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Fast Surface Interpolation Using Multiresolution 
Wavelet Transform 
Ming-Haw Yaou and Wen-Thong Chang 

Abslruct- Discrete formulation of the surface interpolation 
problem usually leads to a large sparse linear equation system. 
Due to the poor convergence condition of the equation system, the 
convergence rate of solving this problem with iterative method 
is very slow. To improve this condition, a multiresolution basis 
transfer scheme based on the wavelet transform is proposed. By 
applying the wavelet transform, the original interpolation basis 
is transformed into two sets of bases with larger supports while 
the admissible solution space remains unchanged. With this basis 
transfer, a new set of nodal variables results and an equivalent 
equation system with better convergence condition can be solved. 
The basis transfer can be easily implemented by using an QMF 
matrix pair associated with the chosen interpolation basis. The 
consequence of the basis transfer scheme can be regarded as a 
preconditioner to the subsequent iterative computation method. 
The effect of the transfer is that the interpolated surface is 
decomposed into its low-frequency and high-frequency portions 
in the frequency domain. It has been indicated that the conver- 
gence rate of the interpolated surface is dominated by the low- 
frequency portion. With this frequency domain decomposition, 
the low-frequency portion of the interpolated surface can be 
emphasized. As compared with other acceleration methods, this 
basis transfer scheme provides a more systematical approach 
for fast surface interpolation. The easy implementation and high 
flexibility of the proposed algorithm also make it applicable to 
various regularization problems. 

Index Terms-Surface interpolation, regularization, discretiza- 
tion, wavelet transform, basis transfer scheme, preconditioning. 

I. INTRODUCTION 
URFACE interpolation is to recover a full surface repre- S sentation when only partial information of the surface is 

available. This problem plays an important role in many early 
vision processes such as surface from contours, shape from 
shading, structure from motion, stereopsis and so on [4], [9], 
[ I l l ,  [16], [28], [37], [38]. This is an inverse and ill-posed 
problem. Regularization [12], [24], [36] is usually applied to 
make it well-posed. Then, various methods [lo], [17], [35] can 
be used to discretize the problem into an objective function of 
discrete nodal variables such that an approximated solution 
which can be solved numerically is possible. It is known that 
the discrete formulation of the interpolation problem usually 
leads to a large sparse linear equation system. Hence, the 
iterative methods which require less storage in computation 
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are usually adopted. However, due to the sparse system matrix 
of the resultant equation system, the convergence rate of the 
conventional iterative methods for solving this problem is very 
slow. 

To speed up the convergence, acceleration methods such as 
multi-grid method [35], [37] and multilayer method [20] have 
been proposed. In those methods, the discretized problem is 
converted into a series of coarse subproblems with smaller grid 
sizes. With smaller size and denser structure system matrices, 
the convergence condition is improved. However, in these 
computation structures, the transfer between the adjoining 
subproblems is not straightforward and requires additional 
computational cost. In Szeliski [34], a preconditioning tech- 
nique using hierarchical basis [39] was applied to improve the 
convergence rate. In his approach, the triangular nodal basis 
arising from the finite element method is partially replaced 
by a set of triangular functions with larger supports while 
the total number of interpolation nodes remains unchanged. 
The reorganization of nodal basis converts the interpolation 
problem into a new one with system matrix of lower condition 
number such that a better convergence condition can be 
obtained. Compared with those multi-grid like methods, the 
hierarchical basis method seems to be a easier algorithm for 
fast surface interpolation. 

Basically, both the multigrid method and the hierarchical 
basis method utilize the multiresolution concept in improving 
the convergence rate. In the surface interpolation, the problem 
is to find a smooth surface which satisfies the constraints in 
the given nodes. In the equation system to be solved, the 
issues of constraint satisfaction and smoothness requirement 
are considered simultaneously during the iterative solving 
process. The global smoothness is established with a local 
relaxation manner. If the grid size is too fine and the support 
of basis is small, the convergence rate is usually very slow. 
Representation of the interpolation problem in different reso- 
lutions will increase the nodal connection such that the steady 
state can be reached faster. Since, in coarser resolution (with 
basis of larger support), larger connection between the nodal 
variables can be made in each iteration. 

For a smooth surface, the global smoothness is largely 
dominated by the low-frequency portion. To indicate this, the 
difference between the temporary solution in each iteration and 
the true solution is analyzed. The difference is decomposed 
into its low-frequency and high-frequency portions. In our 
simulation, we have shown that the small attenuation speed of 
the low-frequency portion of the difference is the major reason 
of the slow convergence of the computation. Thus, a proper 
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multiresolution scheme which can effectively manipulate the 
frequency domain property of the interpolation problem will 
be very helpful. Under this consideration, the multiresolution 
wavelet transform [5], [8], [261, [27], [33] becomes a better 
choice than those previously developed methods. 

With the wavelet transform, the solution space of the 
interpolation problem can be decomposed into its low res- 
olution subspace and the complementary detail subspaces. 
In the frequency domain, this vector space decomposition 
is equivalent to dividing the spectrum into low-frequency 
portion and high-frequency portion. Hence, the frequency do- 
main property of the interpolation problem can be effectively 
manipulated. The vector space decomposition is performed 
by transferring the original interpolation basis into new sets 
of basis functions to define the low resolution subspace and 
the detail subspaces, respectively. These bases are generated 
by dilating and translating two prototype functions called 
the scaling function and wavelet. The basis transfer can be 
easily implemented with an QMF (quadrature mirror filter 
banks) matrix pair associated with the interpolation basis. 
Various interpolation bases have been investigated under this 
transform. Recently, the B-spline functions have been shown 
to be suitable for the surface interpolation [l], [6], [7]. 

In this paper, we utilize vector space decomposi- 
tiordreconstruction theory of the wavelet transform to analyze 
the multiresolution representation of the surface interpolation 
problem. Through this analysis, an altemative multiresolution 
scheme to accelerate the convergence of iterative method is 
proposed. To describe the surface as a linear combination of 
the approximation basis, the Rayleigh-Ritz method [25], [32] 
is applied in our approach to discretize the variation functional 
associated with the regularized surface interpolation problem. 
Compared with other discretization methods, the advantage of 
such discretization is that the concept of signal approximation 
by weighted basis functions can be clearly stated. After the 
discretization, the basis transfer scheme based on the wavelet 
transform is used to transfer the chosen basis into two sets 
of bases with larger supports. The consequence of such 
basis transfer is a preconditioning of the associated equation 
system. To improve the convergence condition of a linear 
equation system by preconditioning has been an interesting 
issue. In this surface interpolation, we demonstrate how to 
construct the precondition matrix by the technique of basis 
transfer. With this, a fast interpolation can then be achieved 
by proper preconditioning of the equation system for any 
chosen iterative computation method. 

To present our basis transfer scheme, the mathematical 
formulation of surface interpolation problem is briefly re- 
viewed in Section 11. Then, in Section 111, the multiresolution 
wavelet transform is introduced. The basis transfer scheme 
based on the wavelet transform is described in detail. In 
Section IV, an asynchronous iterative computation method 
is derived. By applying the proposed basis transfer scheme 
as a preconditioner to the iterative computation method, the 
algorithm for fast surface interpolation is presented. In Section 
V, the results of experiments are shown and the performances 
of different acceleration methods are compared. Finally, a 
conclusion is given in Section 6. 

11. THE SURFACE INTERPOLATION PROBLEM 

A .  Regularization and Discretization 

Surface interpolation is to recover a full surface representa- 
tion when only partial information of the surface is available. 
Those available data are referred to as the coqstraints of 
the surface being interpolated. It is ill-posed since there are 
innumerable surfaces that can satisfy a given set of constraints. 
Hence, a regularization procedure considering the computation 
efficiency and visual relevance is usually applied. It has been 
a common approach to use variation functional [19], [36] to 
constrain the solution. The problem is usually formulated in 
the following form: 

The solution is the one that minimizes the objective func- 
tional &(f). The objective functional E(f) is the combination 
of a stabilizing functional S(f) and a cost functional C(f ) .  The 
parameter p is non-negative and is used to adjust the weighting 
between the two considerations. The stabilizing functional 
S ( f )  is to set the smoothness constraint of the surface. It 
is usually defined in a quadratic form as 

r r  

where V, and D, are the differential operators with respect 
to z and y, respectively, and R is the domain of interest. The 
cost functional is to take into account the given constraints. 
For a surface denoted as f(z, y)  with constraints given in the 
form: f ( z , , y J )  = qz3,  for (xZ.yJ) E c, and qZJ E c d ,  where 
C, A {(zz,yj)}l ar which poinr the constraints are given} 
and c d  {qz3  I the known depth value at (zZ. yJ) E c,}, 
a commonly used cost functional is the following quadratic 
form, 

(3) 2 
C ( P )  = [ f ( z z . ? / 3 )  - q231 . 

(,t *YJ )EC,  

Through the above regularization, uniqueness of the solution 
of the problem can be guaranteed. The analytical solution 
of this optimization problem is difficult to obtain. Thus, an 
approximated solution which can be solved numerically is 
to be sought. In [lo], Grimson used the finite difference to 
approximate the differential operators. In [35], Terzopoulos 
used finite element method to deduce a system of equations 
from which an altemative solution is solved. In this paper, the 
Rayleigh-Ritz [25], [32] method is used to define the admissi- 
ble space from which the solution is derived. The advantage of 
such discretization is that the concept of signal approximation 
by weighted basis functions can be clearly stated. This can be 
useful in the latter discussion of multiresolution basis transfer 
scheme. We confine the admissible space to a N 2  dimensional 
function space spanned by a set of finitely supported bases. 
The surface in this space can be expressed by 

iV-1 N-1 

f(z1v) = %@*,(z.Y). (4) 
2=0 J=o 
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where @ij's are the basis of the space V = span{@o,o, @0,1,  

. . . , @ o , N - ~ , @ ~ , o , . . . , ~ N - ~ ; N - ~ } .  The vij's are the weight- 
ing coefficients. Substituting (4) into (2) and (3), the objective 
functional € ( f )  can be rewritten as 

N - 1  N - 1  N - 1  N - 1  

where quantity t i j m n  is defined as 
P P  

+ 2( DzD, @ i j  ) (DzD, @mn) 

+ ( ~ i ~ i j )  (Dt@mn)dQ. (6) 

The quantity t i j m n  can be called relation coefficient because it 
describes the relation between variables vi j  and vmn. As those 
basis functions spanning the admissible space are determined, 
all the relation coefficients can be determined via (6). Various 
types of the interpolation basis function can be used for 
this problem. In this paper, we select the tensor product 
of the tent functions (first-order B-spline basis) to span the 
solution space. B-spline basis [23] has been very popular for 
interpolation problem. In [ 181, B-spline basis of arbitrary order 
has been successfully applied for curve description. The 1-D 
tent function +i(x) located at z = i with support 2 is defined 
by 

2 - 1  i - l < z < i  
&(z)= 1 - 2  i ~ Z < i + l  

A (II otherwise. 

In accordance with the tensor product method [23], [31], we set 
@ij(x, y) = +i(z)+j(y). From the definition of tent function, 
it can be seen that 

1 f o r i  = m , j  = n  
0 otherwise. @ m n ( i , j )  = 

With this cardinal property of the tent function, Eq. (5 )  can 
be stated as 

N - 1  N - 1  N - 1  N - 1  

where Ci = { ( i , j ) l ( i , j )  = (z;,yj) E C,}. To unify the 
formula, we define 

pij g (" (i,d E ci 
0 otherwise 

0 otherwise. 
Y i j  ( 4 j )  E ci 

Y i j  = 
A {  

With these, we get 
N - 1  N - 1  N-1 N - 1  N - 1  N - 1  

= v i j t i j m n v m n  + Pi j [ u i j  - 4 i j12 ,  
i=O j = O  m=O n=O i=o i=o 

(7) 

Through this discretization, the interpolation problem can be 
expressed as the minimization of an objective function & of 
N 2  nodal variables vij's. 

B .  Computational Considerations 

the Euler-Lagrange equation: 
The unknowns vij 's that minimize & can be solved from 

~ = 0, for all w i j .  
a€ 

d U i j  

Differentiation of (7) w.r.t. vij's, the following set of equations 
result: 
N-1 N-1 

Thus, a system of N 2  simultaneous equations need to be 
solved for the surface interpolation. By concatenating all the 
nodal variables viJ's into one column vector v, the above 
linear equation system can be expressed in its matrix form as 

A v - b = O .  (10) 

where the system matrix A is a N 2  x N 2  matrix defined as 
the matrix found at the bottom of the page. The vector b is 
defined as 

b A [ ~ 0 , 0 ~ 0 , 0 ~ 0 , 1 ~ 0 , 1  ' '  ' ~ O , N - l ~ O , N - l P l , N - l ~ l , N - l  . ' 
. T 

P N  - 1 ,  N - 1 q N  - 1 ,  N - 11 

Hence, through the regularization and discretization, the sur- 
face interpolation can be formalized as a linear equation 
system. The problem is to solve those variables v such that 
the equation system can be satisfied. It is easy to see, even 
for a surface of median size, the size of the system matrix 

tO ,O ,N- l ,N- l  

to,i, N -  i , ~  - 1 

. . . . . . . . . to,o,o,o + P0,o t O , O , O , l  t0 ,0 ,0 ,2  
t O , l , O , O  t O , l , O , l  + P 0 , l  t0 ,1 ,0 ,2  . . . . . . . . . 
t0,2,0,0 t0 ,2 ,0 ,1  t0 ,2 ,0 ,2  + P0,2 .. ' . . . . . . t 0 ,2 ,N-  1 , N -  1 

. . .  

tN-l ,N-P,O,O t N - l , N - 2 , 0 , 1  t N - l , N - 2 , 0 , 2  . ' .  t N - l , N - 2 , N - l > N - l  

tN- l ,N- l ,O ,O t N - l , N - l , O , l  t N - l , N - l , 0 , 2  . . . ' ' .  ' '  ' t N  -1, N -  1 ,  N - 1  ,N - 1 + P N  -1, N -1 
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A will be very large. Hence, in solving this problem, the 
iterative methods are usually adopted instead of the direct 
solving method. 

It can be found that the equation system is characterized by 
the system matrix A. The computation speed of the equation 
system with iterative methods will be directly affected by the 
structure of matrix A. In the surface interpolation problem, the 
given constraints are usually sparse. Most of the parameters 
pzJ are zero except those associated to the nodes with given 
constraints. Hence, the variance of the diagonal elements in 
matrix A is often large. Also, due to the finite support of the 
interpolation basis, most of the off-diagonal elements in matrix 
A (i.e., tzJmn,(z#m,J#n)) are zero. This causes a very sparse 
structure of matrix A. These characteristics of the system 
matrix make the equation system nearly singular and result 
in a poor convergence condition when solving the equation 
system with iterative methods. The sparse structure of matrix A 
indicates that the connection among the variables ‘uzJ ’s  is very 
low. Since, for a variable w z J ,  most of the relation coefficients 
tzJmn’s  which relate ‘uzJ to other nodal variables U,,’S are 
zero. In the iterative solving methods, this local connection 
will slow down the progress of the solution in iteration and 
result in a low convergence rate. 

To obtain a fast surface interpolation, a proper scheme 
which can transfer the equation system to a better condition 
is necessary. In the past, the multi-grid method [35], [37] and 
the multi-layer method [20] have been successfully applied 
to speed up the convergence. In those approaches, the coarse 
versions of the original interpolated surface are extracted. The 
steady state solutions of the coarse versions are then used as 
the initial condition for the original domain to expedite the 
computation. However, the complicated computation structure 
of those methods makes them inefficient to be implemented. 
An alternative approach which is easier to implement has 
been proposed by Szeliski [34]. In Szeliski’s approach, the 
preconditioning scheme proposed by Ysemtant [39] was ap- 
plied. The linear equation system associated with the surface 
interpolation problem is preconditioned by replacing the nodal 
basis with a hierarchy of basis functions with larger supports. 
The replacement of nodal basis can reduce the condition 
number of the system matrix such that a better convergence 
condition can be obtained. 

The basic concept of those previously developed methods 
is to solve the interpolation problem in different resolutions. 
For example, the basis replacement scheme used in Szeliski’s 
approach can be interpreted as a signal representation in 
different resolution levels. Since, the expansion of signal with 
dilated basis functions is equivalent to the representation of 
signal in coarser resolution space. This observation indicates 
that the acceleration of interpolation can be analyzed from the 
multiresolution point of view. In the frequency domain, the 
coarse resolution version of a signal can be interpreted as the 
low-frequency component in spectrum. As the low resolution 
version can be obtained by approximating a signal with the 
dilated version of the original basis functions, it should be 
possible to obtain the complementary high-frequency portions 
from the complementary subspace of the coarse resolution 
subspace. The complete information of the low-frequency and 

high-frequency components can be quite useful in designing an 
effective multiresolution scheme for fast computation. Since, 
from the local Fourier analysis [3], [14], [13], it is found that 
the computation speed of surface interpolation is dominated 
by the low-frequency portion of the interpolation problem. 
Hence, a proper multiresolution scheme which can effectively 
manipulate the frequency domain property to e’mphasize the 
attenuation of the low-frequency will expedite the interpolation 
speed. 

In the past, acceleration schemes based on the multires- 
olution concept have been utilized. However, the frequency 
domain property of the interpolation problem was not ef- 
fectively utilized in those methods. For effectively utilizing 
the multiresolution concept, a multiresolution scheme which 
can effectively manipulate the frequency domain property is 
proposed. In the following sections, an alternative accelera- 
tion method based on the basis transfer scheme by wavelet 
transform [8], [5] ,  [7], [26], [33] is introduced. 

111. BASIS TRANSFER SCHEME USING WAVELET TRANSFORM 

A .  Multiresolution Wavelet Transform 

The basic idea of wavelet transform is to represent a 
continuous function F ( z )  as the limit of successive approx- 
imations, each of which is a smoothed version of F ( z ) .  
The transform is performed by using a set of bases 4mn(x )  
to expand the continuous function F ( z ) .  These bases are 
generated by dilating and translating a prototype function 4( z) 
called the scaling function. Also, the difference between two 
approximations can be obtained by expanding the signal with 
another set of bases gmn(z)  which is generated by another 
prototype function $(x) called the wavelet. The wavelet 
transform can be expressed as 

n 

n 

$ I m n ( $ )  A 2%4(2-% - n) .  (12) 

The signal P,F is the approximation of F ( z )  at resolution 
m (smaller m corresponds to higher resolution). The signal 
QmF is the differences between approximations Pm-l F and 
P-F. Note that the approximation bases q5mn(z) and lClmn(xC) 
at different resolutions are of the same shape but in different 
scales. Hence, a signal can be approximated in different 
resolution levels by using the different scaled versions of an 
identical basis function. 

Assume that the original signal is defined at the resolution 
level 0, i.e., F ( z )  = PoF, then a multiresolution represen- 
tation of the signal F ( x )  can be established by applying the 
wavelet transform in different resolution levels. As described 
in Fig. 1, a signal F ( z )  can be represented as a pyrami- 
dal structure consisting of its lower resolution versions P, F 
and details & i  F,(t=l,2,...). According to the vector projection 
theory, this multiresolution signal representation is based on 
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Level 3 

F ( s )  = P,F 

Fig. 1. The multiresolution representation of the continuous signal F (  x ) .  

v3 w3 W? WI 

I I I 

Level 1 1 V I 

the recursive subdivision of the signal vector space. Define 
the vector space spanned by the basis q50n(x) as V, then 
the approximation P; F is equivalent to projecting the signal 
F ( z )  onto the subspace V; of space V, and the detail Q,F 
is the projection of F ( z )  onto the complementary subspace 
W; of subspace Vi. This vector space decomposition is 
described in Fig. 2. As long as the bases 4mn(x)  and Gmn(x) 
are designed according to this complementary vector space 
property, a signal can be represented in any desired levels of 
approximations. 

In wavelet transform, the weighting sequences f,[n] and 
d,[n] in ( I  1) and (12) play an important role in multireso- 
lution analysis. The wavelet transform can be exactly charac- 
terized by these discrete signals. This discrete property maps 
the analysis from the continuous signal space onto the discrete 
signal space and provides a powerful tool to deal with sampled 
signals. The transformation between a discrete sequence fin [n] 
and its lower resolution sequences fm+l[n] and d,+l[n] can 
be expressed as, for m = O,1,2, .  . ., 

f m  [.I = fm+l [klgo [. - 2 4  + &+l [kIg1[. - 2k1, 
k k 

(14) 
where the sequences h,[n] and gz[n],(,,,,,) can be derived 
from the functions 4(z) and $(z). It has been indicated 
[8], [7], [26] that this discrete wavelet transform can be 
implemented in an QMF structure as described in Fig. 3. 
The sequences h,[n] and g,[n] can be interpreted as the 
analysis and the synthesis filters of a filter banks. Denoting 
the discrete sequences fm[n], fm+l [n], and dm+l [n] as vectors 
fTn, fm+l,  and d,+l, the filter banks structure of the discrete 
wavelet transform can be formulated in its matrix form as, for 
m = 0 . 1 , 2 , . . . ,  

N 
fm+l = HoGf,, dm+l = H F f , .  (15) 

(16) 

where the matrices HzF and GZF ,(%=O,J) are defined as (17) 
and (18) found at the bottom of the page where the superscript 
$$ is used to describe the size of the matrix. If the length 

of vector fO is N ,  then HzF and GzF will be circulant 
matrices' of size & x & and & x &, respectively. 
The length of vectors fm+l and dm+l will be half of the 
length of vector f,. Applying this decomposition repeatedly, 
a discrete multiresolution signal representation corresponding 
to the discrete wavelet transform can be obtained as described 
in Fig. 4. This decomposition which represents a signal fo 
in its J levels lower resolution versions {fJ,d,,(3=1NJ)} is 
called the multiresolution wavelet representation [26] 

f, = GoGfm+l + G p d m + l ,  
N N 

N N 

B. Basis Transfer Scheme 

It can be found that the signal approximation by basis 
expansion in the wavelet transform has the same form as the 
Rayleigh-Ritz method used in the discretization of the interpo- 
lation problem. If we treat the Rayleigh-Ritz method described 

' This circulant matrix representation is obtained by using circular convolu- 
tion in the filtering process. The filters h ,  [ n ]  and y,[n] are usually FIR filters 
and have filter length less than &, The sequences h [ I ? ]  and g r  [ n ]  inside the 

matrices H F  and Grm are expressed in their zero-padding forms 
Y Y 

. .  . .  

! i I  PI .Y1[31 !it 141 !if [SI ' 
. .  . . .  

T 
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Fig. 3. The QMF structure of discrete wavelet transform. 
go(.) = a(.-' + 2 + 2) 
g l ( r )  = -2z-I  + 6 -  22-r ' )  h , ( z )  = i ( 2 - I  - 2 + z )  

ho(z )  = i(-z-' + 22-' + 6 + 2r - z ' )  

Fig. 5. 
of the associated QMF filters. 

The wavelet c . ( r ) ,  scaling function b ( . r ) ,  and the impluse responses f o b 1  I :::: 1 ;::: 1I :] . . . . . . . . .  

Fig. 4. The multiresolution representation of the discrete signal fo[n]. 

in (4) as a wavelet transform at resolution level 0, the B -  
spline function can then be interpreted as the scaling function 
4(x). The nodal variables q j ' s  are equivalent to the discrete 
sequence fo [n]. Wavelet transform using B-spline polynomial 
as scaling function has been studied in [7], [l],  [6]. In [7], some 
examples of B-spline wavelet transform have been shown. 
Fig. 5 shows one set of the designed prototype functions and 
the associated QMF filters.* With these prototype functions 
and filters, a multiresolution representation of the interpolation 
problem can then be established by approximating the surface 
with the corresponding bases 4mn (x) and $mn (z). The nodal 
variables can thus be represented in a pyramidal structure as 
shown in Fig. 4 by applying the discrete wavelet transform. 
Since the surface interpolation is a 2-D problem, a 2-D wavelet 
transform is necessary. This can be done by extending the 1-D 
wavelet transform by tensor product operation. If we define the 
nodal variables wij's of a N x N surface interpolation problem 
as the highest resolution signal v, then the multiresolution 
representation of it can be generated by recursively applying 
the 2-D discrete wavelet transform as 

signal length remains the same in each resolution levels. 
In this representation, the nodal variables in vector v are 
represented as {VJ, ~ ) , ( ~ = ~ ~ ~ , ~ = 1 , 2 , 3 )  }, where J is the level 
of resolution. From the vector space point of view, this 
multiresolution transform is equivalent to transfemng the ap- 
proximation basis from @on(x) to { $ J ~ ,  $ J n , ( J = l N  J )  }, while 
the admissible signal space remains unchanged. The signals 
VJ and ~ ) , ( ~ = 1 ~ ~ , ~ = 1 , 2 , 3 )  are the weighting coefficients of 
the two sets of bases { $ J ~ }  and { $ J n , ( J = l N ~ )  }, respectively. 
In the frequency domain, the low resolution signal VJ can 
be interpreted as the low-frequency version of the original 
nodal variables v. And the details W ) , ( ~ = I ~ J , ~ = ~ , ~ , ~ )  can be 
interpreted as the high-frequency components. 

If the signals { v J , ~ ) }  are represented as a vector 6, the 
conversion of v into i can be done by using an QMF matrix 
pair D and R as 

where the matrices D and R can be derived as 
when J = 1: 

1 

where the operator QD stands for the matrix tensor product. 
In this 2-D case, a quartered multiresolution representation 
of the nodal variables vij's is generated. As described in 

when J = 2:  

H+H~Y Fig. 6, each signal v, is decomposed into its lower resolution H T H N  

version v,+1 and three detail components W L + ~  ,( i=1,2,3). D =  [;/Hi] 8 [.)Hir] 
The signal length of each decomposed signal is a quar- H .v HY 
ter of that in the upper resolution level. Hence, the total 

'Here, QMF is used in a general sense to denote filter banks designed 
by both orthogonal and biorthogonal bases. Since, there is still no suitable 
terminology to distinguish these two cases. 

(23) 
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I 

VJ w: w: w: 

Fig. 6.  The multiresolution representation of the nodal variables v. 

a D= 

V Y 

where the matrices H? and Glz are those described in (17) 
and (18). As long as the interpolation basis is chosen, the 
matrices D and R can be easily derived according to the 
above formulations. For the equation system AV - b = 0 

derived in the discretization procedure in the previous section, 
it is easy to show that the solution to be sought is to minimize 
the energy function 

(26) 
1 
-vTAv - vTb. 
2 

By converting the nodal variables v into V, we can rewrite 
the energy function as 

(27) 
1 
-(RV)TA(RG) - (RV)Tb. 
2 

The minimization of this transferred energy function is equiv- 
alent to the solving of the following equation system 

A G  = b, where A k RTAR, b RTb. (28) 

Hence, with this basis transfer scheme, the original equation 
system is transferred to an equivalent equation system with 
new nodal variables V. 

According to the time-scale property of the bases dmn (x) 
and Gmn(x),  the transferred bases will have larger supports. 
Since interpolation basis with larger region of support will 
reduce the zero elements in the relation coefficients tijmn’s, it 
can be verified that the new system matrix A will be denser 
than the original matrix A. This implies that more global 
connection between the interpolation nodes can be made. 
Hence, a faster convergence can be obtained in the iterative 
solving method. 

In the conversion of v into V, the low-frequency component 
V J  and the high-frequency components w3 , ( 3 = 1 N ~ , i = 1 , 2 , 3 )  are 
extracted. This conversion allows the low-frequency portion 
and the high-frequency portion of the interpolation problem 
to be solved separately. In the iterative solving method, 
the solution is obtained by updating the nodal variables 
sequentially through a local relaxation process. The high- 
frequency portion which contains mainly local information 
usually converges fast. However, the low-frequency portion 
which contains the global structure of the surface will take 
much more computations to reach the steady state. Since the 
low-frequency portion is related to the global characteristics 
of the interpolated surface, a complete refinement of this 
portion can be achieved only after every nodal variable is 
updated. Thus, the low convergence rate is usually due to the 
slow refinement of the low-frequency portion. By applying the 
basis transfer scheme, the original nodal variables in vector v 
are converted to new variables {VJ, w)}. The low-frequency 
portion of the interpolated surface is characterized by these 
variables in vector VJ. These fewer variables are connected 
with bases of larger support, thus the refinement can be made 
very fast and the convergence rate can be improved. 

With the above analysis, a fast surface interpolation can 
be achieved by simply applying the above basis transfer 
scheme as a preconditioner to the original equation system. 
This preconditioning scheme is similar to the hierarchical 
basis preconditioning method developed by Yeserentant [39]. 
Based on the multi-level splitting of finite element spaces, 
Yeserentant reorganized the original triangular basis functions 
into a hierarchy of triangular functions with larger supports. 
This hierarchical basis method has been successfully applied in 
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the surface interpolation problem [34]. The difference between 
the proposed basis transfer scheme and the hierarchical basis 
method is in their manipulation of the nodal basis. In the 
hierarchical basis method, the low resolution version and the 
details of the interpolated surface are not explicitly separated. 
The set of hierarchical bases used to replace the original nodal 
basis consists of a mixture of the bases with different regions 
of support. However, in the proposed basis transfer method, 
the original node basis is transferred into two sets of bases 
{ $ J ~ ( x ) }  and { $ J ~ ~ ( X ) , ( ~ = ~ ~ J ]  } which are generated from 
the scaling function q 5 ( ~ )  and the wavelet $(x). These two 
sets of bases define the low resolution version and the details 
of the approximated signal. 

As discussed previously, the low resolution version and 
details can be interpreted as the low-frequency component and 
the high-frequency components of the approximated signal. 
Hence, the basis transfer method can completely describe the 
frequency domain characteristics of the approximated signal. 
Also, different scaling functions and wavelets can provide 
different interpolation basis for surface interpolation beside 
the triangular function. This makes the proposed basis transfer 
method more flexible than the hierarchical basis method. 

IV. FAST SURFACE INTERPOLATION ALGORITHM 

In the previous section, we have shown that the con- 
sequence of the basis transfer is the transform of the 
system matrix of the surface interpolation problem as 
described in (28). The purpose of this transformation is 
to change the structure of the system matrix in order to 
speed up the convergence rate in the iterative solving 
process. In this section, we will investigate the effect of 
this system transformation on the computation speed of an 
asynchronous iterative method which is used to derived the 
solution. 

A. The Asynchronous Iterative Computation Method 

In Section 11, we have shown that the interpolation problem 
is to minimize the energy function E .  The asynchronous 
computation structure is derived based on the process to 
minimize this energy function. From (7) in Section 11, if one 
of the variables, say u , , ~ ~ ,  is assumed to vary by an amount 
A~l ,nJo,  the value of the function & will vary by an amount 
A&, that is 

It can be found that A& is a parabolic function of,AiitnJ,. Thus, 
with respect to A~uzojo, A& can be made maximum when 

and the corresponding A& is given by 

From the definitions of t z l f J  and N I , ,  i t  is easy to see that 
tzgLJ + / j z J  > 0 for all C . J .  Hence, the value of & will decrease 
monotonously as each I J , /  IS updated according to (29). Also, 
the decrement of & is maximized with respect to the change 
of each variable. The computation continues until all AP~,~, , ' s  
reach zero such that the minimum of E is obtained. From Eq. 
(29), we can write the update formula as 

where vjfle* is the new value of 1 1 , ~  and I I $ ~ ~ ~ ) ' ~  are the valuec 
of the variables at the time when I , , ,  is updated. Recall the 
matrix representation used in Section 11. the update formula 
can be expressed in the form as 

1 

where v ( k )  and b ( k )  denote the X,-th element in vector v and 
b, respectively, and A(k,l) denote the element of matrix A in 
position ( k .  1 ) .  Vectors v, b and matrix A are those defined in 
Section 11. As each updating of the I, , ,  will always decrease the 
value of &, the ordering and timing of the updating process will 
not affect the convergence. That is. each I ! , ,  can be updated 
asynchronously. Thus, this computation structure is inherently 
parallel. This asynchronous property allows the computation 
to be implemented in analog circuit [ 191 for real-time surface 
interpolation. It can be found that the derived formula is similar 
to that of Gauss-Seidel matrix iterative method. However. 
based on this derivation, it  is obvious to see that the ordering 
of variables and synchronization of related variables will not 
affect the convergence of the iteration. 

B.  Pi-c.c.oriditioiiiii~~ h! Busis Trurisj21. 

To see the effect of the basis transfer on the convergence 
condition of the equation system, a theoretical measure is need 
to examine the change of the characteristics of the system 
matrix. As indicated in [40]. the iterative process for solving 



YAOU AND CHANG: FAST SURFACE INTERPOLATION USING MULTIRESOLUTION WAVELET TRANSFORM 68 1 

TABLE I 
CONVERGENCE RATE - log S(G)  AS A FUNCTION OF RESOLUTION LEVEL J AND SURFACE SIZE 

Surface Size J = O  J = 1 .J = 2 J = 3  J = 4  

8 x 8  1 S49  10 14e-03 1.4652747e-02 - - - 

16 x 16 5.6 14749 1 e-04 5.6642040e-03 I ,2355225e-02 - - 

32 x 32 3.0307722e-05 3.1554337e-04 1.8347929e-03 2.0822792e-02 - 
64 x 64 2.347 1197e-06 1.3265477e-05 4.7623 176e-04 5.653423 le-03 1.0245076e-02 

(C) 

Fig. 7. The examples for testing the convergence rate. (a) 8 x 8. (b) 16 x 

a linear equation system AV - b = 0 can be expressed in 
the form as 

(33) 

For the case of the above mentioned iterative computation 
method, the matrix G and the vector k are defined as 

(34) 

where I denotes the identity matrix, and BL and BU denote the 
strictly upper and strictly lower triangular matrices of matrix 
B. The matrix B is defined as B = I - (Diag(A))-'A. The 
matrix G is called the iteration matrix which determines the 
n + lth solution vn+' from the n-th solution vn. Denote the 
optimal solution of v as v*, the number of iterations required 
to reduce the solution error by a factor t is bounded by a 
function of the spectral radius of matrix G. This measure of 
convergence can be expressed as 

vn+' = Gv" + k 

G = (I - B L ) - ~ B u ,  k = (I - BL)-'b. 

log ; 
IF IJvn - v*ll < tllv" - v*IJ, Then n 2 

- log S ( G )  
(35)  

where 

S ( G )  A Inax 1x1, 
X€Eig(G) 

Eig(G) A the set of all eigenvalues of G. (36) 

(4 
16. (c) 32 x 32. (d) 64 x 64. 

The quantity - log S ( G )  is referred to as the rate of conver- 
gence [40] and provides a measurement of the convergence 
condition of the iterative method. It can be seen that matrix G 
is entirely a function of the system matrix A. Different system 
matrices will result in different convergence conditions. As 
described in Section 111, the basis transfer scheme is used to 
transfer a system matrix A into a new one A = RTAR. 
To verify that this transfer can result in a better convergence 
condition, some examples are tested. These examples are 
shown in Fig. 7, they are of size 8 x 8, 16 x 16, 32 x 
32, and 64 x 64, respectively. In Table I, the convergence 
rate - log S(G) associated with these surface interpolation 
problems are listed. From Table I, it can be seen that the 
convergence rate increases as the resolution level J increases 
in all the four cases. This shows that the basis transfer scheme 
can be an effective preconditioner for the iterative method. 

With this basis transfer scheme as a preconditioner to the 
proposed asynchronous iterative computation method, a fast 
interpolation algorithm can then be designed as the follows: 

FAST INTERPOLATION ALGORITHM USING BASIS 
TRANSFER 

Step 0. INITIATION: 
(a) For a given constraint set Cd = { q i j } ,  derive the 

corresponding system matrix A and vector b. 
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(b) Chose an initial estimation vector vo of the nodal 
variables vij's. 

(c) Chose the resolution level J and decide the matrix 
operators D and R. 

Step 1. BASIS TRANSFER: 
(a) Derive the new system matrix A = RTAR. 
(b) Derive the new vector b = RTb. 
(c) Transfer vo into Vo = Dv'. 

Step 2. ITERATIVE COMPUTATION: 
(a) Set maximum iteration number 

criterion STC. Set count = 0. 
(b) For IC = 0 - N 2  - 1, calculate 

MAXI and stop 

1 

(c) count = count + 1. 
(d) If count > MAXI or & 5 STC, go to Step 3. 
(e) Go to (2b). 

(a) Transfer V back to v by v = RV. 
(b) Stop. 

Step 3. INVERSE TRANSFER: 

In this algorithm, the basis transfer is only applied before 
and after the asynchronous iterative computation method. The 
iterative method used in Step 2 is independent upon the 
algorithm. Other iterative methods can also be used. The 
advantage of using the chosen asynchronous iterative formula 
is its easy implementation. Also the asynchronous computation 
structure can be implemented in both serial machine and 
parallel analog computation network. 

Compared with the direct iterative solving methods, the 
extra computation within this algorithm are the basis transfer in 
Step 1 and the inverse transfer in Step 3. Since the QMF filters 
are designed with the finitely supported wavelet functions, the 
matrix operators D and R are quite sparse. The number of the 
nonzero elements in each column or row of these matrices will 
be less than L2, where L is the length of the QMF filter. In the 
case of tent function as the scaling function, the value of L2 is 
less than 25. Hence, the basis transfer operations do-not require 
much computation cost. The derivation of matrix A in (la) is 
about O(n2)  operations (multiplications and additions). The 
derivations in (lb), (IC), and (3a) are about O(n)  operations, 
respectively, where n is the number of the nodal variables 
vij  's. So, the extra computation for basis transfer is mainly the 
operation in (la). Roughly, the computation cost required for 
the basis transfer is about the amount of computation needed 
for L2 iterations (the amount of computation for one iteration 
in Step 2 is about O(n2)  operations). Hence, when the size of 
the interpolated surface is large, this portion of computation 
is negligible. 

v .  EXPERIMENTS AND ANALYSIS 

A .  Experimental Results 
Some experiments are shown in the following to demon- 

strate the performance of the proposed method. In these 

0 50 100 150 200 250 300 350 400 450 500 
100 

Number of iterations 

(b) 

Fig. 8. 
The initial surface. (b) The convergence curves. 

The first experiment of the fast surfaceinterpolation algorithm. (a) 

experiments, the value of p is set to 10 such that the resulted 
surfaces will fit the given constraints closely. The initial 
estimation of the interpolated surface is derived by a simple 
zero estimation method. It sets all the variables to zero initially 
except those constrained variables which are set to the known 
depth values of the constraint data. In each of the convergence 
curves, logarithm of the objective function is used to denote 
the convergence status of the computation. 

In the first example, the constraints density is only 0.89% 
(i.e., there are 9 constrained variables among 1024 unknown 
variables). The initial surface using zero estimation method 
is shown in Fig. 8(a). The convergence of the objective 
energy function with the proposed method using different 
resolution levels ( J )  is plotted in Fig. 8(b). The corresponding 
interpolated surfaces with different resolution levels after 500 
iterations are shown in Fig. 9. The topmost curve ( J  = 0) in 
Fig. 8(b) denotes the convergence status using direct iterative 
computation without preconditioning. It can be found that the 
convergence rate is significantly improved when the basis 
transfer scheme is applied ( J  = 1.2.3).  In the second 
example, a saddle surface is interpolated. The initial surface 
is shown in Fig. 10(a). In this example, the constraint density 
is 18.3%. The convergence of the objective energy function 
using different resolution levels ( J )  are shown in Fig. 10(b). 
Similar to the first example, the proposed algorithm can 
improve the convergence rate significantly. Fig. 11 shows the 
surfaces interpolated with the proposed method using different 
resolution levels after 100 iterations. 

To compare with other acceleration schemes, both the the 
multi-grid method [35], [37] and the hierarchical basis method 
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(C) ( 4  

Fig. 9. The results of the firstexperiment after 500 iterations. (a) J = 0. (b) .J = 1. (c) .J = 2. (d) .J = 3. ( J :  the resolution level). 

[39] are tested. For the problem with given constraints de- 
scribed in Fig. 12(a), the convergence of the objective energy 
function by the multigrid method and the proposed basis 
transfer method are plotted in Fig. 12(b). The results of the 
two methods after 300 iterations are shown in Fig. 13. In this 
example, only two resolution layers are used in the multigrid 
method since the implementation of the multigrid method is 
quite complicated. In Fig. 12(b), the convergence curve by 
using the multigrid method is oscillatory. The oscillation is due 
to the inconsistency of the energy function between the coarse 
and fine levels. As shown in Fig. 12(b), with the same two 
levels of decomposition ( J  = I), the proposed basis transfer 
method seems to perform better than the multigrid method. As 
for the complexity in the implementation of both algorithms, 
the basis transfer method is comparatively simpler. 

In the last example with given constraints described in 
Fig. 14(a), the convergence performances by both the hier- 
archical basis method and the proposed basis transfer method 
are shown in Fig. 14(b). The curves marked as L = 1 - 
6 are the results obtained by applying the hierarchical basis 
scheme [39] as the preconditioner. The value of L stands 
for the number of the smoothing levels. When L = 1, no 
preconditioning is applied. This is equivalent to the case of 
J = 0 in the basis transfer method. As shown in Fig. 14(b), 
when preconditioning is applied ( J  = 1 - 3 and L = 2 - 
6), both methods can significantly improve the convergence 
rate. However, the basis transfer method is more efficient, the 
amount of improvement from one level to its next level is 
larger. Comparing the best cases of the two methods, the result 
of the basis transfer method with J = 3 is better than the result 
of the hierarchical basis method with L = 4. 

The hierarchical basis method has been applied by Szeliski 
1341 in surface interpolation. In Szeliski's approach, the con- 
jugate gradient search was used in the iterative computation. 

i 

I 
50 100 150 200 250 300 

Number of iterations 

(b) 

Fig. 10. 
(a) The initial surface. (b) The convergence curves. 

The second experiment of the fast surface interpolation algorithm. 

In Fig. 14(c), the curves marked as S = 1 - 6 are the results 
obtained with the hierarchical basis scheme as the precondi- 
tioner and the conjugate gradient as the iterative computation 
method. The value of S stands for the number of the smoothing 
levels. When S = 1, no preconditioning is applied. The 
difference between the S curves in Fig. 14(c) and the L curves 
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(C) (d) 

Fig. 11. The results of the second experiment after 100iterations. (a) J = 0. (b) .J = 1. (e) J = 2. (d) .J = 3. ( . J :  theresolution level). 

1 d  loo Zbo 3bo 400 sbo 600 700 800 WO 1L 
Number of iterations 

(b) 

(b) 

Fig. 13. 
method. (b) Basis transfer method ( d  = 1) .  

The results of the thirdexperiment after 300 iterations. (a) Multigrid 

can be made to work better than the complex conjugate 
gradient method when proper multiresolution preconditioning 
is applied. The results by the basis transfer method ( J  = 3) 
and the hierarchical basis method ( L  = 6 and S = 6) after 30 
iterations are shown in Fig. 15. From the convergence curves 
in Fig. 14(b)-(c), it can been found that the performance of 

Fig. 12. 
The initial surface. (b) 
and themulti-grid method. 

The third experiment forcomparing with the multigrid method. (a) 
The convergence curves of the basis transfer method 

the interpolation c m  be more affected by the preconditioner 
than the subsequent iterative computation methods. 

B .  Analysis 

The above examples indicate that the convergence rate 
of surface interpolation c m  be significantly improved by 
the proposed basis transfer algorithm. This improvement of 
convergence is due to the use of bases at different reso- 
lution levels. Through the basis transfer, the original nodal 
variables v are converted to the combination of its low- 
frequency component v J and its high-frequency components 

in Fig. 14(b) are due to the different numerical computation 
methods. It is well known that the conjugate gradient method is 
inherently faster than the general iterative methods. However, 
when preconditioning is applied ( S  = 2 N 6 and L = 2 N 6), 
the improvement in convergence is more significant with the 
asynchronous computation method. This example indicates the 
fact that the simple iterative method such as Gauss-Seidel 
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J: basis transfer + asynchronous iterative computation 
L: hierarchical basis + asynchronous iterative computation 

I 
lo" 

,s w 

0 20 40 60 EO 100 120 140 160 180 200 
10' 1 

Number of iterations 

(b) 

10J 
1 basis transfer + asynchronous iterative computation 
S: hierarchical basis + conjugate gradient search 

(C) 

Fig. 15. The results of the fourth experiment after 30 iterations. (a) Basis 
transfer method ( I  = 3). (b) Hierarchical basis method L = 6 (asynchronous 
iterative computation). (c) Hierarchical basis method S = 6 (conjugate 
gradient search computation). 

row operation column operation column operation row operation 

0 20 40 60 80 1W 120 140 160 180 200 
Number of iterations 

(C) 

Fig. 14. The fourth experiment for comparing with the hierarchical ba- 
sismethod. (a) The initial surface. (b) The convergence curves ofthe basis 
transfer method and the hierarchical basis method(using asynchronous iterative 
computation). (c) The convergence curves of the basis transfer method and 
the hierarchical basismethod (using conjugate gradient search computation). 

~ q , ( j = ~ - ~ , i = 1 , 2 , 3 ) .  The use of basis transfer has greater effect 
on the low-frequency component, thus the low-frequency error 
in the iteration can then be effectively reduced. To verify this 
inference, the error in the computation of the second example 
(Fig. 10) is analyzed. 

For this, the result obtained by using the proposed algorithm 
after 1000 iterations (with J = 3) is set as the reference 
solution v*. In each iteration, the result V is transferred back 
to v to compare with the reference surface v*. To extract the 
low-frequency component and the high-frequency component 
of a surface, a 2-D filter banks described in Fig. 16 is used. 
The filters in this filter banks are those listed in Fig. 5. With 
this filter banks, the reference surface v* and the surface 

Fig. 16. The 2-D filter banks for error analysis. 

v obtained in each iteration can be decomposed into their 
low-frequency and high-frequency components, respectively 
(Fig. 17). The low-frequency and high-frequency components 
of the reference surface v* are shown in Fig. 18. In each 
iteration, the difference between the solution v and reference 
surface v* is evaluated as the error. The low-frequency and 
high-frequency components of the error can then be obtained 
by passing the error through the 2-D filter banks. 

In Fig. 19, the energy (i.e., the vector norm) of the two 
error components for the first 500 iterations are shown. It can 
be found that the high-frequency error is relatively small and 
attenuate very fast whether the basis transfer scheme is applied 
or not. However, the attenuation speed of the low-frequency 
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Fig. 17. The reference surface for error analysis. 

Iterations 

(C) 
Iterations 

(d) 

Fig. 19. 
errorcomponent. (a) J = 0. (b) J = 1.  (c) J = 2 .  (d) J = 3. 

The energy of the low-frequency error and the high-frequency 

(b) 

Fig. 18. The low-frequency component and the high-frequency component 
of the reference surface. (a) Low-frequency component. (b) High-frequency 
component. 

error is obviously increased when the basis transfer scheme is 
used. This indicates that the convergence rate is dominated by 
the low-frequency portion of the surface and can be effectively 
improved by using basis of larger support. By emphasizing the 
low-frequency component of the nodal variables (extracting 
the low-frequency component V J  from v), the convergence 
can then be accelerated. That is, if the low-frequency portion 
converge faster, the entirely surface will converge faster. 

The effect of the basis transfer can also be observed from 
the convergence of the converted nodal variables {VJ, w:}. 
To examine the convergence condition of these variables, we 
partition these variables into two groups V J  {VJ} and 
W J  {wj,(j=lN~,i=1,2,3) }. In each iteration, the variation of 
these two groups of variables are evaluated. The energy (vector 
norm) of the variation of these two groups of variables for the 
first 500 iterations are plotted in Fig. 20. Fig. 20(a) shows the 
variation of the original nodal variables. Since no conversion 
of nodal variables is used, only one group of variables is 
analyzed. Fig. 20( b N d )  show the variations of the two groups 
of variables at resolution level J = 1 , 2 , 3 ,  respectively. From 
Fig. 20, it can be found that the variations of the group W J 
at resolution level J = 1 , 2 , 3  are very similar. This indicates 
that the high-frequency portion of the interpolation problem 
converges quite quickly and is not much affected by the basis 
transfer scheme. In the other hand, the variation of the group 
V J  is decreased faster in the iteration when the value of J 
is increased. This indicates that the low the convergence is 

10-30-00 
0 100 200 300 I Iterations 400 500 ~~ Iterations 

(c) (d) 

Fig. 20. 
J = 1.  ( c )  .J = 2. (d) J = 3. 

The variation of the variable groups I-.J and I17.J. (a) .J = 0. (b) 

dominated by the low-frequency portion of the interpolation 
problem can be effectively improved with multiresolution 
preconditioning. When more resolution levels (larger J )  are 
used, the number of variables in group V J  will also decrease. 
This will also influence the status of convergence in addition 
to the use of larger supported basis. 

In the above experiments, the weighting factor p is set at 
10. The results indicate that the convergence rate is increased 
when the number of resolution levels J is increased. But, when 
the weighting factor /3 is set at a large value, this trend is no 
longer true. This fact was also pointed out by Szeliski [34] in 
his implementation of the hierarchical basis method. This is to 
say that, when the cost functional is emphasized, the optimal 
value of J for fastest convergence does not correspond to the 
largest resolution layers. This is a problem deserving further 
research. However, based on our experience, unless the value 
of p is greater than 50, the above mentioned problem will not 
exist. Hence, if the weighting of the cost functional is less than 
50, one can always use the largest J as the optimal choice. 

In applying the multiresolution wavelet transform, the treat- 
ment of the boundary condition needs special attention. In 
order for the interpolated surface stable in the boundary, extra 
nodes outside the domain of interest are added. The values of 
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these extra nodes are constrained by certain measure such as 
smoothness, symmetry etc. For this, additional equations are 
used to establish the relationship among the extra nodes and 
the nodes inside the domain of interest. The number of extra 
nodes that are to be inserted depends on the order of the basis 
function. A detailed discussion of this issue can be found in 
[18]. Due to the cardinal property, the boundary condition for 
the tent functionin is simple. In the case of tent function for 
surface interpolation, the treatment of the boundary condition 
can be found in [19], [20]. In summary, the treatment of 
boundary condition depends on the order of the basis function 
and the functional form of the regularization. Care is needed 
to take into account the overlapping condition of the basis 
functions and their derivatives. The overall effect is reflected 
in the relation coefficients t i j m n  ’s. 

The tent basis used in our experiments is the first order B- 
spline function. The cardinal property of the triangular function 
can simplify the manipulation in the discretization of the 
interpolation problem. Beside the triangular function, various 
interpolation basis functions can also be applied. Interpolation 
using spline functions of different orders has been studied 
in [ 181. In wavelet transform, use of spline function as the 
scaling function has been well developed in the study of 
biorthogonal wavelet transform [7]. This is a generalization 
of the conventional orthogonal wavelet transform. By re- 
laxing the constraint on orthogonality, biorthogonal wavelet 
transform has more freedom in the design of wavelets with 
good spatial-spectral localization. Also, it is possible to design 
symmetric scaling function and wavelet under the perfect 
decomposition/reconstruction requirement. This is not possible 
for the orthogonal wavelet transform except in the trivial 
Harr space case. These characteristics of the biorthogonal 
wavelet transform make it a powerful tool in dealing with 
the interpolation problem. 

Use of wavelet transform to precondition the surface in- 
terpolation problem can also be found in [29], [30]. In Pent- 
land’s approach, discrete wavelet transform is directly applied 
to diagonalize the linear equation system of the discretized 
interpolation problem. With this diagonal preconditioning, 
he has shown a way to obtain fast solution with fewer 
iterations by approximating the off-diagonal terms of the 
preconditioned equation system with zero. This approach can 
be treated as a pure algebraic operation to rotate the coordinate 
system. This is different from the scheme of multiresolution 
wavelet signal representation proposed in this paper. A more 
detailed treatment of the mathematical theory behind the 
diagonal preconditioning by wavelet transform can be found 
in [21]. This diagonalization property has been considered 
as an important characteristic of the wavelet preconditioning 
scheme. However, to directly diagonalize the equation system, 
the filter bank associated with the discrete wavelet transform 
has to be carefully designed. Also, the structure of the system 
matrix needs be considered. For the surface interpolation 
problem, the effect of diagonalization will also depends on 
the weighting of the cost functional. Since, when the weighting 
is large, the effect of the diagonalization is not obvious and 
significant errors will be introduced [30]. This remains an 
interesting issue deserves further attention. 

VI. CONCLUSION 

In this paper, a fast surface interpolation algorithm using 
basis transfer scheme has been proposed. The basis transfer 
scheme is developed from the multiresolution signal represen- 
tation technique in the wavelet transform. Applying the basis 
transfer scheme as a preconditioner, significant improvement 
in the convergence rate of the proposed asynchronous iterative 
solving method for the surface interpolation is obtained. The 
inherent parallel computation structure of the asynchronous 
iterative solving method can also be implemented with the ana- 
log circuit for fast computation. Comparison of the proposed 
algorithm with the multi-grid method and the hierarchical basis 
method has also been presented. From the experiment results, 
the performance of the proposed algorithm has been shown to 
be better in the surface interpolation problem. 

Since, the basis operation of the proposed algorithm is 
simple, multiresolution basis can be more systematically gen- 
erated. The basis transfer scheme is only required before and 
after any iterative solving method. Computation can be camed 
out at proper connection level such that highest computation 
speed can be obtained. Application of this proposed method 
to different problems are being considered. Also, detailed 
analysis of the relationship between the issues of signal 
representation in different resolution by different wavelet bases 
and the computation with different nodal connection are being 
studied. 
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