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This paper considers a machine repair problem with M operating machines and S standbys,
in which R repairmen are responsible for supervising these machines and operate a (V,R)
vacation policy. With such policy, if the number of the failed machines is reduced to
R � V (R > V) (there exists V idle repairmen) at a service completion, these V idle servers will
together take a synchronous vacation (or leave for other secondary job). Upon returning
from the vacation, they do not take a vacation again and remain idle until the first arriving
failed machine arrives. The steady-state probabilities are solved in terms of matrix forms
and the system performance measures are obtained. Algorithmic procedures are provided
to deal with the optimization problem of discrete/continuous decision variables while
maintaining a minimum specified level of system availability.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

We consider a machine repair problem where a group of M operating machines is under the supervision of one or more
repairmen (servers) in the repair facility. These operating units are assumed unreliable and may fail at any time. This inci-
dence may lead to loss of production because the failed machine must stay in the repair facility for some time. To avoid any
loss of production, the plant always keeps some standby machines, say S (S < M), so that a standby machine can immediately
act as a substitute when an operating machine fails. When a machine fails, it is immediately sent to the repair facility for
repair and backed up by a standby, if available. Meanwhile, the repairmen may together leave for a synchronous single vaca-
tion of random length whenever there exists V (V < R) idle repairmen. The so-called single vacation means that at the end of
the vacation the repairmen remain idle until the first arriving failed machine arrives. A real-world example of this vacation
model can be realized in the manufacturing/production-assembly system where the servers in their idle time may be
assigned to perform some extra operations such as additional work, preventive maintenance. On the other hand, machine
repair related problems represent a group of very important problems used to analyze timesharing computer systems, mul-
ti-programmed computer systems and multi-access communication channels (see [1]).

In a classical machine repair model, it is assumed that the servers remain idle until the failed machines present (i.e., each
server is always available for the waiting failed ones). Such type of machine repair problems also received considerable
attention in the literature, as shown by the literature surveys of Ke and Wang [2], Wang et al. [3,4] and Haque and Armstrong
[5]. So far, however, only a few works is taken into consideration the server vacations in machine repair problems (see [6–8]).
Gupta [6] first analyzed a machine repair problem with warm standbys and server vacations, in which the single server
min Rd.,
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leaves a vacation when the repair facility is empty. Gupta’s work [6] gave an algorithm to compute the steady-state prob-
ability distribution of the number of failed machines in the system. Gupta’s models were extended to server-breakdown case
by Ke [7], who derived system performance measures and performed a cost sensitivity analysis. Ke and Lin [8] dealt with the
reliability measures of a multi-server machine repair model with standby and multiple vacations. Ke and Wang [9] examined
the steady-state results for a machine repair problem with two types of standby and multi-server vacations under two vaca-
tion policies. They performed a sensitivity analysis to investigate the effect on the joint optimum number of standbys and
servers if the system parameters take on other specific values. Later, Jain et al. [10] studied the machine repair problem with
mixed standbys (warm and cold) where the failed unit may balk or renege in case of heavy load of failed units. Ke and Lin
[11] performed a sensitivity analysis of two machine repair models including various repair rates in each phase and two-
phase with differing numbers of technicians. Ke et al. [12] considered three vacation policies of machine repair problem
in production systems with spares and server vacations. Furthermore, Garg et al. [13] investigated the availability of
crank-case manufacturing system in an automobile industry. They showed that the availability of the system can be im-
proved using proper maintenance planning and scheduling. More recently, Yue et al. [14] considered a machine repair prob-
lem with warm standbys and two heterogeneous repairmen. They investigated the problem from the viewpoints of both
queueing and reliability. Wang et al. [15] provided an optimization analysis of the machine repair problem with balking
and variable number of servers Recently, Ke et al. [16] proposed a multi-repairmen problem with warm standbys, pressure
coefficient, imperfect coverage and server breakdown. They performed a comparative analysis among two optimal ap-
proaches for searching discrete and continuous parameters.

Existing research works on machine repair problems with multi-server vacations, including those above, mainly focused
on server individual vacation at system empty (i.e., at each repair completion instant, the server individually takes a vacation
each time system empty). From practical viewpoint, however, some servers may together take vacations when the number of
failed machines reduced a predetermined threshold (see [17–19]). Ke and Wu [20] considered a machine repair problem
operating a (R,V,K) synchronous vacation policy, where the vacation policy is a multiple (infinite) vacation. It should be
noted that multiple vacation policy is different from single vacation policy, which the former cannot be reduced to the latter
(referred to [21,9]). Comparable work on machine repair problems with synchronous single vacation policy is rarely found in
the literature. Thus, we develop a multi-server machine repair problem with standby where the servers apply a (V,R) syn-
chronous single vacation policy when the number of failed machines is reduced to R � V. Besides the lack of research work on
this problem, our study is also motivated by some practical systems as follows.

Consider a firm has many departments including the research and development (R&D) department, the equipment
department, the productive department, the quality control department, etc. The employees in the equipment department
are responsible for and improving the machine reliability, evaluating the availability and performance of the machines, man-
aging the components for the repair of machines, and creating and updating the relative log file. The main tasks of the
employees are maintaining and keeping the operations of equipment in productive department. To provide enough produc-
tion capacity to satisfy the orders placed by the customers. The number of operating machines should be greater than or
equal to a threshold value called as M. It is assumed there are S standby machines as spares for the operating machines.
In the equipment department, there are R employees who provide maintenance service for these machines. Suppose these
employees are configurable. When the workload in the equipment department become lower, partial manpower, V of R
employees, will be dispatched to organize the relative log file and loop up the maintain records to monitor the statues of
each machines. That is, the employees may leave the system a random time. It can be regarded as the synchronous vacation
of employees. For the machine maintain service in the equipment department, it is a multi-server queueing system with syn-
chronous vacation policy where partial server will take a synchronous vacation together. We can investigate this queueing
system to evaluate the employee’s performance.

Our model can be implemented to another practical problem based on the work of Chelst et al. [22]. Consider a coal trans-
portation system with (M + S) identical trains which are response for transiting the coal from the mines to the unloader sys-
tem to dump the coal. The unloader system involves R employees to unload the train. Partial (V) employees may be assigned
to execute some secondary tasks such as maintenance or clean when they are idle. Once the secondary tasks are completed,
the employees will return to the unloader system. The employees and the trains correspond to servers and machines, respec-
tively. The unloaded times and the times of executing secondary tasks can be regarded as service times and vacation times,
respectively. In this study, we wish to develop a computational model that helps managers for the following important ques-
tions: (1) Under a certain cost, what is the optimum spare machines and optimal (V,R) policy that minimize the expected
cost of this system; That is how many standbys are needed and how many repairmen utilize their idle time during the oper-
ation. (2) After standbys and (V,R) policy are decided, how to adjust the service rate and vacation rate such that the cost is
possibly reduced.

The paper is organized as follows; In Section 2, the system assumptions are described. In Section 3, the steady-state equa-
tions are obtained and the computable forms of the steady-state probabilities are derived using the matrix-analytic method.
Some system performance measures are derived in Section 4. In Section 5, a cost model is developed to determine the opti-
mal values of servers, standbys, vacation servers, service rate and vacation rate in order to minimize the total expected cost
per unit time while maintaining a specified level of system availability. Some numerical examples and sensitivity analyses
are provided. Section 6 concludes.
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2. System description

In this research, a machine repairable system with M identical and independent machines operating simultaneously in
parallel, S standby machines, and R repairman who are responsible for maintaining these machines is considered. Our anal-
ysis is based on the following assumptions.

2.1. Assumptions

1. M operating machines are required for the functioning of the system. In other words, the system is short if only if S + 1 or
more machines fail.

2. Operating machines are subject to breakdowns according to an independent Poisson distribution with rate k. When an
operating machine breaks down, it will immediately be backed up by an available standby.

3. Each of the standby machines fails independently of the others with Poisson rate a, where (0 6 a 6 k). When a standby
machine moves into an operating state, its characteristics will be that of an operating machine.

4. Every failure machines are repaired by R repairmen in the order of failures, that is, the FCFS discipline. The repair time is
assumed to be independent and identically exponentially distribution with parameter l.

5. When a failed standby machine is repaired, it is as good as a new one and goes into standby state unless the system is
short. At this time, the repaired machine will be sent back to an operating state immediately.

6. Each repairman can repair only one failed unit at a time. The failed unit that on arriving at the repair facility finds all
repairmen busy or on a vacation must wait in the queue until a repairman is available.

7. When the failure machines queueing up for repair is less than (R–V), that is, the number of idle repairman is more than V,
these V idle repairmen will take a single vacation together.

8. The system allows only V repairmen on vacation at any time. The vacation time is distributed as an exponential with rate
h. The various stochastic processes involved in this system are independent of each other.

It should be noted that the repairmen adopt a synchronous single vacation policy and they wait idly for the first failed
machine to arrive as the vacation period terminated.

3. Steady-state results

For the M/M/R machine repair model with standbys under a (V, R) synchronous single vacation policy, we describe the
state of the system by the pairs {(i, n):i = V, B, and n = 0, 1, ..., M + S}, where i = V(B) indicates that there are V repairmen on
vacation state (or not), and n represents the number of failed machines in the system. The mean failure rate kn and mean
repair rate ln for this system are given by
kn ¼
Mkþ ðS� nÞa; 0 6 n 6 S;

½M � ðn� SÞ�k; S 6 n 6 M þ S;

0; otherwise

8><
>:
and
ln ¼
nl; 1 6 n 6 R;

0; otherwise:

�

In steady-state, the following notations are used
PV,n � probability that there are n failed machines in the system when there are V repairmen on vacation.
PB,n � probability that there are n failed machines in the system when there are no repairmen on vacation,
where 0 6 n 6 M þ S.

3.1. Steady-state equations

Using birth and death process and referring to the steady-transition-rate diagram shown in Fig. 1, the steady-state equa-
tions for the M/M/R machine repair problem with standbys under a (V,R) synchronous single vacation policy are obtained as
follows.

(1) i = V
ðk0 þ hÞPV ;0 ¼ l1PV ;1; ð1Þ

ðki þ li þ hÞPV ;i ¼ ki�1PV ;i�1 þ liþ1PV ;iþ1; 1 6 i 6 R� V � 1; ð2Þ

ðkR�V þ lR�V þ hÞPV ;R�V ¼ kR�V�1PV ;R�V�1 þ lR�V PV ;R�Vþ1 þ lR�Vþ1PB;R�Vþ1; ð3Þ
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ðki þ lR�V þ hÞPV ;i ¼ ki�1PV ;i�1 þ lR�V PV ;iþ1; R� V þ 1 6 i 6 M þ S� 1; ð4Þ

ðlR�V þ hÞPV ;MþS ¼ kMþS�1PV ;MþS�1: ð5Þ
(2) i = B
k0PB;0 ¼ l1PB;1 þ hPV ;0; ð6Þ

ðki þ liÞPB;i ¼ ki�1PB;i�1 þ liþ1PB;iþ1 þ hPV ;i; 1 6 i 6 R� V � 1; ð7Þ

ðkR�V þ lR�V ÞPB;R�V ¼ kR�V�1PB;R�V�1 þ hPV ;R�V ; ð8Þ

ðki þ liÞPB;i ¼ ki�1PB;i�1 þ liþ1PB;iþ1 þ hPV ;i; R� V þ 1 6 i 6 R� 1; ð9Þ

ðki þ lRÞPB;i ¼ ki�1PB;i�1 þ lRPB;iþ1 þ hPV ;i; R 6 i 6 M þ S� 1; ð10Þ

lRPB;MþS ¼ kMþS�1PB;MþS�1 þ hPV ;MþS: ð11Þ
There is no way of solving (1)–(11) in a recursive manner to develop the explicit expressions for the steady-state prob-
abilities. In the next section, we provide a matrix-analytic method to deal with this problem.

3.2. Matrix-analytic solutions

To analyze the resulting system of linear equations (1)–(11), a matrix-form property is used. Following the concepts by
Neuts [23], one finds that the transition rate matrix Q of this Markov chains can be partitioned as the following form:
Q ¼
CðMþSþ1Þ�ðMþSþ1Þ PðMþSþ1Þ�ðMþSþ1Þ

UðMþSþ1Þ�ðMþSþ1Þ XðMþSþ1Þ�ðMþSþ1Þ

� �
: ð12Þ
The matrix Q is a square matrix of order 2(M + S + 1) and each entry of the matrix Q is listed in the following:
C ¼

c0 l1

k0 c1 l2

. .
. . .

. . .
.

. .
. . .

. . .
.

kR�V�2 cR�V�1 lR�V

kR�V�1 cR�V lR�V

. .
. . .

. . .
.

. .
. . .

. . .
.

kMþS�2 cMþS�1 lR�V

kMþS�1 cMþS

2
66666666666666666666664

3
77777777777777777777775

: ð13Þ
All elements in P are equal to zero except PR�V+1,R�V+2 = lR�V+1 and U = hIM+S+1. IM+S+1 denotes the identity matrix of order
M + S + 1.
XðMþSþ1Þ�ðMþSþ1Þ ¼

r0 l1

ko r1 l2

. .
. . .

. . .
.

. .
. . .

. . .
.

kR�V�2 rR�V�1 lR�V

kR�V�1 rR�V 0
kR�V rR�Vþ1 lR�Vþ2

. .
. . .

. . .
.

kMþS�2 rMþS�1 lR

kMþS�1 rMþS

2
6666666666666666666664

3
7777777777777777777775

: ð14Þ
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The diagonal elements of C and X indicated by ci and ri, 0 6 i 6 M þ S, are such that the sum of each column of Q is zero.
Let P denote steady-state probability vector of Q. By partitioning the vector P ¼ ½PV PB�T with PV and PB are both

(M + S + 1) � 1 vector, one finds that the steady-state equations QP = 0 are given by
Fig. 1.
CPV þPPB ¼ 0;
UPV þXPB ¼ 0:

ð15Þ
Using the following normalizing equation:
X
i2fV ;Bg

XMþS

n¼0

Pi;n ¼ eTP ¼ 1; ð16Þ
where e represents a column vector with suitable size and each component equal to one. Eq. (16) is substituted into the first
(redundant) row in Eq. (15) to yield
Q �P ¼
C� P�

U X

� �
P ¼ ½1;0; . . . ;0�T; ð17Þ
C⁄ and P⁄ are the matrices which are obtained by replacing each elements in the first row of C and P with one (for Eq.
(16), the normalization condition). The solution of Eq. (17) provides the steady-state probabilities as
P ¼ ðQ �Þ�1½1;0; . . . ;0�T ¼
Q�1

11:2 �Q�1
11:2II�X�1

�X�1UQ�1
11:2 X�1UQ�1

11:2P
�X�1 þX�1

" #
½1;0; . . . ;0�T : ð18Þ
where Q11�2 = C⁄ �P⁄X-1U. Finally, it is observed that the steady-state probabilities PV and PB are equal to the first column
of matrix Q�1

11:2 and �X�1UQ�1
11:2, respectively.

4. Performance analysis

In this section, we deal with the steady-state availability and the mean time to system failure analysis. Also, the explicit
expressions of some performance measures for the machine repair problem are included.

4.1. Availability and reliability analysis

It is assumed that the system breaks down if and only if (S + 1) or more machines fail. The steady-state availability can be
calculated as
A:V : ¼ Pð0 6 n 6 sÞ ¼
XS

n¼0

PV ;n þ
XS

n¼0

PB;n ¼ Vsþ1ðPV þ PBÞ

¼ v sþ1ðIMþSþ1 �X�1UÞQ�1
11:2½1; 0; . . . ;0�T; ð19Þ
where vk represents a row vector with suitable size which the first k elements are equal to 1 and zero otherwise.
To calculate the MTTF, we reduce the original transition rate matrix and delete the rows and columns for the absorbing

state(s). The new matrix is called B as
The steady-transition-rate diagram for the multiple-server machine repair problems with standbys under a (V,R) synchronous single vacation policy.
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B ¼
Cr Pr

Ur Xr

� �T

; ð20Þ
where Cr, Pr, Ur and Xr denote the square sub-matrix of C, P, U and X, respectively. The subscribe ‘‘r’’ means reducing the
matrix by deleting the (S + 2)th � (M + S + 1)th rows and (S + 2)th � (M + S + 1)th columns. Then, the expected time to reach
an absorbing state is calculated from
E½TPð0Þ!PðabsorbingÞ � ¼ Pð0ÞT
Z 1

0
eBtdt ¼ Pð0ÞTð�B�1Þe: ð21Þ
where P(0) = [1, 0, ..., 0]T denotes the initial conditions for this problem.

4.2. Other system performance measures

Our analysis is based on the following system performance measures. Let

E½F� � the expected number of failed machines in the system,
E½Fq� � the expected number of failed machines in the queue,
E½O� � the expected number of operating machines in the system,
E½S� � the expected number of acting standby machines in the system,
E½B� � the expected number of busy repairmen in the system,
E½V � � the expected number of vacation repairmen in the system,
E½I� � the expected number of idle repairmen in the system,
M:A: �machine availability (the fraction of the total time that the machines are working),
O:U: � operative utilization (the fraction of busy servers).

The expressions for E[F], E[Fq], E[O], E[S], E[B], E[V] and E[I] are obtained as follows:
E½F� ¼
XMþS

n¼0

nðPV ;n þ PB;nÞ ¼ ½0;1;2; . . . ;M þ S�ðPV þ PBÞ ¼ ½0;1;2; . . . ;M þ S�ðIMþSþ1 �X�1UÞQ�1
11:2½1;0; . . . ;0�T; ð22Þ
E½Fq� ¼
XMþS

n¼0

maxf0;n� ðR� VÞgPV ;n þ
XMþS

n¼0

maxf0; n� RgPB;n ¼
XMþS

n¼R�Vþ1

½n� ðR� VÞ�PV ;n þ
XMþS

n¼Rþ1

ðn� RÞPB;n; ð23Þ
E½O� ¼
XMþS

n¼0

minfM;M þ S� ngðPV ;n þ PB;nÞ; ð24Þ
E½S� ¼
XMþS

n¼0

maxf0; S� ngðPV ;n þ PB;nÞ ¼
XS�1

n¼0

ðS� nÞðPV ;n þ PB;nÞ; ð25Þ
E½B� ¼
XMþS

n¼0

minfn;R� VgPV ;n þ
XMþS

n¼0

minfn;RgPB;n; ð26Þ
E½V � ¼
XMþS

n¼0

VPV ;n ¼ VeT PV ¼ VeT Q�1
112½1; 0; . . . ; 0�T; ð27Þ
E½I� ¼ R� E½B� � E½V �: ð28Þ
Following Benson and Cox [24], the machine availability and the operative utilization are defined by
M:A: ¼ 1� E½F�
M þ S

and O:U: ¼ E½B�
R
: ð29Þ
Furthermore, using the Little’s formula we obtain the expected waiting time in the system, E[W], and in the queue E[Wq]
as
E½W� ¼ E½F�=ke and E½Wq� ¼ E½Fq�=ke; ð30Þ
where ke ¼
P

i2fV ;Bg
PMþS

n¼0 knPi;n is the effective arrival rate into the system.
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5. Cost analysis

In this section, we construct a total expected cost function per unit time based on the system performance measures, and
impose a constraint on the system availability in which S, R and V are discrete decision variables.

First let

Ch � cost per unit time when one failed machine joins the system,
Ce � cost per unit time of a failed machine after all spares are exhaused (downtime cost),
Cs � cost per unit time when one machine is functioning as a spare (inventory cost),
Cb � cost per unit time when one repairmen is busy,
Ci � cost per unit time when one repairmen is idle,
Cf � cost per unit time of each repairmen,
c � reward per unit time when one repair is on vacation.

5.1. Direct search method for optimal S, R and V

Using the definitions of these cost elements listed above, the total expected cost function per unit time is given by
TcostðS;R;VÞ ¼ ChE½F� þ CsE½S� þ CeðM � E½O�Þ þ CbE½B� þ CiE½I� þ RCf � cE½V �: ð31Þ
Some production system always requires minimum of M machines in operation or a certain level of system availability.
Our object is to determine the optimum number of standbys S, say S⁄, the optimum number of repairmen R, say R⁄, and the
optimum vacation policy level V, say V⁄, simultaneous which minimize the cost function Tcost(S, R, V) and the system avail-
ability is maintained at a certain level.

Following the concept of Hilliard [25], the cost minimization problem can be illustrated mathematically as
Minimize
S;R;V

TcostðS;R;VÞ: ð32Þ

Subject to A:V : ¼
XS

n¼0

ðPV ;n þ PB;nÞP A; ð33Þ
where A.V. is the steady-state probability that at least M machines are in operation and function properly (system availabil-
ity) and A is the availability level required.

A direct search method may be used to obtain potentially useful results. The optimization algorithm is a direct search
approach over a grid whose boundaries for decision variables are selected in order to guarantee that the global optimum
is obtained in the interior region (see [25]). The direct search algorithm is applied in the set {M P S and M P R P V; S, R,
V are positive integers}.

The specific steps in the direct search algorithm for obtaining the optimal value (S⁄, R⁄, V⁄) are as follows:

Step 1. Find the optimal number of repairmen, and the optimal vacation policy level, for S standbys, i.e.,
Min
R;V

TcostðS;R;VÞ ¼ TcostðS;R�;V�Þ
subject to the availability constraint is satisfied.
Step 2. Step 2. Find the set of all minimum cost solutions for S = 1, 2, ..., M, i.e., H = {Tcost(S, R⁄, V⁄):S = 1, 2, ..., M}.
Step 3. Find the minimum cost solutions in this set, i.e.,
min
S

H ¼ TcostðS�;R�;V�Þ:
We provide an example to illustrate the direct search algorithm.
Example. Consider M = 15 and the system parameters k ¼ 0:6, l = 2.5, h = 0.2, a = 0.3, the cost elements and availability as
follows

Ch = 10, Ce = 125, Cs = 50, Cb = 75, Ci = 40, Cf = 80, c = 60, and A = 0.9.
Step 1. Find R⁄ and V⁄ for S standbys necessary to satisfy the required availability, where S = 1, 2, ..., 15. (see Table 1).
Step 2. From Table 1, H={$1209.55,$1108.82,$1048.50,$1050.06,$1085.63,. . .}.
Step 3. From step 2, the optimal solution Tcost(S⁄, R⁄, V⁄) = $1048.50 is achieved at S⁄ = 8, R⁄ = 7, V⁄ = 2 and the correspond-
ing availability is 0.90311.



Table 1
The expected cost Tcost(S⁄, R⁄, V⁄) and the system availability A.V. (k ¼ 0:6, l = 2.5, h = 0.2, a = 0.3).

S 6 7 8 9 10

(S⁄, R⁄, V⁄) (6,8,1) (7,7,1) (8,7,2) (9,6,1) (10,6,1)
Tcost(S⁄, R⁄, V⁄) 1209.55 1108.82 1048.50 1050.06 1085.63
A.V. 0.91014 0.92727 0.90311 0.92069 0.93692

S 11 12 13 14 15

(S⁄, R⁄, V⁄) (11,6,1) (12,6,1) (13,6,1) (14,6,1) (15,6,1)
Tcost(S⁄, R⁄, V⁄) 1122.34 1159.65 1197.19 1234.70 1271.99
A.V. 0.94896 0.95805 0.96502 0.97044 0.97472

Fig. 2. Cost and availability surfaces for (M, S⁄, R⁄, V⁄) = (15, 8, 7, 2) as k ¼ 0:6 and a = 0.3.
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5.2. Optimal (l, h)

In practice, the service rate and vacation rate could be adjusted to minimize the total cost as the number of machines,
standby, repairmen, and vacation policy level are known. It is assumed that there exists a maximum service rate of each
repairman lU, a maximum vacation rate hU of these V repairmen and a given budget C. Then, this cost minimization problem
can be illustrated mathematically as
Minimize
06l6lU ;06h6hU

Tcostðl; hÞ=C � 1: ð34Þ
Subject to A:V : ¼
XS

n¼0

ðPV ;n þ PB;nÞP A: ð35Þ
The object function can be considered as an alternative form of the original cost function. After fixing the discrete
variables, we deal with the optimization of the continuous variables. Under the same cost elements listed above and given
k ¼ 0:6, a = 0.05, lU = 5.0, C = 2000, three surfaces Tcost(l, h)/C � 1, A.V. - A, and z = 0 for (M, S⁄, R⁄, V⁄) = (15, 8, 7, 2) are
represented graphically in Fig. 2. The optimal service rate l⁄ and the optimal vacation rate h⁄ are the point achieving the
lowest (minimum) cost in the area (feasible region) of A:V :� A P 0 (availability constraint). From Fig. 2, one sees that the
optimal solution is (l⁄, h⁄) = (2.9, 0.02) and the corresponding minimum object function is �0.48925 (Tcost(l⁄, h⁄) = (1 �
0.48925) ⁄ 2000 = 1021.5).



Table 2
System performance measures of the machine-repair problem with standbys under a (V,R) synchronous single vacation policy under optimal operating
conditions (l = 2.5,h = 0.2).

(k;aÞ (0.3,0.3) (0.9,0.3) (1.5,0.3) (0.6,0) (0.6,0.3) (0.6,0.6)

(S⁄, R⁄, V⁄) (5,4,1) (11,9,2) (14,13,1) (8,6,1) (8,7,2) (10,6,1)
Tcost 643.358 1416.81 2145.64 1022.11 1048.50 1073.32
A.V. 0.91941 0.90417 0.90509 0.92854 0.90311 0.90528
E[F] 2.61779 7.00162 9.93347 4.22717 4.84068 6.30274
E[Fq] 0.53192 1.17675 0.55327 0.66541 0.88737 1.81540
E[O] 14.8474 14.7711 14.7755 14.8407 14.7850 14.7891
E[S] 2.53484 4.22728 4.29107 3.93212 3.37432 3.90813
E[B] 2.08587 5.82487 9.38020 3.56177 3.95332 4.48734
E[V] 0.81645 1.77055 0.84624 0.81343 1.73861 0.88529
E[I] 1.09768 1.40459 2.77355 1.62481 1.30807 0.62737
M.A. 0.86911 0.73071 0.65747 0.81621 0.78954 0.74789
O.U 0.52147 0.64721 0.72155 0.59363 0.56476 0.74789

Table 3
System performance measures of the machine-repair problem with standbys under a (V,R) synchronous single vacation policy under optimal operating
conditions (k ¼ 0:6, a = 0.3).

(l, h) (1.2,0.5) (2.4,0.5) (3.6,0.5) (2.5,0.2) (2.5,0.5) (2.5,1.0)

(S⁄, R⁄, V⁄) (14,10,10) (9,6,1) (6,5,1) (8,7,2) (8,6,1) (10,6,2)
Tcost 1847.76 1065.20 822.23 1048.50 1030.20 1042.37
A.V. 0.90330 0.91424 0.93190 0.90311 0.91024 0.92091
E[F] 9.75034 5.30466 3.15025 4.84069 4.77319 5.76921
E[Fq] 1.24683 1.11666 0.42376 0.88737 0.80929 1.68337
E[O] 14.7644 14.8087 14.8681 14.7850 14.8057 14.8179
E[S] 4.48532 3.88670 2.98165 3.37432 3.42110 4.41291
E[B] 8.50350 4.18800 2.72649 3.95332 3.96390 4.08584
E[V] 0.01088 0.72677 0.70269 1.73861 0.71615 1.21740
E[I] 1.48562 1.08524 1.57082 1.30807 1.31995 0.69676
M.A. 6.63782 0.77897 0.84999 0.78954 0.79247 0.76923
O.U. 0.85035 0.69800 0.54530 0.56476 0.66065 0.68097

Table 4
System performance measures of the machine-repair problem with standbys under a (V,R) synchronous single vacation policy under optimal operating
conditions (M = 15, S = 8,R = 7,V = 2).

(k;aÞ) (0.3,0.3) (0.6,0.3) (0.9,0.3) (0.6,0) (0.6,0.3) (0.6,0.6)

(l⁄, h⁄) (1.5,0.02) (2.9,0.02) (4.3,0.02) (2.7,0.02) (2.9,0.02) (3,0.02)
Tcost 1020.33 1021.50 1021.60 1026.46 1021.50 1017.43
A.V. 0.94548 0.95160 0.95404 0.95014 0.95160 0.94472
E[F] 4.36272 4.04968 3.92574 3.82927 4.04968 4.37077
E[Fq] 0.63529 0.54765 0.51498 0.51958 0.54765 0.64493
E[O] 14.8935 14.90267 14.9066 14.8936 14.90267 14.8917
E[S] 3.74381 4.04764 4.16762 4.27711 4.04764 3.73750
E[B] 3.72746 3.50203 3.41076 3.30969 3.50203 3.72585
E[V] 1.94268 1.96119 1.97082 1.94829 1.96119 1.97089
E[I] 1.32986 1.53677 1.61842 1.74202 1.53677 1.30326
M.A. 0.81032 0.82393 0.82932 0.83351 0.82393 0.80997
O.U. 0.53249 0.50029 0.48725 0.47281 0.50029 0.53226
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5.3. Sensitivity analysis

Considering M = 15, the same cost elements and system parameters listed in above example, we perform a sensitivity
analysis for changes in the joint optimum value (S⁄, R⁄, V⁄) along with changes in specific values of the system parameters
k, l, h and a. The minimum expected cost Tcost(S⁄, R⁄, V⁄) and values of various system performance measures A.V. E [F],
E[Fq], E[O], E[S], E[B], E[V], E[I], M.A., and O.U. at the optimum values (S⁄, R⁄, V⁄) are shown in Tables 2 and 3 for different val-
ues of (k,a) and (l, h).

From Table 2, we observe that (i) Tcost(S⁄, R⁄, V⁄) increases as k or a increases; (ii) S⁄ and R⁄ increase as k increases; and (iii)
S⁄ increases as a increases. One sees from Table 3 that (i) Tcost(S⁄, R⁄, V⁄) decreases as l increases; (ii) S⁄ and R⁄ decrease as l
increases; and (iii) S⁄ increases as h increases.

Similarly, we are also interesting in the effect of (l⁄, h⁄) by changing the values of other two continuous system param-
eters k and a when M = 15 and (S⁄, R⁄, V⁄) = (8, 7, 2) are determined. In Table 4, the optimum value (l⁄, h⁄) and several system



C.-H. Wu, J.-C. Ke / Applied Mathematical Modelling 38 (2014) 2180–2189 2189
performance measures for specific values of k and a are given. It is observed that l⁄ increases as k or a increases (roughly
insensitive to a) and h⁄ is changeless as k or a changes. Apparently, increasing the service rate is more effective in reducing
cost than adjusting the vacation rate. Consequently, the adjustment (increase) of the service rate l will be considered firstly
until l⁄ = lU then adjusts (increases) the vacation rate h next.

6. Conclusions

The systematic methodology provided in this paper works efficiently for a machine repair model with standbys under a
synchronous single vacation policy. The stationary probability vectors were obtained in terms of matrix forms using the
technique of matrix partition. Firstly, we developed the steady-state solutions in matrix forms for the machine repair model
by using the Markov process. These solutions were used to obtain the various system performance measures, such as the
steady-state availability, MTTF, the expected number of failed machines in the queue / system, the expected number of idle,
busy and vacation servers, machine availability, operative utilization, etc. Next, we developed a cost model for the machine
repair model to determine the joint optimum number of standbys, servers and vacation servers in order to minimize the
steady-state expected cost per unit time, while maintaining a specified level of system availability. After the determination
of the three discrete decision variables, the optimal adjustments of service rate and vacation rate were also considered. Two
procedures were provided to handle this optimization problem. Finally, a sensitivity analysis was performed to investigate
the effect on the joint optimum values if the system parameters take on other specific values. We extended the traditional
vacation policy to more generalization one. The investigated model can be used to evaluate the performance of some prac-
tical queueing systems similar to mentioned earlier in Introduction. Specifically, it may be employed to fit the system with
configurable servers which have multiple tasks.
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