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Abstract—Amachine-learning (ML) assisted cardiac sensor SoC
(CS-SoC) is designed for mobile healthcare applications. The het-
erogeneous architecture realizes the cardiac signal acquisition, fil-
tering with versatile feature extractions and classifications, and
enables the higher order analysis over traditional DSPs. Besides,
the asynchronous architecture with dynamic standby controller
further suppresses the system active duty and the leakage power
dissipation. The proposed chip is fabricated in a 90-nm standard
CMOS technology and operates at 0.5 V–1.0 V (0.7 V–1.0 V for
SRAM and I/O interface). Examined with healthcare monitoring
applications, the CS-SoC dissipates 48.6/105.2 µW for real-time
syndrome detections of ECG-based arrhythmia/VCG-based my-
ocardial infarction with 95.8/99% detection accuracy, respectively.

Index Terms—Arrhythmia, biomedical signal processor, classifi-
cation, ECG, feature extraction, machine learning, myocardial in-
farction, VCG.

I. INTRODUCTION

M OBILE devices integrated with miniaturized sensors
enable the opportunities for versatile healthcare appli-

cations. For instance, continuous cardiac signal monitoring of
the electrocardiogram (ECG), vectorcardiogram (VCG) and
phonocardiogram (PCG) supports both the early detection of
chronic and emergent heart events [1]–[3]. Therefore, early
treatments can be applied to the users. Long-term monitoring
is desired for such applications to trace the abnormal events.
However, the wireless transmission dominates the power dis-
sipation of mobile devices and limits the monitoring duration
[4]. Especially, the transmission energy grows when the reso-
lution and monitored channel number increase. Alternatively,
the on-sensor analysis that extracts the key information of
physiological signal not only reduces the transmission data for
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extended monitoring time, but also provides local indications
for reduced communication latency.
There have been several biomedical signal processors de-

signed for on-sensor analysis. The general purpose processor
(GPP) approach provides high flexibility, but requires more
computation cycles [5], [6]. Besides, only basic features are
extracted. A dedicated processor enables atrial fibrillation
detection with low power consumption; however, only single
syndrome is detected [7]. A RISC based classifier enhances the
flexibility for multiple cardiac syndrome detections, whereas
only arrhythmias are detected [8]. These aforementioned solu-
tions based on conventional DSP algorithms provide limited
feature extractions or detectable syndromes, which confine the
use for in-depth monitoring. The machine learning (ML) tech-
niques provide advanced data analysis ability [3]. However,
the computation intensive algorithms are hard to perform on
the traditional DSP processors [5]–[8]. Though an SoC inte-
grates a dedicated ML classifier, the feature types are limited
[9]. Moreover, pre-processing is not included to enhance the
analysis accuracy.
On the other hand, the power budget of the mobile devices

is limited. The complicated analysis algorithms and large data
storage lead to increased system power. Although lowering
supply voltage significantly reduces the power dissipation, the
leakage power during computation and sleep modes becomes
dominated. Generally, power gating technique is used to save
the leakage power in sleep mode. Nevertheless, the naive
approach requires large power switch to prevent voltage drop,
resulting in large parasitic capacitance and long wakeup time
[24].
Accordingly, this work proposes a cardiac sensor SoC (CS-

SoC) with data quality enhancements and accelerated ML func-
tions. Moreover, low power dissipation is achieved to fulfill
the requirements for mobile healthcare applications. The design
features include a data management processor (DMP) that im-
proves the signal quality while compressing the required data
storage. A machine learning processor (MLP) supports the ver-
satile feature extractions and classifications. Accompanied with
the low-power techniques of voltage scaling, duty-cycling, and
memory compression, the system power is reduced. Besides, the
proposed dynamic standby controller (DSC) further diminishes
the leakage current in sleep mode, enabling minimized average
power dissipation and fast wakeup time. Considering signal ac-
quisition and intelligent analysis based on the proposed features,
the CS-SoC enables 95% accurate arrhythmia and myocardial

0018-9200 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



802 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 4, APRIL 2014

Fig. 1. System overview of the proposed CS-SoC with the ML-assisted framework.

infarction (MI) syndrome detection with W-level power dissi-
pation for mobile healthcare applications.
This paper is organized as follows. Section II gives the de-

scription of the overall algorithm and architecture of the pro-
posed CS-SoC. Section III describes the data management pro-
cessor for noise cancellation and data compression. The ML
processor for feature extraction and syndrome classification is
shown in Section IV. Section V discusses the low-power chip
implementations. Section VI provides the experimental results
and comparisons, followed by the conclusion in Section VII.

II. OVERALL SYSTEM DESCRIPTION AND ARCHITECTURE

A. System Overview and Algorithm Description

As a demonstration case, Fig. 1 describes the ML assisted
framework with the processing flow and corresponding hard-
ware for 3-channel VCG-based MI detection. The processing
flow mainly comprises the operations of signal acquisition,
noise cancellation, feature extraction and classification. The
cardiac signal is first amplified, filtered and digitized by the
sensor interfaces, including the analog front-end (AFE) and
the ADC, modified from [8], [10]. In order to enhance the
signal quality for better detection accuracy, the residual noise
is removed by the data management processor. Meanwhile,
the data is compressed for reduced data storage. Furthermore,
the CS-SoC includes an ML processor and general purpose
processor to perform the on-sensor analysis. Besides compres-
sion, the on-sensor data analysis includes feature extraction and
classification to reduce the transmission data for system energy
saving. Though data compression is intuitive, the reduction is
limited to 2 to 10 [8]. The extracted features, such as heart
rate, further reduce the transmission data to 1%. However, the
original waveform cannot be reconstructed from the features.
Hence, to meet the requirements from medical doctors, the
CS-SoC performs classification to select the abnormal wave-
forms for transmission. Real-time detection is achieved with
the classification model, which is offline learned to save the
computation power. Once the abnormal signal is classified, the

Fig. 2. The ECG lead II signal and VCG signal of two MI patients:
(a) patient A; (b) patient B.

crypto processor can be activated to encrypt the data before
sending to the wireless module.
The syndrome detection suffers from the noise induced in

mobile environments and the signal variability to each indi-
vidual. Although the noise can be filtered out, the variability re-
sults in poor detection performance with the conventional DSP
algorithms. For instance, Fig. 2 shows the ECG lead II and VCG

waveforms from two different MI patients. Although the
syndrome of both patients is the same, the waveforms vary with
individuals. Accordingly, the ML algorithms [3] are involved
to enhance the analysis accuracy. Considering in-time event de-
tection with sufficient computing capability, hardware-friendly
noise reduction and ML techniques are applied.
1) Noise Cancellation: Generally, the cardiac signal in mo-

bile condition is distorted by the high-frequency noise and base-
line drift. The high-frequency noise is directly filtered with FIR
filter. However, the bandwidth of low-frequency baseline drift
is overlapped with ECG signal, resulting in difficulty in base-
line drift cancellation. Direct high-pass filtering (HPF) [11] dis-
torts the original signal. The dyadic wavelet transform (DYWT)
[12] separates the baseline drift and signal, but the higher scale
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Fig. 3. Performance comparison of the baseline estimation methods.

wavelet decomposition and combination lead to raised hard-
ware complexity. Contrarily, the median filter and morpholog-
ical filter (MF) estimate the signal baseline [12], [13] with lower
complexity. Fig. 3 compares the simulation results of these fil-
ters, where the mean baseline deviation (MBD) counts for the
baseline estimation performance and is expressed as

(1)

where and are the time interval, estimated and
original baseline, respectively. Considering the least MBD with
moderate hardware requirement, the MF is adopted for baseline
drift cancellation.
2) Feature Extraction: The ML assisted MI detection in-

volves two-stage feature extractions and a classification stage.
Fig. 4 illustrates the feature extraction flow. The first feature
extraction stage segments the cardiac cycle with P, Q, R, S, and
T boundaries by the wavelet-based delineator proposed in [8].
The performance is further fine-tuned, where the detection sen-
sitivity and specificity of QRS complex is 99.97% and 100.0%,
respectively.
Based on the segmented cardiac cycles, the second feature

extraction stage performs higher order time-series and shape
analysis. A common time-series feature extraction is by autore-
gressive (AR) modeling [14], translating the time series signal
into several AR model coefficients. However, the inter-channel
correlation is not utilized. Hence a multivariate AR (MAR) es-
timator [15], considering multi-channel signal, is applied in this
work. The equation is shown below:

(2)

where is the multi-channel signal, is the model order,
and is the prediction error. ForMI detection with 3-channel
VCG and 4th order MAR, 36 MAR coefficients are es-
timated.
In addition to model the cardiac cycles, the shape analysis

(SA) is performed on the segmented P, Q, R, S, and T waves.
Since the cardiac signal morphology often changes according to
heart status, the 3rd and 4th order principal moments (skewness
and kurtosis) are estimated to indicate the skew direction and
the sharpness, respectively. Besides modeling and the shapes,
additional features including the vector angles, magnitudes, ra-
tios and other time domain statistics are extracted [3].
3) Classification: To evaluate the MI detection performance,

the maximum likelihood classification (MLC), support vector
machine (SVM), and th nearest neighbor (k-NN) classifiers are

applied. The feature selection is done offline in order to reduce
the required computation and storage.
Based on the maximum a posteriori (MAP) [3], the MLC

decision is made by finding the class such that the following
criteria is minimized:

(3)

where represents the extracted feature vector, is the class
number, and , and are the offline learned parameters.
The SVM performs binary classification by finding the optimal
decision boundary that separates the two classes in -dimen-
sional feature space, where is the feature number. The class
decision is expressed as

(4)

where is the number of support vectors
are the trained parameters, and is the kernel function
to find the decision boundary, either linear or nonlinear. If the
Class(FV) is greater than zero, the FV belongs to MI class. Oth-
erwise, the FV is in the normal class. For k-NN classification,
the classifier finds the nearest training vectors according to the
test FV and performs majority vote for class decision.

B. CS-SoC Architecture

Fig. 5 shows the CS-SoC architecture. The 0.5 V sensor inter-
faces include the cardiac acquisition circuits adapted from [8],
[10] and the multi-phase ring oscillator based ADCs and TDCs.
The AFE gain range is configurable with 26–46 dB gain and
0.5–150 Hz bandwidth for cardiac signal acquisition. The target
sampling rate of ADC and TDC are 250–10 kS/s with 8/12-bit
resolution for various applications. The required sampling clock
is divided by the 8–32 kHz system frequency, which is on-chip
generated with a crystal-less clock generator (CLCG).
The ML algorithms are computation intensive and hard

to perform by a general-purpose processor with low power
consumption. Therefore, the configurable and heterogeneous
architecture comprises the data management processor, ML
processor and crypto processor to accelerate the required
processing time while reducing the power dissipation. For
enhanced SoC flexibility in mobile conditions, a 32-bit RISC
general-purpose processor is integrated. As illustrated in Fig. 5,
the CS-SoC operates with the data collection mode and the
burst computation mode. Due to the slow operation scenario for
biomedical system, the leakage usually dominates the system
power dissipation [8]. Therefore, during the data collection
period, the processors are disabled and only the required sensor
interfaces are turned on. To further minimize the system active
duty, the critical-path replica oscillators (CPROs) generate the
MHz-scale operation frequencies to enable burst computation.
This duty-cycled approach minimizes the system active time
and prevents the large leakage power dissipation. Moreover,
the low-power techniques including voltage scaling and the
dynamic standby controller are applied to minimize both the
active and sleep power.
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Fig. 4. The cardiac feature extraction with cycle segmentations, MAR estimation, shape analysis, time-domain statistics and other vector analysis.

Fig. 5. The CS-SoC architecture with the power domain partitions and behavior timeline.

Fig. 6. The data management processor architecture with clock-less pre-processing.

III. DATA MANAGEMENT PROCESSOR

Fig. 6 shows the data management processor architecture,
including the clock-less pre-processing, FIFO storage and the
multi-rate MF. This not only enhances the signal quality for
better ML analysis accuracy, but also compresses the required
data storage. Additionally, the data management processor be-

haves as the interface to connect the sampled data with burst
computation.

A. Clock-Less Filtering and Compression

During the data collection period, the 32-tap FIR filter and the
adaptive compressor are applied to remove the high-frequency
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Fig. 7. The clock-less pipeline principle, performance evaluation, and the Monte Carlo simulation. The Monte Carlo simulation is performed under design corners
of (0.45 V, C), (0.5 V, 25 C), and (0.55 V, 120 C).

noise and to reduce the data storage, respectively. However, the
pre-processing operation with sampling frequency (sub-kHz) or
system frequency (sub-100 kHz) suffers from large leakage cur-
rent and decreases the energy efficiency. Although a higher op-
eration frequency can be supported, the settling overhead with
frequent computation leads to large power dissipation due to
the small computation block size of the compressor and filter.
Therefore, the flip-flops of the filter and compressor are re-
placed by the clock-less latches and handshake (HS) circuits
[16]. As shown in Fig. 7, the internal power switches controlled
by 4-phase HS protocols enable run-time power gating with at
least 82.6% energy reduction. To guarantee the functional cor-
rectness, the delay time within HS protocol should be
larger than the logic computation time , implying the
corresponding delay difference should be
greater than zero. Accordingly, the Monte Carlo simulation is
performed under three design corners for evaluation, where the
process variation is 3 standard deviations.
Since multi-channel signal occupies large storage size and

power dissipation, the adaptive sampling based compressor
proposed in [8] is applied for data reduction. Estimating
the min-max difference as information, the sensed data are
stored with four different sampling rates. Hence, the signal
with higher information would be expressed with higher
sampling rate and vice versa. With further lossless encoding,
the adaptive compressor storage size is reduced by 10×. Ad-
ditionally, 40% always-on storage power is saved with the
register/memory-hybrid FIFO.

B. Multi-Rate Morphological Filter

Since the baseline drift is a certain low-frequency noise, the
filtering takes a large window size, up to 2–3 seconds. This re-
sults in large storage requirements and power dissipation. Ac-
cordingly, a multi-rate MF is proposed for storage and com-
putation efficient implementation. Fig. 8 shows the proposed
data management flow and the results for both compression and
noise reduction. Based on the adaptive compression, the car-
diac signal is expressed as the multi-rate signal with different
sampling rates. Filtered from the compressed data with opening
and closing morphological operators, the positive and negative
peaks of the signal are removed and the baseline is estimated.

Fig. 8. (a) The processing flow for data compression and baseline noise can-
cellation with (b) the corresponding waveforms.

The noise removal is then done by subtracting the estimated
baseline. The implementation of MF comprises a sequence of
registers and comparators to extract the minimum and max-
imum values within a computation window [25]. Through the
multi-rate approach, the window size of MF is reduced. Hence
the required registers and computation time are decreased by
64%, resulting in 42% power reduction.

IV. MACHINE LEARNING PROCESSOR

TheML processor comprises the two-stage feature extraction
engine (FEE) and classification engine (CE). Accompanied with
the general purpose processor, versatile feature extractions and
classifications are performed.

A. Two-Stage Feature Extraction Engine

Fig. 9 shows the 2-stage FEE architecture to extract the crit-
ical signal characteristics. In the first stage, the hardware effi-
cient cardiac signal delineator performs wavelet decomposition
with the updatable search rules. Hence, the signal boundaries of
the P, Q, R, S, and T waves are identified for cardiac cycle seg-
mentation.
After segmentation, the characteristics of each cardiac

cycle are analyzed with MAR estimation, shape and other
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Fig. 9. The architecture of two-stage feature extraction engine.

vector analysis. Although the MAR estimator utilizes the
inter-channel correlation and removes the signal redundancy,
the computation complexity is relatively high. Conventionally,
the one-shot computation requires higher dimensional matrix
inversion (channel number ). Besides, the times larger co-
variance computation window is required. This implies longer
computation time and power dissipation. Accordingly, the pro-
posed MAR estimator is designed iteratively using Burg-type
algorithm [17]. To minimize the prediction error, the MAR
estimator updates the coefficients and the intermediate values
during iterations. This iterative approach not only provides
flexibility for 1st–4th order MAR coefficient generations, but
also saves 43.8% average power from the one-shot approach
[17]. Besides, the processing time is reduced to 96 k cycles,
while more than 21 M cycles are required to perform on general
purpose processor. As the cardiac cycle changes dynamically,
the variable window size and compressed data further reduces
the processing time.
To distinguish the normal and abnormal wave morphologies,

the configurable SA computes the 3rd and 4th order principal
moments. With different principal moment order , the SA
datapath is shared as the corresponding equation:

(5)
where is the window length. Considering different wave seg-
ments, the SA is operated using the time-multiplexing approach
with a variable window length, which leads to different compu-
tation cycles. For a 128-sample window size, the computation
takes at most 300 cycles. Besides, the multiplier-less divider and
square root functions further saves 87.4% active power with la-
tency 30 cycles. Other features, such as the VCG vector an-
gles, magnitudes, and beat intervals are computed by the general
purpose processor with CORDIC accelerator.
The extracted features of one cardiac cycle are aggregated as

an FV for classification. To enhance the flexibility, the FV length
can be varied and stored in an FV buffer. Since the features
are extracted at uneven time, only one register or one bank of
the feature storage is clocked when new features are extracted.

Fig. 10. The switchable CE example for (a) MLC, and (b) linear SVM com-
putation.

Therefore, the dynamic power is saved if the new feature values
are not computed. Furthermore, the high- latches are applied
for static power reduction.

B. Classification Engine

The CE is able to perform classification after the feature ex-
traction of each cardiac cycle. Fig. 10 shows the CE architec-
ture that performs classifications based on the feature vectors
and the offline learned model, which are stored in the FV buffer
and the partitioned SRAM banks, respectively. Normally, dif-
ferent classifiers are chosen for different applications. Hence
the CE datapath is designed to be switchable for different clas-
sifiers, such as MLC and SVM. For instance, Fig. 10(a) shows
the datapath for MLC classifier, which makes classification de-
cision by finding MAP. The probabilities onto the normal and
MI classes are computed, where the higher posterior probability
implies higher chance that the test FV belongs to the corre-
sponding class. Furthermore, the MLC is computed in log-do-
main for reduced complexity. The required feature number is of-
fline decided and performs the trade-off between the processing
time and accuracy (e.g., MLC processing time is proportional
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Fig. 11. The DSC schematics to control the power switch.

to ). To deal with the varied , the CE accumulates the
computation results generated from each feature.
The linear SVM classifier is performed using the switchable

datapath shared with MLC, as shown in Fig. 10(b). The mul-
tiplication-accumulation (MAC) operators parallelize the SVM
computation with 50% reduced processing time. By finding the
decision boundaries with the aid of support vectors, the binary
classification is performed. The polynomial SVM can be per-
formed with the same datapath, but requires more multiplica-
tions than the linear SVM and leads to more computation time.
If other nonlinear kernels or the k-NN classifier are required, the
computation should be assisted with general-purpose processor
and CORDIC.

V. LOW-POWER DESIGNS

A. Low-Power Digital Implementation

The proposed algorithms and architectures reduce the hard-
ware complexity while maintaining the flexibility. But the
system power should be further minimized by reducing both
the computation and sleep power. As the architecture shown
in Fig. 5, the power domain and clock domain are partitioned
for voltage scaling, clock gating and power gating to achieve
extremely low power consumption. To minimize both the static
and dynamic power, the SoC supply voltage is scaled from
1.0 V to 0.5 V, except the SRAM and interface to the I/O pads.
Besides, level shifters are inserted to all the paths that cross
different voltage domains. A 0.5 V standard cell library, based
on regular devices, is characterized for digital processor
implementations, including the data management processor,
ML processor, general purpose processor, and other control
circuits. By removing the cells with functional failures at 0.5
V, the standard-cell-based design flow is applied to ensure the
circuit is reliable. To evaluate the power saving performance,
the synthesis results show that the active power of the ML
processor is reduced to 24% compared to the design operated
at 1.0 V.

B. Crystal-less Clocking Circuits

The CS-SoC integrates two major clock sources, including
the kHz-scale crystal-less clock generator (CLCG) and the

MHz-scale critical-path replica oscillators (CPROs). Typ-
ically, a kHz-scale quartz crystal oscillator is applied for
system control, but the off-chip device occupies large area.
For sensor miniaturization, the quartz crystal is eliminated by
the crystal-less clock generator, which generates an 8–32 kHz
system frequency within 0.15% stability (i.e., 0–45 C) and is
further enhanced to 30 ppm with wireless [18]. The sampling
clock for sensor interfaces is then divided by this system
frequency.
Considering burst computations of the processors, raising

operation frequency from kHz-scale to MHz-scale further
reduces the active computation duty and maximizes the system
sleep time. The critical-path replica oscillators are consisted
of the programmable delay lines with delay larger than critical
path delay of the processors. Hence, the critical-path replica
oscillators are turned on during computation and provide the
25/40 MHz clocks without using a frequency reference.

C. Dynamic Standby Controller (DSC)

In order to reduce the leakage current in sleep mode, sev-
eral power gating techniques have been reported. In naive ap-
proach, the power switches serve as header or footer to reduce
the standby leakage current [24]. The dual approach applies
high- power switch to further reduce the leakage current [19].
A charge pump circuit generates a boosting signal to reduce
the current on power switch [20]. A power switch comprises
two serial PMOS transistors [21], where the serial topology and
body effect further suppresses the leakage current. However, the
effective turned-on capacitance of the power switch limits the
wake-up time in active mode. In fact, trade-off occurs between
leakage suppression and size of the power switch.
Fig. 11 shows the proposed DSC schematics, developed for

leakage power reduction with faster wakeup time. A PMOS
based power switch is controlled by the DSC. The proposed
DSC comprises a duty cycle adjuster (DCA), a negative over-
drive generator (NOG), and a wake-up enhancement (WE) cir-
cuit. In order to eliminate the leakage current aggressively, the
power switch is turned off by NOG, which provides an average
negative overdrive signal with a boosting voltage. As shown in
Fig. 11, is the bootstrap capacitor and stores a voltage po-
tential of in active mode. When the system is switched
to sleep mode, the is boosted above . Although the
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Fig. 12. The simulation result of the standby current and the turned-on time with the proposed DSC and the conventional power gating technique.

sub-threshold leakage degrades the negative overdrive signal at
, the average can be expressed as

(6)

where is the system clock period and is the duty of recharge
towards period. is the parasitic capacitance at node.

is the cumulated leakage current at node and is as-
sumed as a constant. Since the charges are leaked due to

, the potential of and the power gating performance
are lowered. To guarantee the keeps its potential above

under a 10 kHz operation, is designed with a 1 pF
MIM capacitor according to the worst case condition. Besides,
DCA generates a 0.5 s–1.0 s periodic pulse for recharging
the . Because varies in different corners, the system
clock is tunable to find the appropriate recharge rate.
The WE accelerates the turned-on time with a boosted pos-

itive overdrive voltage when the system is switched for com-
putation. The is also designed with a 1 pF MIM capacitor
such that has a minimum value of V at typical de-
sign corner. Since the WE generates a one-shot-boosting ,
the gradually raises due to the charge leakage until
is equal to 0 V. Similarly to (6), the minimum in active
mode can be expressed as

(7)

Fig. 12 shows the simulation result of the proposed DSC and
the conventional power gating approach [24]. For a fair com-
parison, both approaches are designed with identical sizes of
power switch, where all the devices are regular . In the con-
ventional approach, a tapered buffer is applied to enhance the
switch driving capability. The aspect ratio of the tapered buffer
is designed according to the gradual fanout ratio of 1:4.
is one of the processor output to observe the wakeup enhance-
ment. Table I lists the DSC performance summary. Compared
to the naive power gating technique [24], the DSC further re-

TABLE I
COMPARISONS OF CONVENTIONAL POWER GATING TECHNIQUE

WITH THE PROPOSED DSC

duces 89.8% standby current with 3.45 faster wakeup time of
the power switch.

VI. EXPERIMENTAL RESULTS

The proposed CS-SoC is fabricated in a 90 nm standard
CMOS technology [22]. The measurement instruments include
a LeCroy 4000A oscilloscope and Agilent 16902A logic ana-
lyzer. The chip current is measured by Keithley 2401 source
meter.

A. Chip Measurement

Fig. 13 shows the chip photo including the power and clock
domain partitions. In order to evaluate the applied techniques
for both active and average power reduction, Fig. 14 shows
the measured power of general purpose processor with different
supply voltages and operation frequencies. Scaling the supply
voltage from 1.0 V to 0.5 V, the active computation power is
reduced by more than 79%. Furthermore, the computation with
lower operation frequency is observed with worse energy effi-
ciency due to the large static current. By raising the operation
frequency with critical-path replica oscillators, the energy effi-
ciency is enhanced to sub-5 pJ/cycle. Moreover, the raised op-
eration frequency also results in the lower system active duty.
Since the system active duty is lowered, the leakage current

during data collection period is further suppressed with DSC for
system power saving. Fig. 15 shows the measured DSC power
reduction ratio compared to the conventional power gating ap-
proach. The measured power includes the power dissipation
of predriver and the standby power of power switch. When
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Fig. 13. Chip microphotograph of CS-SoC.

Fig. 14. The measured voltage scaling result and energy efficiency with dif-
ferent operation frequencies.

Fig. 15. The measured DSC power reduction ratio compared to the conven-
tional power gating approach.

the system frequency from crystal-less clock generator is ap-
proaching to zero, the power saving is limited due to insuffi-
cient charge of DSC. As the system frequency arises, the DSC
provides higher average overdrive signal to the power switch
and achieves 69.8% power reduction ratio at 16 kHz. Although
the power reduction ratio increases with system frequency, the
DSC power also increases. The optimal frequency designed for
overall power saving ranges between 8–32 kHz.

TABLE II
THE CHIP DESIGN SUMMARY OF THE PROPOSED CS-SOC

To compare with the state-of-the-art on-sensor processors
[5]–[8], Fig. 16 summarizes the measured processor power,
including the memories, logics, and the critical path replica
oscillators. The digital processors perform versatile feature
extractions and syndrome classifications where the system
active duty is minimized to 0.01%–0.11% with the clock-less
preprocessing and 25/40 MHz critical-path replica oscillators.
Applied with the 0.5 V voltage scaling, memory compression
and DSC, the processor shows 11% to 46% lower power
dissipation compared to the state-of-the-art [5]–[8]. Moreover,
the CS-SoC enables the ML analysis for the most detectable
syndromes and can be configured for general use.

B. Applications to Cardiac Syndrome Detections

The CS-SoC is verified with the pre-recorded in-house pa-
tient database and the MIT-PTB database (PTBDB) [23]. The
in-house patient database is constructed with single channel
ECG using 250 S/s sampling rate and 12-bit ADC resolution.
Both static and mobile recording conditions are included. Each
record is annotated with at least two medical doctors to identify
the normal status and abnormal arrhythmia syndromes. In
addition, The PTBDB includes multi-channel ECG and VCG
signals with noises and syndromes such as MI. In this work, the
CS-SoC is evaluated with 3-channel VCG-based MI detection.
The atrial and ventricular arrhythmia detections are evalu-

ated with the single channel ECG based on the P, Q, R, S, T
fiducial points segmented in the first feature extraction stage.
Applied with the medical advice, the rule-based classification is
applied for power-saving purpose. Among 707 records from the
in-house database, at least 95.8% detection rate is achieved.
As the MI syndrome is hard to detect by simple rules, the ML

assisted algorithm is applied. Examined with 1–75 features and
3 classifiers under PTBDB [23], the MI detection rate is shown
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Fig. 16. (a) The measured processor power dissipation versus different cardiac signal analysis applications. (b) The detectable syndrome types.

Fig. 17. The MI detection performance with different features and classifiers.

Fig. 18. The detection results with (a) the normal and (b) MI waveforms.

in Fig. 17. The MLC with more than 44 features achieves over
99% on-chip MI detection accuracy. Fig. 18 shows the example
waveforms of the normal and MI detection results, where each
heartbeat is classified. If the abnormal syndrome is detected, an
alarm signal would be indicated for successive processing.
Table II shows the chip design summary. Considering the

device size, the quartz crystal is eliminated by the crystal-less
clock generator while the sensor interfaces are integrated. In-
cluding the power dissipation of the crystal-less clock generator
and the sensor interfaces, the CS-SoC achieves over 95.8/99%
detection accuracy while consuming 48.6 W to 105.2 W for
arrhythmia andMI detections. To the best of the authors’ knowl-
edge, this is the 1st chip that enables the detection of the MI
occurrence accompanied with the versatile cardiac syndromes,

allowing both long-term recording and early warning for mobile
healthcare applications.

VII. CONCLUSION

Low-power sensor nodes with extended monitoring duration
are desired for mobile healthcare applications. A key for such
applications is the precise on-sensor analysis for the information
extraction, enabling the transmission data reduction and imme-
diate alarm indication. In this work, a ML assisted CS-SoC is
proposed. The CS-SoC not only enhances the signal quality, but
also enables versatile feature extractions and classifications. Ap-
plied with the low-power techniques including voltage scaling,
duty-cycling and the dynamic standby controller, the SoC con-
sumes W-scale power dissipation for long-termmobile health-
care applications.
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