfies the requirement of lemma. Hence the lemma is

proved. See Fig. 4(a) for an illustration. h
Lemma 5.3. Assume that r is an even integer, 0 < r6m� 2. There exist r
2
dis-

joint paths, Qn
1;Q

n
2; . . . ;Q

n
r
2
, that span SW�ðm; nÞ � fðr; 0Þg, such that Qn

l joins
ð2l; n� 1Þ to ð2lþ 1; n� 1Þ for 16 l6 r

2
� 1, and Qn

r
2

joins ð0; n� 1Þ to
ðr; n� 1Þ.
Proof. We prove this lemma by induction. For n ¼ 2, we set Q2
l as

hð2l; 1Þ; ð2l; 0Þ; ð2lþ 1; 0Þ; ð2lþ 1; 1Þi for 16 l6 r
2
� 1, and set Q2

r
2

as hð0; 1Þ;
ð1; 1Þ; ð1; 0Þ; ð0; 0Þ; ðm � 1; 0Þ; ðm � 1; 1Þ; q�1

m�2; ðm � 3; 1Þ; q�1
m�4; ðm � 5; 1Þ; . . . ;

q�1
rþ2; ðr þ 1; 1Þ; ðr; 1Þi. Obviously, Q2

l �s satisfy the requirement of the lemma for

16 l6 r
2
. We assume that the lemma holds for n ¼ k where k is even. Then,

there exist r
2

disjoint paths, Qk
l , 16 l6 r

2
, that span SW�ðm; kÞ � fðr; 0Þg such

that Qk
l joins ð2l; k � 1Þ to ð2lþ 1; k � 1Þ for 16 l < r

2
, and Qk

r
2

joins ð0; k � 1Þ to

ðr; k � 1Þ.
Now, we set Qkþ2

l as hð2l; k þ 1Þ; ð2lþ 1; k þ 1Þi for 16 l < r
2
. Define gi ¼

hði; k � 1Þ;Qk
i=2; ðiþ 1; k � 1Þ; ðiþ 1; kÞ; ðiþ 2; kÞ; ðiþ 2; k � 1Þi, and set Qkþ2

r
2

as:
Fig. 4. An illustration for Lemmas 5.2–5.6.
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hð0; k þ 1Þ; ð1; k þ 1Þ; ð1; kÞ; ð2; kÞ; ð2; k � 1Þ; g2; ð4; k � 1Þ; g4;

ð6; k � 1Þ; . . . ; gr�2; ðr; k � 1Þ; ðQk
r
2
Þ�1

; ð0; k � 1Þ; ð0; kÞ; ðm� 1; kÞ;
ðm� 1; k þ 1Þ; q�1

m�2ðk þ 1; kÞ; ðm� 3; k þ 1Þ; . . . ; q�1
rþ2ðk þ 1; kÞ;

ðr þ 1; k þ 1Þ; ðr; k þ 1Þi:
Obviously, Qkþ2
l , for 16 l6 r

2
, satisfies the requirement of lemma. Hence the

lemma is proved. See Fig. 4(b) for an illustration, where r ¼ 4. h
Lemma 5.4. Assume that s is a positive odd integer. There exist m
2
� 1 disjoint

paths, Rnl , where 16 l < m
2

that span SW�ðm; nÞ � fðs; 1Þg such that Rnl joins
ð2ðl� 1Þ; n� 1Þ to ð2l� 1; n� 1Þ for l 6¼ sþ1

2
, and Rsþ1

2
joins ðs� 1; n� 1Þ to

ðm� 2; n� 1Þ.
Proof. We prove this lemma by induction. For n ¼ 2, we set
Rl ¼ hð2ðl� 1Þ; 1Þ; ð2ðl� 1Þ; 0Þ; ð2l� 1; 0Þ; ð2l� 1; 1Þi

for 16 l6
s� 1

2
;

Rl ¼ hð2ðl� 1Þ; 1Þ; ð2l� 1; 1Þi for
sþ 3

2
6 l6

m
2
� 1:
Besides, R2
sþ1

2

as hðs� 1; 1Þ; ðs� 1; 0Þ; I0ðs� 1;m� 1Þ; ðm� 1; 0Þ; ðm� 1; 1Þ; ðm�
2; 1Þi. Obviously, R2

l satisfies the requirement of the lemma for 16 l6 m
2
� 1.

Now assume that the lemma holds for n ¼ k where k is even. Then, there exist
m
2
� 1 disjoint paths, Rkl �s, that span SW�ðm; kÞ � fðs; 1Þg such that Rkl joins

ð2ðl� 1Þ; k � 1Þ to ð2l� 1; k � 1Þ for 16 l < m
2
; l 6¼ sþ1

2
, and Rksþ1

2

joins ðs� 1;
k � 1Þ to ðm� 2; k � 1Þ.

Now, we set Rkþ2
l as hð2ðl� 1Þ; k þ 1Þ; ð2l� 1; k þ 1Þi for 16 l < m

2
; l 6¼ sþ1

2
.

Define gi ¼ hði; k � 1Þ;Rki=2; ðiþ 1; k � 1Þ; ðiþ 1; kÞ; ðiþ 2; kÞ; ðiþ 2; k � 1Þi, and

set Rkþ2
sþ1

2

as:
hðs� 1; k þ 1Þ; ðs; k þ 1Þ; ðs; kÞ; ðsþ 1; kÞ; ðsþ 1; k � 1Þ;
gsþ1; ðsþ 3; k � 1Þ; . . . ; gm�4; ðm� 2; k � 1Þ; ðRkðsþ1Þ=2Þ

�1
; ðs� 1; k � 1Þ;

g�1
s�3; ðs� 3; k � 1Þ; . . . ; g�1

0 ; ð0; k � 1Þ; ð0; kÞ; ðm� 1; kÞ; ðm� 1; k þ 1Þ;
ðm� 2; k þ 1Þi:
Since Rkþ2
l , for 16 l6 s

2
, satisfies the requirement of lemma, the lemma is

proved. See Fig. 4(c), where s ¼ 3. h
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Lemma 5.5. There exist m
2
� 1 disjoint paths, Snl , where 16 l < m

2
that span

SW�ðm; nÞ � fð0; 1Þg such that Snl joins ð2lþ 2; n� 1Þ to ð2lþ 3; n� 1Þ for
16 l6 m

2
� 2 and Snm

2
�1 joins ð1; n� 1Þ to ð3; n� 1Þ.

Proof. We prove this lemma by induction. For n ¼ 2, we set S2
l ¼ hð2lþ 2;

1Þ; ð2lþ 3; 1Þi for 16 l6 m
2
� 2, and S2

m
2
�1 as hð1; 1Þ; ð1; 0Þ; ð0; 0Þ; ðm� 1; 0Þ;

I�1
0 ð2;m� 1Þ; ð2; 0Þ; ð2; 1Þ; ð3; 1Þi. Obviously, S2

l �s satisfy the requirement of the

lemma for 16 l6 m
2
� 1. Now assume that the lemma holds for n ¼ k where k is

even. Then, there exist m
2
� 1 disjoint paths, Skl �s, that span SW�ðm; kÞ � fð0; 1Þg

such that Skl joins ð2lþ 2; k � 1Þ to ð2lþ 3; k � 1Þ for 16 l6 m
2
� 2, and Skm

2
�1

joins ð1; k � 1Þ to ð3; k � 1Þ.
Now, we set Skþ2

l as hð2lþ 2; k þ 1Þ; ð2lþ 3; k þ 1Þi for 16 l6 m
2
� 2. Define

hi ¼ hði; k � 1Þ; ði; kÞ; ðiþ 1; kÞ; ðiþ 1; k � 1Þ; Ski�1
2

; ðiþ 2; k � 1Þi, and set Skþ2
m
2
�1 as:
hð1;kþ 1Þ; ð0;kþ 1Þ; ð0;kÞ; ðm� 1;kÞ; ðm� 1;k� 1Þ;h�1
m�3;

ðm� 3;k� 1Þ;h�1
m�5; ðm� 5; k� 1Þ; . . . ;h�1

3 ; ð3; k� 1Þ; ðSkm
2
�1Þ

�1
; ð1;k� 1Þ;

ð1;kÞ; ð2;kÞ; ð2;kþ 1Þ; ð3;kþ 1Þi:
Skþ2
l , 16 l6 m

2
� 1, satisfies the requirement of lemma, so the lemma is proved.

See Fig. 4(d) for an illustration. h
Lemma 5.6. Assume that t is an even integer, 0 < t6m� 2. There exist m
2
� 1

disjoint paths, T n
l , where 16 l < m

2
that span SW�ðm; nÞ � fðt; 1Þg such that T n

l

joins ð2l; n� 1Þ to ð2lþ 1; n� 1Þ for 16 l6 m
2
� 1 and l 6¼ t

2
, and T n

t
2

joins
ð1; n� 1Þ to ðt þ 1; n� 1Þ.
Proof. We prove this lemma by induction. For n ¼ 2, we set T 2
t
2
¼

hð1; 1Þ; ð0; 1Þ; ð0; 0Þ; I0ð0; t þ 1Þ; ðt þ 1; 0Þ; ðt þ 1; 1Þi.
Tl ¼ hð2l; 1Þ; ð2lþ 1; 1Þi for 16 l6
t � 2

2
;

Tl ¼ hð2l; 1Þ; ð2l; 0Þ; ð2lþ 1; 0Þ; ð2lþ 1; 1Þi for
t þ 2

2
6 l6

m� 2

2
:

Obviously, T 2
l �s satisfy the requirement of the lemma for 16 l6 m

2
� 1. Now

assume that the lemma holds for n ¼ k where k is even. Then, there exist m
2
� 1

disjoint paths, T k
l �s, that span SW�ðm; kÞ � fðt; 1Þg such that T k

l joins ð2l; k � 1Þ
to ð2lþ 1; k � 1Þ for 16 l6 m

2
� 1 and l 6¼ t

2
, and T k

t
2

joins ð1; k � 1Þ to

ðt þ 1; k � 1Þ.
Now, we set T kþ2

l as hð2l; k þ 1Þ; ð2lþ 1; k þ 1Þi for 16 l6 m
2
� 1, and l 6¼ t

2
.

Define hi ¼ hði; k � 1Þ; ði; kÞ; ðiþ 1; kÞ; ðiþ 1; k � 1Þ; T k
iþ1
2

; ðiþ 2; k � 1Þi, and set

T kþ2
t
2

as:
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hð1; k þ 1Þ; ð0; k þ 1Þ; ð0; kÞ; ðm� 1; kÞ; ðm� 1; k � 1Þ; h�1
m�3;

ðm� 3; k � 1Þ; h�1
m�5; ðm� 5; k � 1Þ; . . . ; h�1

tþ1; ðt þ 1; k � 1Þ; ðT k
t
2
Þ�1

;

ð1; k � 1Þ; h1; ð3; k � 1Þ; . . . ; ht�3; ðt � 1; k � 1Þ; ðt � 1; kÞ; ðt; kÞ;
ðt; k þ 1Þ; ðt þ 1; k þ 1Þi:
T kþ2
l , 16 l6 m

2
� 1, satisfies the requirement of lemma, so the lemma is proved.

See Fig. 4(e), where t ¼ 4. h

Theorem 5.1. SWðm; nÞ is 1p-hamiltonian for any even integers m, n with

mP 4, nP 2.

Proof. This theorem is proved by induction. Using Lemma 5.1, SWðm; 2Þ is 1p-

hamiltonian. Assume that SWðm; kÞ is 1p-hamiltonian for some even integer k
with kP 2.

Now, we want to prove SWðm; k þ 2Þ is 1p-hamiltonian. Let

F 2 FðSWðm; k þ 2ÞÞ. Obviously, one of the following cases holds: (1)

fði; jÞj06 i < m; j ¼ k; k þ 1g \ F ¼ ;, (2) fði; jÞj06 i < m; j ¼ 0; 1g \ F ¼ ;,

and (3) jfði; jÞj06 i < m; j ¼ k; k þ 1g \ F j ¼ 1 and jfði; jÞj06 i < m; j ¼
0; 1g \ F j ¼ 1.

Case 1: fði; jÞj06 i < m; j ¼ k; k þ 1g \ F ¼ ;. Then F 2 FðSWðm; kÞÞ. By

induction, SWðm; kÞ � F is hamiltonian. Applying Theorem 3.1, SWðm;
k þ 2Þ � F is hamiltonian.

Case 2: fði; jÞj06 i < m; j ¼ 0; 1g \ F ¼ ;. Since the inner cycle and the

outer cycle are symmetrical in any spider web network, SWðm; k þ 2Þ � F is

hamiltonian as in Case 1.

Case 3: jfði; jÞj06 i < m; j ¼ k; k þ 1g \ F j ¼ 1 and jfði; jÞj06 i < m; j ¼ 0;
1g \ F j ¼ 1. By the symmetric property of the spider web networks, we have

the following five cases: (3.1) F ¼ fð0; 0Þ; ð0; k þ 1Þg, (3.2) F ¼ fðr; 0Þ;
ð0; k þ 1Þg with r an non-zero even integer, (3.3) F ¼ fðs; 1Þ; ð0; k þ 1Þg with s
an odd integer, (3.4) F ¼ fð0; 1Þ; ð0; kÞg, and (3.5) F ¼ fðt; 1Þ; ð0; kÞg with t an

non-zero even integer.

Case (3.1): F ¼ fð0; 0Þ; ð0; k þ 1Þg. Using Lemma 5.2, there exist m
2
� 1 dis-

joint paths, Pk1 ; P
k
2 ; . . . ; P

k
m
2
�1, that span SW�ðm; kÞ � fð0; 0Þg such that Pkl joins

ð2l; k � 1Þ to ð2lþ 1; k � 1Þ for 16 l < m
2
� 1, and Pkm

2
�1 joins ð0; k � 1Þ to

ðm� 2; k � 1Þ.
Define C1ðiÞ ¼ hði;k� 1Þ; ði;kÞ; ði� 1;kÞ; ði� 1;k� 1Þ; ðPki�2

2

Þ�1
; ði� 2;k� 1Þi.

Obviously, hð0; k � 1Þ; Pkm
2
�1; ðm� 2; k � 1Þ;C1ðm� 2Þ; ðm� 4; k � 1Þ; . . . ;C1ð4Þ;

ð2; k � 1Þ; ð2; kÞ; ð1; kÞ; ð1; k þ 1Þ; Ikþ1ð1;m� 1Þ; ðm� 1; k þ 1Þ; ðm� 1; kÞ; ð0; kÞ;
ð0; k� 1Þi forms a hamiltonian cycle of SWðm; k þ 2Þ � F . See Fig. 5(a).

Case (3.2): F ¼ fðr; 0Þ; ð0; k þ 1Þg. By Lemma 5.3, there exist r
2

disjoint

paths, Qk
1;Q

k
2; . . . ;Q

k
r
2
, that span SW�ðm; kÞ � fðr; 0Þg such that Qk

l joins ð2l;
k � 1Þ to ð2lþ 1; k � 1Þ for 16 l < r

2
, and Qk

r
2

joins ð0; k � 1Þ to ðr; k � 1Þ.



Fig. 5. Illustration for Theorem 5.1, Case (3.1)–(3.5).
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Define C2ðiÞ ¼ hði; k� 1Þ; ði;kÞ; ði� 1;kÞ; ði� 1;k� 1Þ; ðQk
i�2
2

Þ�1
; ði� 2;k� 1Þi,

BðiÞ� hði;kþ1Þ;ði;kÞ;ðiþ1;kÞ;ðiþ1;kþ1Þ;ðiþ2;kþ1Þi. Obviously, hð0;k�1Þ;
Qk

r
2
; ðr; k � 1Þ;C2ðrÞ; ðr � 2; k � 1Þ; . . . ;C2ð4Þ; ð2; k � 1Þ; ð2; kÞ; ð1; kÞ; ð1; k þ 1Þ;

Ikþ1ð1; rþ 1Þ; ðrþ 1; k þ 1Þ;Bðrþ 1Þ; ðrþ 3; k þ 1Þ; . . . ;Bðm� 3Þ; ðm� 1; k þ 1Þ;
ðm� 1; kÞ; ð0; kÞ; ð0; k � 1Þi forms a hamiltonian cycle of SWðm; k þ 2Þ � F .

See Fig. 5(b), where r ¼ 4.

Case (3.3): F ¼ fðs; 1Þ; ð0; k þ 1Þg. By Lemma 5.4, there exist m
2
� 1 disjoint

paths, Rk1;R
k
2; . . . ;R

k
m
2
�1, that span SW�ðm; kÞ � fðs; 1Þg such that Rkl joins

ð2l� 2; k � 1Þ to ð2l� 1; k � 1Þ for 16 l < m
2

and l 6¼ sþ1
2

, and Rksþ1
2

joins ðs� 1;
k � 1Þ to ðm� 2; k � 1Þ.

Define C3ðiÞ ¼ hði; k � 1Þ; ði; kÞ; ði� 1; kÞ; ði� 1; k � 1Þ; ðRki
2

Þ�1
; ði� 2;k � 1Þi,

C0
3ðiÞ � hði; k � 1Þ;Rkiþ2

2

; ðiþ 1; k � 1Þ; ðiþ 1; kÞ; ðiþ 1; k þ 1Þ; ðiþ 2; k þ 1Þ; ðiþ
2; kÞ; ðiþ 2; k � 1Þi. Obviously, hðs� 1; k � 1Þ;Rksþ1

2

; ðm� 2; k � 1Þ;C3ðm� 2Þ;
ðm � 4; k � 1Þ;C3ðm � 4Þ; ðm � 6; k � 1Þ . . .C3ðs þ 3Þ; ðs þ 1; k � 1Þ; ðs þ 1; kÞ;
ðs; kÞ; ðs; k þ 1Þ; Ikþ1ðs;m� 1Þ; ðm� 1; k þ 1Þ; ðm� 1; kÞ; ð0; kÞ; ð0; k � 1Þ;C0

3ð0Þ;
ð2; k � 1Þ;C0

3ð2Þ; ð4; k � 1Þ . . . ;C0
3ðs� 3Þ; ðs� 1; k � 1Þi forms a hamiltonian

cycle of SWðm; k þ 2Þ � F . See Fig. 5(c), where s ¼ 3.
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Case (3.4): F ¼ fð0; 1Þ; ð0; kÞg. By Lemma 5.5, there exist m
2
� 1 disjoint

paths, Sk1 ; S
k
2 ; . . . ; S

k
m
2
�1, that span SW�ðm; kÞ � fð0; 1Þg such that Skl joins

ð2lþ 2; k � 1Þ to ð2lþ 3; k � 1Þ for 16 l6 m
2
� 2, and Skm

2
�1 joins ð1; k � 1Þ to

ð3; k � 1Þ.
Define C4ðiÞ ¼ hði; k � 1Þ; ði; kÞ; ði; k þ 1Þ; ðiþ 1; k þ 1Þ; ðiþ 1; kÞ; ðiþ 1; k�

1Þ; Ski�1
2

; ðiþ 2; k � 1Þi. Obviously, hð1; k � 1Þ; Skm
2
�1; ð3; k � 1Þ; C4ð3Þ; ð5; k � 1Þ;

C4ð5Þ; ð7; k � 1Þ; . . . ;C4ðm� 3Þ; ðm� 1; k � 1Þ; ðm� 1; kÞ; ðm� 1; k þ 1Þ; ð0; kþ
1Þ; ð1; k þ 1Þ; ð2; k þ 1Þ; ð2; kÞ; ð1; kÞ; ð1; k � 1Þi forms a hamiltonian cycle of

SWðm; k þ 2Þ � F . See Fig. 5(d).

Case (3.5): F ¼ fðt; 1Þ; ð0; kÞg. By Lemma 5.6, there exist m
2
� 1 disjoint

paths, T k
1 ; T

k
2 ; . . . ; T

k
m
2
�1, that span SW�ðm; kÞ � fðt; 1Þg such that T k

l joins ð2l;
k � 1Þ to ð2lþ 1; k � 1Þ for 16 l6 m

2
� 1 and l 6¼ t

2
, and T k

t
2

joins ð1; k � 1Þ to

ðt þ 1; k � 1Þ.
Define C5ðiÞ ¼ hði;k� 1Þ; ði;kÞ; ði;kþ 1Þ; ðiþ 1;kþ 1Þ; ðiþ 1;kÞ; ðiþ 1; k� 1Þ;

T k
iþ1
2

; ðiþ 2; k � 1Þi, and C0
5ðiÞ¼ hði;k�1Þ;ðT k

i�1
2

Þ�1
;ði�1;k�1Þ;ði�1;kÞ;ði�2;kÞ;

ði� 2; k � 1Þi. Obviously, hð1; k � 1Þ; Tt
2
; ðt þ 1; k � 1Þ;C5ðt þ 1Þ; ðtþ 3; k � 1Þ;

C5ðt þ 3Þ; ðt þ 5; k � 1Þ; . . . ;C5ðm� 3Þ; ðm� 1; k � 1Þ; ðm� 1; kÞ; ðm� 1; k þ 1Þ;
ð0;kþ 1Þ; Ikþ1ð0; tÞ; ðt;kþ 1Þ; ðt;kÞ; ðt� 1;kÞ; ðt� 1;k� 1Þ;C0

5ðt� 1Þ; ðt� 3;k� 1Þ;
C0

5ðt � 3Þ; ðt � 5; k � 1Þ; . . . ; C0
5ð3Þ; ð1; k � 1Þi forms a hamiltonian cycle of

SWðm; k þ 2Þ � F . See Fig. 5(e), where t ¼ 4.

Thus we have proved the theorem. h
6. Concluding remarks

Since the honeycomb rectangular mesh HREMðm; nÞ is a spanning subgraph
of SWðm; nÞ, the spider web network can be viewed as a variation of the

honeycomb mesh. The spider web networks we proposed are 3-regular planar

graphs. Moreover, they are 1-edge hamiltonian and 1p-hamiltonian. Since the

spider web network is 3-regular, it is optimal.

It is very easy to see that the diameter of the spider web network SWðm; nÞ is

Oðmþ nÞ. By choosing m ¼ OðnÞ, the diameter of SWðm; nÞ is Oð
ffiffiffiffi

N
p

Þ where

N ¼ mn is the number of vertices in SWðm; nÞ. It would be interesting to find

other planar, 3-regular, 1-edge hamiltonian, and 1p-hamiltonian graphs with
smaller diameters.
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