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Abstract

In this paper, we propose a honeycomb mesh variation, called a spider web network.
Assume that m and n are positive even integers with m > 4. A spider web network
SW(m,n) is a 3-regular bipartite planar graph with bipartition C and D. We prove that
the honeycomb rectangular mesh HREM (m, n) is a spanning subgraph of SW(m, n). We
also prove that SW(m,n) — e is hamiltonian for any e € E and SW(m, n) — {c,d} re-
mains hamiltonian for any ¢ € C and d € D. These hamiltonian properties are optimal.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper, we assume that m, n are positive even integers with
m = 4. We use [r], to denote r(mods).

Network topology is a crucial factor for an interconnection network since it
determines the performance of the network. Many interconnection network
topologies have been proposed in the literature for the purpose of connecting a
large number of processing elements. Network topology is always represented
by a graph where the nodes represent processors and the edges represent the
links between processors. One of the most popular architectures is mesh-con-
nected computers [1]. Each processor is placed into a square or rectangular grid
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and connected by a communication link to its neighbors in up to four direc-
tions.

It is well known that there are three possible tessellations of a plane with
regular polygons of the same kind: square, triangular and hexagonal, corre-
sponding to dividing a plane into regular squares, triangles and hexagons,
respectively. Some computer and communication networks have been built
based on this observation. The square tessellation is the basis for mesh-con-
nected computers. The triangular tessellation is the basis for defining hexag-
onal meshed multiprocessors [2,3]. The hexagonal tessellation is the basis for
defining honeycombed meshes [4,5].

Stojmenovic [5] introduced three different honeycomb meshes, the honey-
comb rectangular mesh, honeycomb rhombic mesh and honeycomb hexagonal
mesh. Most of these meshes are not regular. Moreover, any honeycomb mesh is
not hamiltonian unless it is small in size [6]. To remedy these drawbacks, the
honeycomb rectangular torus, honeycomb rhombic torus and honeycomb
hexagonal torus are proposed [5]. Any such torus is 3-regular. However, all
honeycomb tori are not planar. In this paper, we propose a variation of
honeycomb meshes, called a spider web network.

In the following section, we give some graph terms that are used in this pa-
per and a formal definition of spider web networks. The spider graph SW (m, n)
is a bipartite graph with bipartition C and D. Moreover, the honeycomb
mesh HREM (m, n) forms a spanning subgraph of SW(m,n). In Section 3, we
prove that SW(m, n) — e is hamiltonian for any e € E. In Section 4, we prove
that SW(m,n) — {c,d} remains hamiltonian for any c¢€ C and d € D.
These hamiltonian properties are optimal. A conclusion is given in the final
section.

2. Spider web networks

Usually, computer networks are represented by graphs where nodes repre-
sent processors and edges represent the links between processors. In this paper,
a network is represented as an undirected graph. For the graph definition and
notation, we follow [7]. G = (V,E) is a graph if V is a finite set and E is a subset
of {(a,b)|(a, b) is an unordered pair of V'}. We say that V is the node set and E
is the edge set of G. Two nodes a and b are adjacent if (a,b) € E.

The honeycomb rectangular mesh HREM (m, n) is the graph with the node set
{(#,/)|0<i < m,0<j < n} such that (i,j) and (k, /) are adjacent if they satisfy
one of the following conditions:

l.i=kand j=[1+1;
2.j=land k=i+11if i+ jis odd; and
3.j=Iland k=i—11if i+ jis even.



S.-S. Kao, L.-H. Hsu | Appl. Math. Comput. 160 (2005) 269-282 271

For example, a honeycomb rectangular mesh HREM(8, 6) is shown in Fig. 1.

A spider web network SW(m,n), where m, n are even integers with m > 4,
n = 2, is the graph with the vertex set {(7,/)|0 <i < m,0<j < n} such that (i, )
and (k, /) are adjacent if they satisfy one of the following conditions:

l.i=kand j=141;
2.j=landk=1[i+1], if i+ jis odd or j=n—1; and
3.j=landk=[i—1],ifi+jiseven or j=0.

For example, a spider graph SW(8, 6) is shown in Fig. 2(a). Another layout
of SW(8,6) is shown in Fig. 2(b) with the dashed lines indicating the edges of
SW(m, n) that are not in HREM (m, n). Obviously, HREM (m, n) is a spanning
subgraph of SW(m,n). The inner cycle of SW(m,n) is ((0,0),(1,0),...,
(m —1,0),(0,0)) whereas the outer cycle of SW(m,n) is {((0,n —1),(1,n — 1),
cooy(m—=1,n—1),(0,n — 1)). It is obvious that any spider web network is a
planar 3-regular bipartite graph. A vertex (i, j) is labeled black when i + j is
even and white if otherwise.

One of the major requirements of designing the network topology is a
network’s hamiltonian properties. For example, the “token ring” approach is

(0,5) (7,5)

00 10 (7.0)

Fig. 1. HREM(S,0).

Fig. 2. SW(8.6).
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used in distributed operating systems. Fault tolerance is also desirable in
massive parallel systems that have a relatively high probability of failure.

A path is a sequence of consecutive adjacent nodes. A path is usually de-
limited by (xo,x1,x2,...,%,_1). We use P! to denote the path (x, |,x, »,...,
x1,%o) if P is the path (xo,x,x,...,x,1). A path is called a hamiltonian path if
its nodes are distinct and span V. A cycle is a path of at least three nodes such
that the first node is the same as the last node. A cycle is called a hamiltonian
cycle if its nodes are distinct except for the first node and the last node and if
they span V. A hamiltonian graph is a graph with a hamiltonian cycle. The
honeycomb rectangular mesh HREM(8,6) is not hamiltonian because
degHREM(8‘6)(O7O) =1

A graph G = (V,E) is 1-edge hamiltonian if G — e is hamiltonian for any
e € E. Obviously, any l-edge hamiltonian graph is hamiltonian. A 1-edge
hamiltonian graph G is optimal if it contains the least number of edges among
all 1-edge hamiltonian graphs with the same number of vertices as G. A graph
G = (V,E) is 1-node hamiltonian if G — v is hamiltonian for any v € V. A 1-
node hamiltonian graph G is optimal if it contains the least number of edges
among all 1-node hamiltonian graphs with the same number of vertices as G. A
graph G = (V,E) is I-hamiltonian if it is 1-edge hamiltonian and 1-node
hamiltonian. A 1-hamiltonian graph G is optimal if it contains the least number
of edges among all 1-hamiltonian graphs with the same number of vertices as
G. The study of optimal 1-hamiltonian graphs is motivated by the design of
optimal fault-tolerant token rings in computer networks. Numbers of optimal
I-hamiltonian graphs have been proposed [8-10]. Obviously, deg;(x) = 3 for
any vertex x in a 1-edge hamiltonian, 1-node hamiltonian, or 1-hamiltonian
graph G.

However, any bipartite graph is not 1-hamiltonian. Any cycle of a bipartite
graph contains the same number of vertices in each partite set. Thus, the de-
letion of a vertex from a hamiltonian bipartite graph results in a non-hamil-
tonian graph. Let G be a bipartite graph with bipartition C and D. We use
F(G) to denote {{c,d}|c € C,d € D}. A hamiltonian bipartite graph is I,-
hamiltonian if G — F remains hamiltonian for any F € #(G). Obviously,
degg(x) = 3 for any vertex x in a 1,-hamiltonian graph G. A 1,-hamiltonian
graph G is optimal if it contains the least number of edges among all 1,-
hamiltonian graphs with the same number of vertices as G.

3. A recursive property of SW(m, n)

Using the definition of a spider web network, SW(m,n+2) can be
constructed from SW(m,n) as follows: Let S denote the edge subset
{((in=1),(i—1],,n—1))[i=0,2,4,...,m =2} of SW(m,n). Let SW"(m, n)
denote the spanning subgraph of SW(m, n) with edge set E(SW(m,n)) — S. Let
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Ve ={(,k)|0<i <myk =nn+ 1}, and E" = {((i,k), (,k+1))[0< i <m;k =
n— l,l’l}U{((i,l/I),([i ]m’ ))|l_0 2 4 _2}U{((i7n+1)7([i+1]m’

+1))|0<i < m}. Then V(SW(m,n+ 2)) (SW(m7n)) ur", E(SW(m,n+
2)) = (E(SW(m,n)) —S) UE". For this reason, we can view SW(m,n) as a
substructure of SW(m,n + 2) if there is no confusion.

Let F' C V(SW*(m,n)) UE(SW*(m,n)) be a faulty set with |F'| <2, such
that F” contains an edge in £(SW*(m,n)) if |F'| =1 and F' C #(SW*(m,n)) if
|F’| = 2. Suppose that % is a hamiltonian cycle of SW(m,n) — F’, in which
(i,n — 1) is fault free for some 0<i < m. Now, we are going to construct a
hamiltonian cycle of SW(m,n + 2) as follows:

Case 1. there is some edge in SNE(¥). We can pick an edge ((r,
n—1),(r—1],,n—1)) € € for some even integer 0 <r <m — 1. For 0<i<
m— 2, we define e* = (([r+1,,,n—1),([r+i+1],,n—1)), and O; as

O =([r+1i,n+1),(r+i+1],n+1) if r+i,=0;
Oi=([r+i,,n+1),([r+i+1],,n+1) if [r+i,=1 and e €E;

Oi = (([r+il,,n+ 1), ([r +d,,,n), ([ +i+1],,n),([r+i+1]
if otherwise.

n+1))

m?

Then set the path Q as ((r,n+ 1), Oo, (r + 1], ,n+1),01,([r+2],,,n+1)...
([V B 2]m,n + 1)7Qn1727 ([l’ B l]m’n + 1)>

Now we perform the following algorithm on %

Algorithm 1 (Extend (%))

1. Replace those edges ((i,n—1),([i —1],,n—1)) € ¢, where i # r and i is
even, with the path ((i,n — 1), (i,n), (i — ] n), (i —1],,,n—1)).

2. Replace the edge ((r,n—1),(r—1,n )) with the path {((r,n—1),
(ryn),(r,n+1),0,(r — I,n+1),( r—ln ), (r—1,n—=1)).

Obviously, the resultant of Algorithm 1 is a hamiltonian cycle of
SW(m,n+2)—

Case 2: there is no edge in S N E(%). Obviously, ((i,n—1),(i—1,n—1)) € €
for every odd i with 1 <i < m. The hamiltonian cycle of SW(m,n 4+ 2) — F’ can
be easily constructed by replacing every ((i,n —1),(i — 1,n — 1)), where i is
odd and 1<i<m, with the path {((i,n—1),(i,n),(i,n+1),(i—1,n+1),
i—1,n),i—1,n-1)).

Thus, we have the following theorem.

Theorem 3.1. Let F' C V(SW™(m,n)) UE(SW*(m,n)) be a faulty set with
|F'| <2, such that F' contains an edge in E(SW*(m,n)) if |F'| =1 and F' C
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F (SW*(m,n)) if |F'| = 2. Suppose that (i,n— 1) with 0<i < m is faulty free,
then SW(m,n + 2) — F' is hamiltonian if SW(m,n) — F' is hamiltonian.

4. SW(m, n) is 1-edge hamiltonian

For j=0orn— 1, I;(i, k) denotes (i, ), ([i +1],,,./), ([ + 2], /), - - - (k; /),
and 1, (i, k) denotes ((k, /), ([k — 1],,,/), ([k = 2],,,/); - - -, (i, /)). In addition, let
Hi(j,k) denote the path ((i,), (i,/+ 1), (i,j + 2),. . (i,k)), and H(j,k) =
((1,k),(1,k—1),...,(,))) for 0<i <m, 0<j,k < n.

Theorem 4.1. SW(m, n) is l-edge hamiltonian for any even integers m, n with
m=4,n=2.

Proof. We prove this theorem by induction. We first prove SW(m,2) is 1-edge
hamiltonian. Let e be an edge of SW(m,2). By the symmetric property of
SW(m,2), we may assume that e is either ((0,0),(m —1,0)) or ((i,0), (i,1))
with i # 0,m — 1. Obviously, ((0,0),7,(0,m — 1), (m —1,0),(m —1,1),1;'(0,
m—1),(0,1),(0,0)) forms a hamiltonian cycle of SW(m,2) — e.

Consider SW(m,4). Let e € E(SW(m,4)). There are three cases: (1)
e=((i,)),(i+1],,/) for0<i<mifj=0,3,0ori=0,2,4,... m—2if j =1,
ori=13...m—1ifj=2,2)e=((/), (G j+ 1)) for0<i <m,j=0,2;(3)
e=((i,1),(i,2)) for 0<i < m. In Case 1 and Case 2, we may assume that
e € E(SW*(m,2)) since the inner cycle and the outer cycle are symmetric. Be-
cause SW(m,2) is l-edge hamiltonian, there exists a hamiltonian cycle of
SW(m,4) — e using Theorem 3.1. For Case 3, suppose e = ((0, 1), (0,2)) using
the symmetric property of SW(m,4). Let P, = ((i +1,0),(i,0), H;(0,n — 1),
(i,n—1),(i—1,n—1),H - (0,n —1),(i — 1,0)). Obviously, ((0,0),(0,1),(I,
D), Hi(1,3), (1,3),(0,3), (0,2), (m — 1,2), (m — 1,3), (m — 2,3), H,1,(1,3), (m—
2,1),(m—1,1),(m —1,0),(m — 2,0),P,_3,(m —4,0), B, s,(m—06 0) P,
(2,0), (1,0),(0,0)) forms a hamiltonian cycle of SW(m, 4) — e. Thus, SW(m, 4)
is 1-edge hamiltonian.

By inductive hypothesis, assume SW(m, k) is 1-edge hamiltonian for some
even integer k with k& > 4. Let e be an edge of SW(m, k + 2). Since the inner

Fig. 3. Illustration of Theorem 4.1.



S.-S. Kao, L.-H. Hsu | Appl. Math. Comput. 160 (2005) 269-282 275

cycle and the outer cycle of SW(m, k + 2) are symmetrical, we may assume that
e is in SW*(m, k). Then there exists a hamiltonian cycle of SW(m, k) — e. Ap-
plying Theorem 3.1, SW(m, k + 2) — e is hamiltonian.

Hence any spider web network SW(m, n) is 1-edge hamiltonian. Fig. 3 gives
an illustration. [J

5. SW(m, n) is 1,-hamiltonian
Lemma 5.1. SW(m, 2) is 1,-hamiltonian for m > 4.

Proof. Let F € 7 (SW(m,2)). By the symmetric property of SW(m,2), we may
assume that (0,0) € F. So, the other vertex in F is (x,y), where x + y is odd.
Define two paths:

pilk,k+1)=((G—1,k),i—Lk+1),Gk+1),3Gk),0+1,k),
qi(k+ 1vk) = <(i_ 17k+ 1), (i_ lvk)a (i7k)7 (i7k+ 1)7 (i+ 17k+ 1)>
To simplify the notation, p; = p;(0,1) and ¢; = ¢;(1,0).
Suppose that y = 1. Then we have a hamiltonian cycle of SW(m,2) — F:

<(170)7 (270)71737 (4’0),p53 (6a0)a B (X, 0)7 (x+ 170)vp¥+27
(x+3,0),prid,--.,(m—1,0),(m—1,1),(0,1), (1, 1), (1,0)).

Suppose that y = 0. There exists a hamiltonian cycle of SW(m,2) — F:

((0,1), (1, 1), 92,3, 1), q4, (5, 1), ., (x, 1), (x + 1, 1), qupn, (x + 3, 1), ..,
Gm-3,(m—2,1),(m—=2,0),(m—1,0),(m —1,1),(0,1)).

Hence SW(m,2) is 1,-hamiltonian. [

Lemma 5.2. There exist % —1 disjoint paths, P/,P;,... Py, that span
SW*(m,n) —{(0,0)} such that P} joins (2l,n—1) to 21+ 1,n—1) for 1<
1<%—1, andPé’fljoins (0,n—1)to (m—2,n—1).

Proof. We prove this lemma by induction. For n =2, we set Pf as
((21,1),(21+1,1)) for 1<I <% —1, and set P%{l as ((0,1),(1,1),(1,0), (1,
m—1),(m—1,0),(m—1,1), (m — 2,1). Obviously, P?’s satisfy the requirement
of the lemma for 0< /< % — 1. Now assume that the lemma holds for n = k,
where k is even. Then, there exist 4 — 1 disjoint paths, P, ;... P;_, that span
SW*(m,k) — {(0,0)} such that Pf joins (2/,k—1) to (2/+1,k—1) for
1<l <%—1,and Py, joins (0,k — 1) to (m —2,k—1).

Now, we set P2 as ((2[,k+1),(2+ 1,k + 1)) for 1</ <%~ 1. Define
fi= (i k= 1), (i, k), (i + 1, k), (i + 1,k = 1), Pf ) o, (i + 2,k = 1)) and set P77
as: i
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((0,k+ 1), (1,k+1),(1,k),(2,k), 2,k —1),P},(3,k = 1), 3, (5,k — 1),
f53(7vk_ 1)7-~-afm75,(m_37k_ 1)7(”’_3vk)a(m_27k)’(m_27k_2)>
(Pg_1) ™" (0,6 = 1),(0,k), (m — 1,k), (m — 1,k +1), (m =2,k +1)).

P2 1<I< 2 — 1, satisfies the requirement of lemma. Hence the lemma is
proved. See Fig. 4(a) for an illustration. [

Lemma 5.3. Assume that r is an even integer, 0 < r <m — 2. There exist s dis-
Jjoint paths, 01,05,...,0, that span SW*(m,n) — {(r,0)}, such that Q] joins
2lLn=1) to 2I+1,n—1) for 1<I<5-1, and Q7 joins (0,n—1) to

(ryn—1).

Proof. We prove this lemma by induction. For n=2, we set O} as
((21,1),(21,0), (21 +1,0), (21 + 1, 1)) for 1<I< 5~ 1, and set OF as ((0,1),
(lv 1)7 (17 0>7 (070)’ (m - 170)’ (m - 17 1)761;1—2’ (m - 37 1)’6];1—4’ (m - 57 1)a R
g5, (r+1,1),(r,1)). Obviously, O7’s satisfy the requirement of the lemma for
1< /< 4. We assume that the lemma holds for n» = k& where & is even. Then,
there exist 5 disjoint paths, Qf, 1 </< %, that span SW*(m, k) — {(r,0)} such
that Qf joins (2/,k — 1) to (27 + 1,k — 1) for 1 <7 <4, and Q; joins (0,k — 1) to
(ryk—1).

Now, we set Qj* as ((21,k+1),(2/ + 1,k + 1)) for 1</ <4%. Define g; =
(k= 1),08,, (i + 1,k = 1), (i + 1,k), (i + 2,k), (i + 2,k — 1)), and set Qi as:

Fig. 4. An illustration for Lemmas 5.2-5.6.
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(0,6 +1),(Lk+1),(1,k),(2,k), (2,k = 1), 8, (4, k = 1), &,
(6,k—1),...,8 2, (r,k—1),(0 ) L0,k —1),(0,k), (m — 1,k),
(m—1,k+1),q," 5 (k+ 1,k),(m=3k+1),...,q.5(k+1,k),
(r+Lk+1),(rk+1)).

Obviously, 0f™, for 1 <1< 5, satisfies the requirement of lemma. Hence the
lemma is proved. See Fig. 4(b) for an illustration, where »r =4. [

Lemma 5.4. Assume that s is a positive odd integer. There exist 5 — 1 disjoint
paths, R}, where 1 <1 <% that span SW*(m,n) —{(s,1)} such that R} joins
(I =1),n=1) to 2l —1,n—1) for 1 £, and Rea joins (s—=1,n—=1) to

(m—2,n—1).

Proof. We prove this lemma by induction. For n = 2, we set

R ={2(I-1),1),(2(1-1),0),(21 — 1,0),(2/ = 1, 1))
s—1
2 )

for 1<I<

s+3
2

R ={2(I-1),1),(21—1,1)) for <I<

NIS

Besides, R, as {(s — 1,1), (s — 1,0),Lo(s — 1,m — 1), (m — 1,0), (m — 1, 1), (m—
2,1)). Obviously, R? satisfies the requirement of the lemma for 1< /< o

Now assume that the lemma holds for n = k where k is even. Then, there exist
2 — 1 disjoint paths, R¥’s, that span SW*(m,k) —{(s,1)} such that R} joins

(I =1),k=1)to 2l —1,k—1) for 1<l <%2,1# and RHl joins (s — 1,
k—1)to (m—2,k— 1),

Now, we set Rj*? as ((2(1 — 1),k +1),(21 = 1,k+ 1)) for 1 <1 <%, #5L
Define g; = ((i,k — 1), 1/2,(1—1—1 k—1),(i+ 1L,k),(i+2,k),(i+2,k—1)),and
setRkﬁ2 as:

(s =1, k+1),(s,k+1),(s,k), (s+ 1,k), (s + 1,k — 1),
Gty (s+ 3,k = 1), g (m =2,k — 1), (R, ) ' (s = Lk — 1),
g;'3,(s—3,k—l),...,g0 ,(0,k—1),(0,k),(m—1,k),(m—1,k+ 1),
(m—2,k+1)).

Since R{™?, for 1< /< 4, satisfies the requirement of lemma, the lemma is
proved. See Fig. 4(c), where s=3. 0O
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Lemma 5.5. There exist § — 1 disjoint paths, S}, where 1<1 <% that span
SW*(m,n) — {(0,1)} such that S} joins (21+2,n—1) to (2I14+3,n—1) for
1<I< %—2 andS%1 joins (1,n—1) to 3,n—1).

Proof. We prove this lemma by induction. For n =2, we set S7 = ((2/ + 2,
1),(21+3,1)) for 1<I<% -2, and S,, _, as ((1,1),(1,0), (0,0),(m—1,0),
I (2,m—1),(2,0),(2,1),(3,1)). ObVlously, S%’s satisfy the requirement of the
lemma for 1 </< % — 1. Now assume that the lemma holds for n = k where k is
even. Then, there exist % — 1 disjoint paths, S}’s, that span SW*(m, k) — {(0,1)}
such that S¥ joins (21+2 k—1)to (2143, k— 1) for 1</<%—2, and Sm =
joins (1,k—1) to (3,k—1).

Now, we set Sf2 as (21 + 2,k + 1), (21 4+ 3,k + 1)) for 1 <7< 2 — 2. Define
hi = {(i,k— 1), (i, k), (i +1,k),(i+ 1,k — 1),S,.";], (i+2,k—1)), and set Sﬁgjf% as:

(1,k+1),(0,k+1),(0,k), (m—1,k),(m — 1,k — 1),k 5,
(m =3,k = 1), s, (m =5,k = 1), hs ' 3k = 1), (84 )™ (1,k = 1),

m—57

(Lk),(2,k),(2,k+1),(3,k+1)).

S % — 1, satisfies the requirement of lemma, so the lemma is proved.
See Fig. 4(d) for an illustration. [

Lemma 5.6. Assume that t is an even integer, 0 < t <m — 2. There exist 7—1
disjoint paths, T;', where 1 <1 <% that span SW*(m,n) — {(t,1)} such that T}
Joins (2l,n—1) to 21+ 1,n—1) for 1<I<5—1 and | #4, and T%” Jjoins
(Lmn—=1)to (t+1,n—1).

Proof. We prove this lemma by induction. For n =2, we set T2
((1,1),(0,1),(0,0),1,(0,2 + 1), (¢ + 1,0), (£ + 1, 1)).

T,=((21,1),(21 +1,1)) for 1<I< %
t+2 m—2

T = {(21,1),(21,0), (21 + 1,0), (21 + 1,1)) for —= <I< =

Obviously, 7}’s satisfy the requirement of the lemma for 1 </<%— 1. Now

assume that the lemma holds for n = k where k is even. Then, there exist 5 — 1

disjoint paths, 7}’s, that span SW*(m, k) — {(¢,1)} such that 7} joins (2/,k — 1)

to (2/+1,k—1) for 1</<%-1 and [/#% and T%k joins (1,k—1) to
(t+1,k-1).

Now, we set T as ((21,k+1),(21 + 1,k + 1)) for 1 <I<

2

Define h; = ((i,k — 1), (i,k), (i + 1,k), (i + 1,k — 1), TF,, (i +
7"1k+2 as: 2

Z—1,and [ #3.
,k—1)), and set
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(1k+1),(0,k+1),(0,k), (m — 1,k),(m — 1,k — 1), !

s m—3s
(m =3k = 1),k s, (m =5k = 1), bl (+ Lk = 1),(T5) 7
( a )7h17(37k_ )7--~7ht737(t lak )7( _17k)a(tak7
(t,k+1),(t+1,k+l)>.
TF2,1<I< % — 1, satisfies the requirement of lemma, so the lemma is proved.

See Fig. 4(e), where t=4. O

Theorem 5.1. SW(m,n) is 1,-hamiltonian for any even integers m, n with
m=4,n=2.

Proof. This theorem is proved by induction. Using Lemma 5.1, SW(m, 2) is 1,-
hamiltonian. Assume that SW(m, k) is 1,-hamiltonian for some even integer &
with k > 2.

Now, we want to prove SW(m,k+2) is 1,-hamiltonian. Let
F € #(SW(m,k + 2)). Obviously, one of the following cases holds: (1)
{GN0<i<mj=kk+1}NnF=0, 2) {(i,)I0<i<m,j=0,1}NF =140,
and (3) @G H0<i<m,j=kk+1}NnFl=1 and |[{{/)0<i<m,j=
0,1}nF|=1

Case 1: {(i,/)]0<i<m,j=kk+1}NF =0. Then F € #(SW(m,k)). By
induction, SW(m,k) — F is hamiltonian. Applying Theorem 3.1, SW(m,
k4 2) — F is hamiltonian.

Case 2: {(i,/)|0<i<m,j=0,1} NF ={. Since the inner cycle and the
outer cycle are symmetrical in any spider web network, SW(m, k +2) — F is
hamiltonian as in Case 1.

Case 3: {(i,)0<i<m,j=kk+1}NF|=1and |{(i,/))0<i<m,j=0,
1} NF| = 1. By the symmetric property of the spider web networks, we have
the following five cases: (3.1) F ={(0,0),(0,k+ 1)}, (3.2) F={(r,0),
(0,k + 1)} with » an non-zero even integer, (3.3) F = {(s, 1), (0,k+ 1)} with s
an odd integer, (3.4) F = {(0,1),(0,%)}, and (3.5) F = {(¢,1),(0,k)} with ¢ an
non-zero even integer.

Case (3.1): F = {(0, 0) (0,k+1)}. Using Lemma 5.2, there exist 5 — 1 dis-
joint paths, P1 ,Py,..., Py, that span SW*(m, k) — {(0,0)} such that Pf joins
(2Lk—1) to 21+ 1,k=1) for I</<%-1, and P, joins (0,k—1) to
(m—2,k—1).

Define Ci(i) = {((i,k—1),(i,k),(i—1,k),(i—1,k—=1), (P,kz)* (i—2,k—1)).
Obviously, ((0,k — 1),P§717 (m—2,k—1),Ci(m—2), (m— 4 k—1),...,Ci(4),
(2,k—=1),(2,k), (Lk),(Lk+ 1), Lea(1,m—1),(m — L,k + 1),(m — 1,k),(0,k),
(0,k— 1)) forms a hamiltonian cycle of SW(m,k + 2) — F. See Fig. S(a)

Case (3.2): F ={(r,0),(0,k+1)}. By Lemma 5.3, there exist 5 disjoint
paths, O% 0%, ... Q that span SW*(m, k) — {(r,0)} such that Q% Joms (21,
k—1)to (2[+1,k—=1) for 1 <!/ <% and O joins (0,k —1) to (r,k —1).
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Fig. 5. Illustration for Theorem 5.1, Case (3.1)-(3.5).

Define CZ(.):«Z'?k_l)v( ) ( ),(l—17k—1),(Ql,.‘:Tz)7l,(i—2,k—1)>,
)

B(i) = ((z k+1) (i,k), i+ 1,k),(i+1, k+1 i+2,k+1)). Obviously, ((0,k—1),
Q>( C2(7’>,(I’—2,k 1) C2(4) (Z,k—1),(2,](),(1,/{),(1,1(—1—1),
I (1, r+1) (r+1,k+1),B(r+1),(r+3,k+1),...,B(m—3),(m—1,k+1),
(m—1,k),(0,k),(0,k — 1)) forms a hamiltonian cycle of SW(m, k+2) —
See Fig. 5(b), where r = 4.

Case (3.3): F = {(s,1),(0,k +1)}. By Lemma 5.4, there exist 4 — 1 disjoint
paths, Ri,Rj,.... Ry, that span SW'(m,k)—{(s,1)} such that Rj joins
(21 =2,k—=1)to 2/ —1,k—1) for 1</ <%and [ #*, and RA+1 joins (s — 1,
k—1)to (m—2,k—1).

Define C5(i) = ((i,k — 1), (i,k), (i — 1,k),(i — 1,k = 1), (R’;)f (1 =2,k = 1)),
Cg(i)z((i,k—1),R{%,(i+1,k—1),(i+1,k), (+1Lk+1),+2,k+1),(+
2,k),(i+ 2,k —1)). Obviously, ((s—1,k—1),R%,, (m—2,k—1),Cs(m—2),
(m—4k—1),C(m—4),(m—6,k—1)...C(s+3),(s+ 1L,k—1),(s + 1,k),
(S,k), (Svk+ 1)7Ik+l(svm - 1)7 (m - 1vk+ 1)1 (m - lvk)v (Oak)v (ka - 1)7C§(0)7

(2,k—1),C(2),(4,k—=1)...,Ci(s —3),(s — 1,k —1)) forms a hamiltonian
cycle of SW(m, k +2) — F. See Fig. 5(c), where s = 3.
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Case (3.4): F ={(0,1),(0,k)}. By Lemma 5.5, there exist 2 — 1 disjoint
paths, S{,S5,...,8s ,, that span SW"(m,k) —{(0,1)} such that S; joins
(21+2,k—1) to (21 +3,k—1) for 1 </<%~—2, and S’]g’—l joins (1,k—1) to
(3,k—1).

Define C4(i) = ((i,k—1),(i,k),(i,k+1),(i+1 k+ ), (+ 1L,k),(i+1, k-
1), 8L, (i +2,k—1)). Obviously, ((1,k—1),85 ,(3,k—1), Cs(3),(5,k—1),
Cy(5),(T,k—=1),...,Cqs(m = 3),(m — 1 kfl),(mfl k) (m—1,k+1),(0,k+
D,(Lk+1),2,k+1), (2,k),(1,k),(1,k—1)) forms a hamiltonian cycle of
SW(m,k+2) — F. See Fig. 5(d).

Case (3.5): F = {(t 1),(0,k)}. By Lemma 5.6, there exist 4 —1 disjoint
paths, T{,75,..., Ty ,, that span SW*(m k) —{(¢,1)} such that T} joins (21,
k—1) to (21+1k—1)f0r1<l< — 1 and 7 #4, and T} joins (1,k—1) to
(t+1,k—1). ’

Define Cs(i) = ((i,k—1),(i,k), (i,k+1),(i +1 k+1
Ty, (i+2,k— 1)), and C’(l):<(l7k D7) -

1
(i—2,k—1)). Obviously, ((1,k—1), ,(t+1,k—1) s(t+ 1), (t+3k— )
m—

(+1,k)(+lk—)

k)

(1, )

Co(t+3),(t+ 5,k — 1), Cs(m—3), (m— 1,k — 1), (m—1,k), (m— 1Lk +1).
(t 1),

(6]

);
k—=1),(i=1,k),(i =2,

)

)

o3

(Oak+1)alk+1(051)5(t7k+1)7 k) (t_17k)7( 17k_1)7cg(t_1)7( 37k
Ci(t—3),(t—5k—-1),...,Ci3),(1,k — 1)) forms a hamiltonian cycle of
SW(m, k +2) — F. See Fig. 5(e), where ¢ = 4.

Thus we have proved the theorem. [

6. Concluding remarks

Since the honeycomb rectangular mesh HREM (m, n) is a spanning subgraph
of SW(m,n), the spider web network can be viewed as a variation of the
honeycomb mesh. The spider web networks we proposed are 3-regular planar
graphs. Moreover, they are 1-edge hamiltonian and 1,-hamiltonian. Since the
spider web network is 3-regular, it is optimal.

It is very easy to see that the diameter of the spider web network SW (m, n) is
O(m + n). By choosing m = O(n), the diameter of SW(m,n) is O(v/N) where
N = mn is the number of vertices in SW(m, n). It would be interesting to find
other planar, 3-regular, 1-edge hamiltonian, and 1,-hamiltonian graphs with
smaller diameters.
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