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1. Introduction

Coin-flipping is one of the simplest ways of resolving a conflict, deciding between two alternatives, and generating ran-
dom phenomena. It has been widely adopted in many daily-life situations and scientific disciplines. There exists even a
term “flippism.” The curiosity of understanding the randomness behind throwing coins or dices was one of the motivat-
ing origins of early probability theory, culminating in the classical book “Ars Conjectandi” by Jacob Bernoulli, which was
published exactly three hundred years ago in 1713 (many years after its completion; see [92,101]). When flipped succes-
sively, one naturally encounters the binomial distribution, which is pervasive in many splitting processes and branching
algorithms whose analysis was largely developed and clarified through Philippe Flajolet’s works, notably in the early 1980s,
an important period marking the upsurgence of the use of complex-analytic tools in the Analysis of Algorithms.

Technical content of this paper. This paper is a sequel to [55] and we will develop an analytic approach that is especially
useful for characterizing the asymptotics of the mean and the variance of additive statistics of random tries under the
Bernoulli model; such statistics can often be computed recursively by

Xn
d= XIn + X∗

n−In
+ Tn, (1)
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with suitable initial conditions, where Tn is known, X∗
n is an independent copy of Xn and In is the binomial distribution

with mean pn, 0 < p < 1.
Many asymptotic approximations are known in the literature for the variance of Xn , which has in many cases of interest

the pattern

V(Xn)

n
= c logn + c′ +

{
P (� log n), if log p

log q ∈Q

0, if log p
log q /∈Q

}
+ o(1), (2)

where c may be zero, � depends on the ratio log p
log q and P (x) = P (x + 1) is a bounded periodic function. However, known

expressions in the literature for the periodic function P are rare due to the complexity of the problem, and are often either
less transparent, or less explicit, or too messy to be stated. In many situations they are given in the form of one periodic
function minus the square of the other. The approach developed here, in contrast, provides not only a systematic derivation
of the asymptotic approximation (2) but also a simpler, explicit, independent expression for P , notably in the symmetric
case (p = q). Further refinement of the o(1)-term lies outside the scope of this paper and can be dealt with by the approach
developed by Flajolet et al. in [34].

Binomial splitting processes. In general, the simple splitting idea behind the recursive random variable (1) (0 going to the
left and 1 going to the right) has also been widely adopted in many different modeling processes, which, for simplicity,
will be vaguely referred to as “binomial splitting processes” (BSPs), where binomial distribution and some of its extensions
are naturally involved in the analysis; see Fig. 1 for concrete examples of BSPs that are related to our analysis here. For
convenience of presentation, we roughly group these structures in four categories: Data Structures, Algorithms, Collision
Resolution Protocols, and Random Models.

To see how such BSPs in different areas can be analyzed, we start from the recurrence (q = 1 − p)

an =
∑

0�k�n

πn,k(ak + an−k) + bn, where πn,k :=
(

n

k

)
pkqn−k, (3)

which results, for example, from (1) by taking expectation. Here the “toll-function” bn may itself involve a j ( j = 0,1, . . .)
but with multipliers that are exponentially small.

From an analytic point of view, the trie recurrence (3) translates for the Poisson generating function

f̃ (z) := e−z
∑
n�0

an

n! zn, (4)

into the trie functional equation

f̃ (z) = f̃ (pz) + f̃ (qz) + g̃(z), (5)

with suitable initial conditions. Such a functional equation is a special case of the more general pattern

∑
0� j�b

(
b

j

)
f̃ ( j)(z) = α f̃ (pz + λ) + β f̃ (qz + λ) + g̃(z), (6)

where b = 0,1, . . . , and g̃ itself may involve f̃ and its derivatives f̃ ( j) but with exponentially small factors. When b = 0,
one has a pure functional equation,

f̃ (z) = α f̃ (pz + λ) + β f̃ (qz + λ) + g̃(z), (7)

while when b � 1, one has a differential–functional equation.
It turns out that Eq. (6) covers almost all cases we collected (a few hundred of publications) in the analysis of BSPs the

majority of which correspond to the case b = λ = 0. The cases when b = 0 and λ > 0 are thoroughly treated in [21,22,57,81],
and the cases when b � 1 are discussed in detail in [55] (see also the references cited there). We focus on b = λ = 0 in this
paper. Since the literature abounds with Eq. (5) or the corresponding recurrence (3), we content ourselves with listing below
some references that are either standard, representative or more closely connected to our study here. See also [17,19,41] for
some non-random contexts where (5) appeared.

Data structures. Tries: [74,78,104]; PATRICIA tries: [15,74,70]; Quadtries and k-d tries: [32,43]; Hashing: [20,24,39,83]; Suf-
fix trees: [61,104].

Algorithms. Radix-exchange sort: [74]; Bucket selection and bucket sort: [8,77]; Probabilistic counting schemes: [25,27,28,
30,90]; Polynomial factorization: [39]; Exponential variate generation: [35]; Group testing: [47]; Random genera-
tion: [31,97].
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Fig. 1. A tree rendering of the diverse themes pertinent to binomial splitting processes.

Collision resolution protocols. Tree algorithms in multi-access channel: [3,21,22,26,80,81,84,105]; Initialization in radio net-
works: [86,102]; Mutual exclusion in mobile networks: [82]; Broadcast communication model: [7,49,107]; Leader
election: [23,64,94]; Tree algorithms in RFID systems: [54,87].

Random models. Random graphs: [2,46,103]; Geometric IID RVs (or order statistics): [18,45,93]; Cantor distributions: [10,
48]; Evolutionary trees: [1,76]; Diffusion limited aggregates: [6,79]; Generalized Eden model on trees: [13].

Asymptotics of most of the BSPs can nowadays be handled by standard analytic techniques, which we owe largely to
Flajolet for initiating and laying down the major groundwork. We focus in this paper on analytic methods. Many elementary
and probabilistic methods have also been proposed in the literature with success; see, for example, [14,15,63,88,104] for
more information.

Flajolet’s works on BSPs. We begin with a brief summary of Flajolet’s works in the analysis of BSPs. For more information,
see the two chapter introductions on Digital Trees (by Clément and Ward) and on Communication Protocols (by Jacquet) in
Philippe Flajolet’s Collected Papers, Volume III (edited by Szpankowski).

Flajolet published his first work related to BSP in June 1982 in a paper jointly written with Dominique Sotteau entitled
“A recursive partitioning process of computer science” (see [38]). This is indeed a review paper and starts with the sentence:
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Fig. 2. The diverse themes and methodology developed (or mentioned) in Flajolet’s works that are connected to BSPs.

We informally review some of the algebraic and analytic techniques involved in investigating the properties of a combinatorial
process that appears in very diverse contexts in computer science including digital sorting and searching, dynamic hashing methods,
communication protocols in local networks and some polynomial factorization algorithms.

They first brought the attention of the generality of the same splitting principle in diverse contexts in their Introduction,
followed by a systematic development of generating functions under different models ([38, Section 2: Algebraic methods]).
Then a general introduction was given of the saddle-point method and Mellin transform to the Analysis of Algorithms ([38,
Section 3: Analytic methods]). They concluded in the last section by giving applications of these techniques to one instance
in each of the four areas mentioned above.

Such a synergistic germination of diverse research ideas

later expanded into a wide spectrum of applications and research networks (see Fig. 2 for a plot of BSP-related themes). It
was also fully developed and explored, and evolved into his theory of Analytic Combinatorics. Many of these objects become
in his hands a subject of interest, and many follow-up papers continued and extended with much ease.

Analysis of algorithms (and particularly BSPs) in the pre-Flajolet era relied mostly on more elementary approaches
(including Tauberian theorems; see [41]), with some sporadic exceptions in the use of the “Gamma-function method”
(a particular case of Mellin transform): the height of random trees [11], the analysis of radix-exchange sort (essentially
the external path length of random tries) given in [74, §5.2.2], PATRICIA tries and digital search trees [74, §6.3], odd–even
merging [100], register function of random trees [67], analysis of carry propagation [73], and extendible hashing [20]. See
Dumas’s chapter introduction (Chapter 4, Volume III) for a more detailed account.

Many asymptotic patterns such as (2), which most of us take for granted today, were far from being clear in the 1980’s,
notably in the engineering contexts. For example, the minute periodic fluctuations when log p/ log q is rational are often
invisible in numerical calculations, leading possibly to wrong conclusions; see Fig. 3 for an illustration of the delicacy in
visualizing the periodic oscillations. Flajolet pioneered and developed systematic analytic tools in Analysis of Algorithms to
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Fig. 3. Delicacy of visualizing the periodic oscillations in μn , the expected size of tries in the symmetric case under the Bernoulli model: μn = 1 +
21−n ∑

k

(n
k

)
μk with μ1 = 0. The periodic fluctuation is invisible if plotted naively as in the upper-left figure. The shift by the factor 1 is crucial here

because it is the average value of the periodic function appearing in the next order term in the asymptotic expansion of μn . Lower right: the periodic
function by the analytic expression (31).

fully characterize such tiny perturbations, which he called “wobbles,” a word he learned from Hardy’s Twelve Lectures about
Ramanujan [50]. See [29] for more information.

Amazingly, most of the items in the big picture of Fig. 2 were already discovered or clarified in the 1980’s in Flajolet’s
published works with a few later themes aiming at finer improvements in results or more general stochastic models. Among
these, the “digital process” and “probabilistic counting algorithms” became two of his favorite subjects of presentation, as
can be seen from his webpage of lectures where about one third of talks are related to these two subjects.

We organize this paper as follows. We briefly introduce tries, functional equations and the analytic tools in the next
section. We then develop analytic tools we need in Section 3, the most difficult part being the proof of admissibility
under Hadamard product. Then we focus on the characterization of the asymptotic variance of general trie statistics in
the following sections. We also include PATRICIA tries in Section 7 and conclude this paper with a few remarks.

2. Random tries, functional equations and asymptotic analysis

The design of an ordinary dictionary according to the alphabetical (or lexicographical) order induces itself a tree struc-
ture, which is also the splitting procedure used in many digital tree structures and bucketing algorithms such as tries and
radix sort. Tries (coined by Fredkin [40], which is a mixture of “tree” and “retrieval”) were first introduced in computer
algorithms by de la Briandais [12] in 1959, the same year when the radix-exchange sort (a digital realization of Quicksort)
was proposed by Hildebrandt and Isbitz [52]; see [74, §6.3] for more information. Tries are one of the most widely adopted
prototype data structures for words and strings, and admit a large number of extensions and variants.

Given a set of n random binary strings (each being a sequence of Bernoulli random variables with parameter p), we can
recursively define the random trie associated with this set as follows. If n = 0, then the trie is empty; if n = 1, then the trie
is composed of a single (external) node holding the input-string; if n > 1, then the trie contains three parts: a root (internal)
node used to direct keys to the left (when the first bit of the string is 0) or to the right (when the first bit of the string
is 1), a left sub-trie of the root for keys whose first bits are 0 and a right sub-trie for keys whose first bits are 1; strings
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Fig. 4. A trie of n = 7 records: the circles represent internal nodes and rectangles holding the records are external nodes.

directing to each of the two subtrees are constructed recursively as tries (but using subsequent bits successively). Thus tries
are ordered, prefix trees. See Fig. 4 for the plot of a trie of 7 keys.

Asymptotic analysis of the trie recurrence (3) is nowadays not difficult and a typical way of deriving asymptotic estimates
starts with the Poisson generating function (4), which satisfies the functional equation (5) (when an does not grow faster
than, say exponential), where g̃(z) there depends on bn and the initial conditions. From this, one sees that the Mellin
transform of f̃ (z)

M [ f̃ ; s] :=
∞∫

0

f̃ (z)zs−1 dz,

which exists in some strip α < �(s) < β (in the sequel, we will use the notation 〈α,β〉 to denote this set), satisfies

M [ f̃ ; s] = M [g̃; s]
1 − p−s − q−s

.

Then the asymptotics of an can be manipulated by a two-stage analytic approach: first derive asymptotics of f̃ (z) for
large |z| by the inverse Mellin integral

f̃ (z) = 1

2π i

∫
↑

M [g̃; s]z−s

1 − p−s − q−s
ds, (8)

where the integration path ↑ denotes some vertical line, and then apply the saddle-point method to Cauchy’s integral
formula (called analytic de-Poissonization and largely developed by Jacquet and Szpankowski [62])

an = n!
2π i

∮
|z|=r

z−n−1ez f̃ (z)dz (r > 0). (9)

This two-stage Mellin-saddle approach has proved very successful and can in many real applications be encapsulated into
one, called the Poisson–Mellin–Newton cycle in Flajolet’s papers (see [33,36])

an = n!
2π i

∫
↑

M [g̃; s]
(1 − p−s − q−s)Γ (n + 1 − s)

ds, (10)

which is formally obtained by substituting (8) into (9) and by interchanging the order of integration.
Note that such a formal representation may be meaningless due to the divergence of the integral. One of the most useful

tools in justifying the exponential smallness of M [g̃; s] at c ± ∞ is Proposition 5 of Flajolet et al.’s survey paper [29] on
Mellin transforms. For ease of reference, we call it the Exponential Smallness Lemma in this paper.

Exponential Smallness Lemma. (See [29, Prop. 5].) If, inside the sector |arg(z)| � θ (θ > 0), f (z) = O (|z|−α), as z → 0, and
f (z) = O (|z|−β) as |z| → ∞, then M [ f ; s] = O (e−θ |�(s)|) holds uniformly for �(s) ∈ 〈α,β〉.
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Fig. 5. The two analytic approaches to the asymptotics of an . Here πn,k := (n
k

)
pkqn−k .

This simple lemma is crucial in the development of our arguments.
In various practical cases, the use of the Poisson–Mellin–Newton approach relies mostly on the so-called Rice’s inte-

gral formula (or integral representation for finite differences) when the integral converges; see Fig. 5 for a diagrammatic
illustration. Under different manipulations and guises, such a Rice-integral approach has proved extremely useful in many
situations and was widely studied in the early history of BSPs and related structures (see the survey paper [36]), notably
for the asymptotics of the mean value; see also below for more references.

Asymptotics of either of the two integrals (8) and (10) rely heavily on the singularities of the integrand, which in turn
depends on the location of the zeros of the equation 1 − p−s − q−s = 0. A detailed study of the zeros can be found in
[21], and later in [17,99]. While the dominant asymptotic terms are often easy to characterize when analytic properties of
M [g̃; s] are known (owing largely to the systematic tools Flajolet and his coauthors developed), error analysis turned out
to be highly challenging when log p/ log q is irrational; see [34].

These analytic tools are well-suited for computing the asymptotics of the mean, but soon become very messy when
adopted for higher moments, which satisfy the same type of recurrences but involve convolution terms that are often
difficult to manipulate analytically. The situation becomes even worse when dealing with the variance or higher central
moments because the high concentration of binomial distribution results in smaller variance, meaning more complicated
cancelations in the desired asymptotic approximations have to be properly taken into account. Much effort along this direc-
tion was put forth in several pioneering papers dealing with the asymptotic variance of statistics related to tries and digital
search trees; see, for example, [68,70–72] where the authors worked out an approach by considering the second moment
and managing the delicate cancellations.

The key, crucial step of our approach to the asymptotic variance of trie statistics is to introduce, as in [55], the corrected
Poissonized variance of the form

Ṽ (z) := f̃2(z) − f̃1(z)2 − z f̃ ′
1(z)2, (11)

where f̃1 and f̃2 denote the Poisson generating functions of the first and the second moments, respectively. The manipula-
tion of such an approach is indirect in several previous papers in the sense that the asymptotics of the Poissonized variance
f̃2(z) − f̃ 2

1 (z) and that of z f̃ ′
1(z)2 are first worked out separately, and then the asymptotics of the variance can be charac-

terized by canceling the dominant terms; the resulting Fourier series is often expressed in terms of the difference of two
Fourier series, different from that obtained by considering directly the asymptotics of (11); see for example [58,61,77,78,91,
96] and the references therein. Our Fourier series expansions for the periodic functions are in most cases simpler partly due
to the no-cancelation character of the approach, especially in the symmetric case.

Several different approaches other than the above-mentioned second-moment approach and the Poissonized variance
approach have also been proposed in the literature for the asymptotic variance with different degrees of precision;
these include an elementary induction approach (see [7,53]), (bivariate) characteristic function approach [59,61,78], and
Schachinger’s differencing approach [98].

We will enhance our corrected Poissonized variance approach by introducing the class of JS-admissible functions as in
our previous paper [55], a notion formulated from Jacquet and Szpankowski’s works on analytic de-Poissonization (see
[62]) and mostly inspired from Hayman’s classical work [51] on the saddle-point method (see also [37, §VIII.5]), via which
many asymptotic approximations can be derived by checking only simple criteria of admissibility. Note that analytic de-
Poissonization is a special case of the saddle-point method, and Hayman’s framework on admissible functions is indeed
more general than JS-admissible functions. The combined use leads to a very effective, systematic approach that can be
easily adapted for diverse contexts where a similar type of analytic nature is encountered; see Sections 5 and 6 for some
examples.
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In general, polynomial growth rate for g̃(z) for large |z| implies the same for f̃ in a small sector containing the real axis.
An exception was recently observed for the functional–differential equation [2]

f̃ ′(z) = f̃ (qz) + g̃(z),

for which the growth is of order zc log z when g̃ grows polynomially for large |z|. Note that this equation is a special case of
the so-called “pantograph equations”; see [2] for more information.

Notations. Throughout this paper, q = 1 − p and 0 < p < 1. Also h := −p log p − q log q denotes the entropy of the Bernoulli
distribution. The splitting distribution In is a binomial distribution with mean pn. For brevity, we introduce the generic
symbol F [G](x) to denote a bounded periodic function of period 1 of the form

F [G](x) =
{

h−1 ∑
k∈Z\{0} G(−1 + χk)e2kπ ix, if log p

log q ∈Q

0, if log p
log q /∈Q

}
, (12)

where χk = 2rkπ i
log p when log p

log q = r



with gcd(r, 
) = 1. The average value of F [G] is zero and the Fourier series is always
absolutely convergent (it is indeed infinitely differentiable for all cases we study).

3. JS-admissibility, Hadamard product and asymptotic transfer

We collect and develop in this section some technical preliminaries, which are needed later for our asymptotic analysis.
The arduous part is the proof for the closure of JS-admissibility under Hadamard product.

3.1. JS-admissible functions

We begin with recalling the definition and a few fundamental properties from [55] of JS-admissibility in which Hayman’s
general framework in [51] is specialized to analytic de-Poissonization (see [62]) with fixed saddle-point (at z = n) and with
more precise expansions.

Definition 1. Let f̃ (z) be an entire function. Then we say that f̃ (z) is JS-admissible and write f̃ ∈ JS (or more precisely,
f̃ ∈ JS α,β , α,β ∈R) if for some 0 < θ < π/2 and |z| � 1 the following two conditions hold.

(I) (Polynomial growth inside a sector) Uniformly for |arg(z)| � θ ,

f̃ (z) = O
(|z|α(

log+ |z|)β)
,

where log+ x := log(1 + x).
(O) (Exponential bound) Uniformly for θ � |arg(z)| � π ,

f (z) := ez f̃ (z) = O
(
e(1−ε)|z|),

for some ε > 0.

The major reason of introducing JS-admissible functions is to provide a systematic analytic justification of the Poisson
heuristic an ∼ f̃ (n), where f̃ is the Poisson generating function of an . We do not however pursue optimum conditions here
for the sake of simplicity and easy applications. On the other hand, since the conditions of admissibility we impose are
strong, we can indeed provide a very precise asymptotic characterization of an .

Proposition 3.1. (See [55].) If f̃ ∈ JS α,β , then an satisfies the asymptotic expansion

an =
∑ f̃ ( j)(n)

j! τ j(n) + O
(
nα−k logβ n

)
, (13)
0� j<2k
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for k = 0,1, . . . , where the τ j ’s are polynomials of n of degree 
 j/2� given by

τ j(n) =
∑

0�l� j

(
j

l

)
(−n)l n!

(n − j + l)! ( j = 0,1, . . .).

Note that the asymptotic expansion is formulated very differently in [62]. Also the Poisson–Charlier expansion

an =
∑
j�0

f̃ ( j)(n)

j! τ j(n)

converges as long as f̃ is an entire function; see [55]. It is the asymptotic nature (13) that requires more regularity condi-
tions, which can intuitively be seen by observing that f̃ ( j)(n) � n− j f̃ (n) when f̃ ∈ JS ; see [55].

The τ j ’s are closely connected to Charlier and Laguerre polynomials; see [55] for a more detailed discussion. The first
few terms are given as follows.

τ0(n) τ1(n) τ2(n) τ3(n) τ4(n) τ5(n) τ6(n)

1 0 −n 2n 3n(n − 2) −4n(5n − 6) −5n(3n2 − 26n + 24)

The fact that τ1 = 0 indicates that much information is condensed in the dominant term f̃ (n).
At the generating function level, the usefulness of JS-admissible functions lies in the closure properties under several

elementary operations.

Proposition 3.2. (See [55].) Let m be a non-negative integer and α ∈ (0,1).

(i) zm, e−αz ∈ JS .

(ii) If f̃ ∈ JS , then P̃ f̃ ∈ JS for any polynomial P̃ (z).

(iii) If f̃ ∈ JS , then f̃ (αz) ∈ JS .

(iv) If f̃ , g̃ ∈ JS , then f̃ + g̃ ∈ JS .

(v) If f̃ , g̃ ∈ JS , then f̃ (αz)g̃((1 − α)z) ∈ JS .

(vi) If f̃ ∈ JS , then f̃ (m) ∈ JS .

We will enhance these closure properties by proving that JS-admissibility is also closed under Hadamard product.

3.2. Asymptotic transfer

For our purposes, we need also a transfer theorem for entire functions satisfying the functional equation (5).

Proposition 3.3. Let f̃ (z) and g̃(z) be entire functions satisfying

f̃ (z) = f̃ (pz) + f̃ (qz) + g̃(z),

with f (0) given. Then

f̃ ∈ JS if and only if g̃ ∈ JS .

Proof. The proof is similar to and simpler than that of Proposition 2.4 in [55]. Thus we only give the proof for (I). Define

B̃(r) := max
|z|�r

| arg(z)|�θ

∣∣ f̃ (z)
∣∣.

Then

B̃(r) � B̃(pr) + B̃(qr) + O
(
rα(log+ r)β + 1

)
.

Now define a majorant function K̃ (r) by

K̃ (r) = K̃ (pr) + K̃ (qr) + C
(
rα(log+ r)β + 1

)
,
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where C > 0. Then B̃(r) � K̃ (r) for a sufficiently large C > 0, and by standard Mellin argument [29] or by the proof used
in [98]

K̃ (r) =
⎧⎨
⎩

O (r), if α < 1;
O (rα(log+ r)β+1), if α = 1;
O (rα(log+ r)β), if α > 1.

⎫⎬
⎭

This completes the proof. �
We now refine the asymptotic transfer and focus on asymptotically linear functions.

Proposition 3.4. Let f̃ and g̃ be entire functions related to each other by the functional equation f̃ (z) = f̃ (pz) + f̃ (qz) + g̃(z) with
f (0) given. Assume 0 < θ < π/2,α < 1 and β ∈R.

(a) If g̃(z) = O (|z|α(log+ |z|)β), where the O -term holds uniformly for |z| � 1 and |arg(z)| � θ , then, as |z| → ∞ in the same sector,

f̃ (z)

z
= G(−1)

h
+ F [G](r log1/p z) + o(1),

where the notations F [G](x) and r are defined in (12).
(b) If g̃(z) = cz + O (|z|α(log+ |z|)β) uniformly for |z| � 1 and |arg(z)| � θ , then, as |z| → ∞ in the same sector,

f̃ (z)

z
= c

h
log z + h0 + F [G](r log1/p z) + o(1),

where

h0 := c0

h
+ c(p log2 p + q log2 q)

2h2
, (14)

G(s) is the meromorphic continuation of M [g̃; s], and

c0 := lim
s→−1

(
G(s) + c

s + 1

)
.

Proof. Without loss of generality, we may assume that f̃ (0) = f̃ ′(0) = g̃(0) = g̃′(0) = 0. Then both Mellin transforms exist
in the strip 〈−2,−1〉 and

M [ f̃ ; s] = G(s)

1 − p−s − q−s
.

Note that G(s) can be extended to a meromorphic function in the strip 〈−2,−α − ε〉. In the case of (a), G(s) is analytic on
the line �(s) = −1 while in the case of (b) G(s) has a unique simple pole on �(s) = −1 at s = −1 with the local expansion
G(s) = −c/(s + 1) + c0 + · · · . Note that by applying the Exponential Smallness Lemma [29, Prop. 5], we have the estimate∣∣G(σ + it)

∣∣ = O
(
e−θ |t|),

uniformly for large |t| and σ ∈ 〈−2,−α − ε〉. Thus the proposition follows from standard Mellin analysis (see [29]) and
known properties of the zeros of 1 − p−s − q−s (see [21]). �

In the symmetric case when p = q = 1/2, both error terms o(1) in the proposition can be improved to O (max{1,

|z|α−1(log |z|)β}). Indeed, all error terms in such a case in this paper can be improved by standard arguments; we focus
instead on the Fourier series expansion in this paper.

3.3. A Hadamard product for Poisson generating functions

We need a new closure property for the analysis of the variance. Given two exponential generating functions

f (z) =
∑
n�0

an

n! zn and g(z) =
∑
n�0

bn

n! zn,

the Hadamard product of these two functions is defined as

h(z) := f (z) � g(z) =
∑ anbn

n! zn.
n�0
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Then we consider their Poisson generating functions

f̃ (z) := e−z f (z), g̃(z) := e−z g(z), and h̃(z) := e−zh(z).

We show that JS-admissibility is closed under the Hadamard product. The proof is subtle and delicate.

Proposition 3.5. If f̃ ∈ JS α1,β1
and g̃ ∈ JS α2,β1

, then h̃ ∈ JS α2+α2,β1+β2
.

Proof. Let 0 < θ0 < π/2 be an angle where (I) holds for both f̃ (z) and g̃(z). Note that conditions (I) and (O) remain true
if θ0 is replaced by an arbitrarily small but fixed angle 0 < θ � θ0 with a suitable choice of ε = ε(θ).

We prove the proposition in the special case when β1 = β2 = 0 since the proof in the general case remains the same
with only additional logarithmic terms in the corresponding error estimates.

Define

J (z) :=
∑
n�0

anbn

(n!)2
z2n = 1

2π

π∫
−π

f
(
zeit)g

(
ze−it)dt.

Substituting here z → zu, multiplying both sides by ue−u2
, integrating from 0 to infinity and multiplying the result by e−z2

,
we obtain

h̃
(
z2) = e−z2 ∑

n�0

anbn

n! z2n = 2e−z2

∞∫
0

ue−u2
J (zu)du.

We now fix a 0 < θ < θ0. We first show that h(z) satisfies condition (O) for z lying outside the sector |arg(z)| � θ . Assume
θ/2 � |y| � π/2. Then

J
(
reiy) = 1

2π

π∫
−π

f
(
rei(t+y)

)
g
(
rei(y−t))dt.

Note that (I) and (O) imply that

f (z) = O
((|z|α1 + 1

)
e|z|) and g(z) = O

((|z|α2 + 1
)
e|z|), (15)

uniformly for z ∈ C. Now making the change of variables t �→ t − y and taking into account that the function under the
integral sign is periodic, we see that

J
(
reiy) = 1

2π

π∫
−π

f
(
reit)g

(
rei(2y−t))dt = 1

2π

y∫
−y

f
(
reit)g

(
rei(2y−t))dt + O

((
rα2 + 1

)
e(2−ε)r).

Here we evaluated the integral over the region |y| � |t| � π by the estimate | f (reit)| = O (e(1−ε)r), which follows from (O),
and used the upper bound of (15) for |g(rei(2y−t))|. In a similar way, we note that 0 < θ/2 � |2y − t| � 3π/2 whenever
|t| � |y| and θ/2 � |y| � π/2. This means that z = rei(2y−t) lies inside the sector |arg(z)| � θ/2 and as a consequence we
can use estimates |g(rei(2y−t))| = O (e(1−ε)r) and | f (reit)| = O ((rα1 + 1)er) to evaluate the integral over the range |t| � |y|.
Combining these estimates, we get

J
(
reiy) = O

((
rα1 + rα2 + 1

)
e(2−ε)r) = O

(
e2ε1r),

where ε1 is chosen such that (2 − ε)/2 < ε1 < 1. This estimate yields

er2e2iy
h̃
(
r2e2iy) = O

( ∞∫
0

ue2ε1rue−u2
du

)
= O

(
reε2

1r2)
,

which implies, by replacing r → √
r and y → y/2, the estimate

ereiy
h̃
(
reiy) = O

(
reε2

1r),
in the region θ � |y| � π for any fixed θ > 0. Thus condition (O) holds.

We now prove that h̃(z) grows polynomially in the sector |arg z| � θ with some sufficiently small θ > 0.
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Note that |arg(ze±it)| � θ0/4 for all values of t and z such that |arg z| � θ0/4 and π � |t| � θ0/2, which, by (I) and
(O), implies that f (zeit) = O (eε2|z|) and g(zeit) = O (eε2|z|) with a suitable choice of ε2 < 1 for all z and t satisfying such
restrictions. It follows that

J (z) = 1

2π

θ0/2∫
−θ0/2

e2z cos t f̃
(
zeit)g̃

(
ze−it) dt + O

(
e2ε2|z|),

when |arg z| � θ0/4. Thus

h̃
(
z2) = e−z2

π

∞∫
0

ue−u2

θ0/2∫
−θ0/2

e2zu cos t f̃
(
zueit)g̃

(
zue−it)dt du + O

(|z|eε2
2 |z|2−�(z2)

)
. (16)

Noting that �(z2) = cos(2 arg(z))|z|2 � (1 − 2 arg(z)2)|z|2, we then have

h̃
(
z2) = I(z) + O

(|z|e−(1−ε2
2−2 arg(z)2)|z|2), (17)

where I(z) denotes the double integral

I(z) := 1

π

∞∫
0

u

∫
|t|�θ0/2

e−(u−z cos t)2−z2 sin2 t f̃
(
zueit)g̃

(
zue−it)dt du.

Since |arg(z)| � θ0/4, the arguments zueit and zue−it of the functions f̃ and g̃ lie inside the sector |arg(z)| � θ0, which
means that f̃ (zueit) = O (|z|α1) and g̃(zue−it) = O (|z|α2).

Changing the order of integration and making a change of integration path from the interval u ∈ (0,∞) to the line
(0, z∞) by mapping u �→ uz cos t , we get

I(z) = z2

π

θ0/2∫
−θ0/2

∞∫
0

e−z2(u−1)2 cos2 t−z2 sin2 t f̃
(
z2ueit cos t

)
g̃
(
z2ue−it cos t

)
u du cos2 t dt

= O

(
|z|2

θ0/2∫
−θ0/2

∞∫
0

e−�(z2)(u−1)2 cos2(θ0/2)−�(z2) sin2 t(|z2|u + 1
)α1

(|z2|u + 1
)α2 u du dt

)

= O

(
|z|2

( ∞∫
0

e−�(z2)(u−1)2 cos2(θ0/2)
(|z|2u + 1

)α1+α2 u du

) ∫
|t|�θ0/2

e−�(z2) sin2 t dt

)

= O

(
(|z| + 1)2+2α1+2α2

�(z2)

)
= O

(|z|2α1+2α2
)
,

uniformly for large |z| in the sector |arg(z)| � θ0/4.
Applying this estimate to the expression (16) of h̃(z2), we obtain

h̃
(
z2) = O

(|z|2α1+2α2
)
.

Thus

h̃(z) = O
(|z|α1+α2

)
for all |arg z| � θ � θ0/2, where θ is chosen to be small enough to ensure that the error term in (17) decreases exponentially
fast. This proves the proposition. �

We can refine the above argument and obtain a more precise asymptotic estimate.

Proposition 3.6. If f̃ ∈ JS α1,β1
and g̃ ∈ JS α2,β1

, then

h̃(z) = f̃ (z)g̃(z) + z f̃ ′(z)g̃′(z) + O
(|z|α1+α2−2(log+ |z|)β1+β2)

, (18)

uniformly as |z| → ∞ and |arg(z)| � θ , where 0 < θ < π/2.
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Our proof indeed gives an asymptotic expansion for h̃; we content ourselves with the statement of (18), which is suffi-
cient for our purposes.

Proof. To prove (18), we use the Taylor expansion

f̃ (z) =
∑

0� j<N

f̃ ( j)(w)

j! (w − z) j + O
(
max

{(|z| + 1
)α1−N

,
(|w| + 1

)α1−N}|z − w|N)
,

for any fixed N � 1. Note that this estimate remains valid when α � 0 (due specially to the additional factors “1”). Applying
this formula with z → z2ueit cos t and w → z2, we get

f̃
(
z2ueit cos t

) =
∑

0� j<N

f̃ ( j)(z2)

j! z2 j(ueit cos t − 1
) j + O

((|z|2(u + 1) + 1
)α1

∣∣ueit cos t − 1
∣∣N)

,

and a similar expression for g̃ . Substituting these expressions with N = 4 into I(z), we get

I(z) = z2

π

θ0/2∫
−θ0/2

∞∫
0

e−z2(u−1)2 cos2 t−z2 sin2 t f̃
(
z2ueit cos t

)
g̃
(
z2ue−it cos t

)
u du cos2 t dt

=
∑

k,l�3

f̃ (k)(z2)g̃(l)(z2)

k!l! · z2(1+k+l)

π

θ0/2∫
−θ0/2

∞∫
0

e−z2(u−1)2 cos2 t−z2 sin2 t(ueit cos t − 1
)k(

ue−it cos t − 1
)l

u du cos2 t dt

+ O

(
|z|2

∑
0�k,l�4

k+l>3

Iα1+α2,k+l

)
, (19)

where

Iρ,κ :=
θ0/2∫

−θ0/2

∞∫
0

e−z2(u−1)2 cos2 t−z2 sin2 t u du
(|z|2(u + 1) + 1

)ρ ∣∣ueit cos t − 1
∣∣κ dt.

Applying now the inequality∣∣ueit cos t − 1
∣∣ = ∣∣u cos t − e−it

∣∣ = |u cos t − cos t + i sin t| � |u − 1| + |t|,
we get

Iρ,κ = O

( θ0/2∫
−θ0/2

∞∫
0

e−�(z2)(u−1)2 cos2 t−�(z2) sin2 t u
(|z|2(u + 1) + 1

)ρ(|u − 1|κ + |t|κ)
du dt

)
.

Note that �(z2) � |z|2 cos 2θ and sin2 t � c1t2 when |arg(z)| � θ and |t| � θ0/2 for some constant c1 > 0. Thus there exists
a positive constant c > 0 such that

�(
z2)(u − 1)2 cos2 t + �(

z2) sin2 t � c(u − 1)2|z|2 + ct2,

for |arg(z)| � θ and |t| � θ0/2. It then follows that

Iρ,κ = O

( θ0/2∫
−θ0/2

∞∫
0

e−c(u−1)2|z|2−c|z|2t2
u
(|z|2(u + 1) + 1

)ρ(|u − 1|κ + |t|κ)
du dt

)

= O

(( ∞∫
0

e−c(u−1)2|z|2(|z|2(u + 1) + 1
)ρ |u − 1|κu du

) θ0/2∫
−θ0/2

e−c|z|2t2
dt

+
( ∞∫

0

e−c(u−1)2|z|2(|z|2(u + 1) + 1
)ρ

u du

) θ0/2∫
−θ0/2

e−c|z|2t2 |t|κ dt

)

= O
((|z|2 + 1

)ρ |z|−κ−2).
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Substituting this bound in the error term of (19), we obtain

I(z) =
∑

0�k,l�3

f̃ (k)(z2)g̃(l)(z2)

k!l! Sk,l + O
(|z|2α1+2α2−4),

where

Sk,l = z2(1+k+l)

π

θ0/2∫
−θ0/2

∞∫
0

e−z2(u−1)2 cos2 t−z2 sin2 t(ueit cos t − 1
)k(

ue−it cos t − 1
)l

u du cos2 t dt.

We can approximate the integral Sk,l by reversing the order of the procedure by which we obtained it. First, making the
change of variables u �→ u/(z cos t), we get

Sk,l = 1

π

θ0/2∫
−θ0/2

∞∫
0

e−(u−z cos t)2−z2 sin2 t(zueit − z2)k(
zue−it − z2)l

u du dt

= e−z2

π

π∫
−π

∞∫
0

e−2zu cos t(zueit − z2)k(
zue−it − z2)l

ue−u2
du dt + O

((
1 + |z|k+l)e�2(z) cos2(θ0/2)−�(z2)

)

= e−z2

π

∞∫
0

( π∫
−π

[
ezueit (

zueit − z2)k][
ezue−it (

zue−it − z2)l]
dt

)
ue−u2

du + O
((

1 + |z|k+l)e�2(z) cos2(θ0/2)−�(z2)
)

= e−z2 ∑
n�0

νn,kνn,l

n! z2n + O
((

1 + |z|k+l)e�2(z) cos2(θ0/2)−�(z2)
)
,

where the νn,k ’s are defined by

∑
n�0

νn,k

n! wn = ew(
w − z2)k

.

In particular,

S1,1 = e−z2
(

z4 +
∑
n�1

(n − z2)2

n! z2n
)

+ O
((

1 + |z|2)e�2(z) cos2(θ0/2)−�(z2)
)

= z2 + O
((

1 + |z|2)e�2(z) cos2(θ0/2)−�(z2)
)
.

Similarly,

S0,0 = 1 + O
(
e�2(z) cos2(θ0/2)−�(z2)

)
,

and

Sm,n = O
((

1 + |z|m+n)e�2(z) cos2(θ0/2)−�(z2)
)
,

whenever m �= n. Therefore

h̃
(
z2) = I(z) + O

((
1 + |z|α1+α2

)
e�2(z) cos2(θ0/2)−�(z2)

) = f̃
(
z2)g̃

(
z2) + z2 f̃ ′(z2)g̃′(z2) + O

(|z|2α1+2α2−4).
Accordingly,

h̃(z) = I(
√

z) + O
((

1 + |z|α1+α2
)
e�2(z) cos2(θ0/2)−�(z2)

) = f̃ (z)g̃(z) + z f̃ ′(z)g̃′(z) + O
(|z|α1+α2−2).

This completes the proof of the proposition. �
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4. Asymptotic variance of trie statistics

We address in this section the asymptotic variance of general trie statistics for which several approaches have been
proposed in the literature, as we briefly mentioned in Introduction.

The slight modification of our approach, which relies on (11), from the usual one using Poissonized variance turns out
to be very helpful and makes a significant difference, notably in the resulting expressions for the periodic functions, mostly
because the cancelation is avoided (somehow incorporated in the generating functions).

Let Xn be an additive shape parameter in a random trie of size n. Then Xn satisfies the following distributional recurrence

Xn
d= XIn + X∗

n−In
+ Tn (n � 2), (20)

where In = Binom(n, p), Xn
d= X∗

n , and Xn , X∗
n , In , Tn are independent. Without loss of generality, we may assume that

X0 = 0 and X1 = 0 (only minor modifications needed when under nonzero initial conditions). Changing the value of X0 and
X1 affects only the mean but not the variance.

Consider first the moment-generating functions Mn(y) := E(e Xn y). Then, by (20),

Mn(y) = E
(
eTn y) ∑

0�k�n

πn,k Mk(y)Mn−k(y) (n � 2),

where πn,k := (n
k

)
pkqn−k . By taking derivatives, we obtain the recurrences for the first two moments (μn := E(Xn) and

sn := E(X2
n ))

μn =
∑

0�k�n

πn,k(μk + μn−k) +E(Tn),

sn =
∑

0�k�n

πn,k(sk + sn−k) +E
(
T 2

n

) + 2
∑

0�k�n

πn,k
(
μkμn−k +E(Tn)(μk + μn−k)

)
. (21)

Our major interest lies in the variance σ 2
n := V(Xn), which also satisfies the same type of recurrence

σ 2
n =

∑
0�k�n

πn,k
(
σ 2

k + σ 2
n−k

) +V(Tn) +
∑

0�k�n

πn,k�
2
n,k,

where �n,k := μk + μn−k − μn +E(Tn).

4.1. Analytic schemes for the mean and the variance

The tools we developed in Section 3 are useful in establishing simple, general, analytic frameworks under which asymp-
totics of the mean and the variance can be easily derived by checking only a few sufficient conditions.

Asymptotics of the mean. Denote by f̃1(z) and g̃1(z) the Poisson generating function of E(Xn) and E(Tn), respectively. Then

f̃1(z) = f̃1(pz) + f̃1(qz) + g̃1(z),

with f̃1(0) = f̃ ′
1(0) = 0.

Theorem 4.1. Let 0 < θ < π/2,α < 1 and β ∈R. If either g̃1 ∈ JS α,β or g̃1 ∈ JS , and g̃1(z) = cz+ O (|z|α(log+ |z|)β) uniformly
as |z| → ∞ and |arg(z)| � θ , where c ∈ R, then

E(Xn)

n
= c

h
logn + d + F [G1](r log1/p n) + o(1),

where d = G1(−1)/h if c = 0 and d = h0 (see (14)) if c �= 0, G1(s) := M [g̃1; s] and the other notations are described as in Proposi-
tion 3.4.

Proof. Combining Propositions 3.1 and 3.3, we have

E(Xn) =
∑

0� j<2k

f̃ ( j)
1 (n)

j! τ j(n) + O
(
n1−k),

for k = 0,1, . . . . Then apply Proposition 3.4. �
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If the initial conditions are not zero, say X0 = a and X1 = b, then we consider f̄1(z) := f̃1(z) − (b − a)z − a, leading to
the functional equation

f̄1(z) = f̄1(pz) + f̄1(qz) + g̃1(z) + a
(
1 − (1 + z)e−z),

which results in an additional linear term for E(Xn) of the form(
b − a + a

h
+ aF [G0](c log1/p n)

)
n,

where G0(s) := −(s + 1)Γ (s). Such an additional term is related to the expected size of tries; see Section 5.1.

Functional equations related to the variance. For the variance, we begin with the second moment. Let f̃2(z) and g̃2(z) be
the Poisson generating functions of E(X2

n ) and E(T 2
n ), respectively. Then, by (21),

f̃2(z) = f̃2(pz) + f̃2(qz) + 2 f̃1(pz) f̃1(qz) + g̃2(z) + h̃2(z),

where

h̃2(z) = 2e−z
∑
n�0

E(Tn)
∑

0�k�n

πn,k(μk + μn−k)
zn

n! = 2e−z
∑
n�0

E(Tn)μn
zn

n! − 2e−z
∑
n�0

(
E(Tn)

)2 zn

n! , (22)

the last two terms being Hadamard products.
Now, let

Ṽ X (z) := f̃2(z) − f̃1(z)2 − z f̃ ′
1(z)2,

Ṽ T (z) := g̃2(z) − g̃1(z)2 − zg̃′
1(z)2.

Then by a straightforward computation

Ṽ X (z) = Ṽ X (pz) + Ṽ X (qz) + Ṽ T (z) + φ̃1(z) + φ̃2(z), (23)

where

φ̃1(z) := h̃2(z) − 2g̃1(z)
(

f̃1(pz) + f̃1(qz)
) − 2zg̃′

1(z)
(

p f̃ ′
1(pz) + q f̃ ′

1(qz)
)
,

φ̃2(z) := pqz
(

f̃ ′
1(pz) − f̃ ′

1(qz)
)2

. (24)

Ideas of our approach. We sketch here the underlying ideas used in our approach before presenting a simple analytic
scheme for the asymptotics of the variance. We assume first that g̃1 ∈ JS . This implies the JS-admissibility of f̃1, and
thus, by Proposition 3.1, we have the asymptotic expansion for the mean

μn =
∑

0� j<2k

f̃ ( j)
1 (n)

j! τ j(n) + O
(

f̃1(n)n−k) (k = 1,2, . . .).

If we also assume g̃2 ∈ JS , then we have the same type of expansion for E(X2
n ) with f̃1 there replaced by f̃2. Thus

(dropping error terms for convenience of presentation)

σ 2
n ∼

∑
0� j<2k

f̃ ( j)
2 (n)

j! τ j(n) −
( ∑

0� j<2k

f̃ ( j)
1 (n)

j! τ j(n)

)2

.

Now substituting f̃2 = Ṽ X + f̃ 2
1 + z( f̃ ′

1)
2 yields formally

σ 2
n ∼ Ṽ X (n) − n

2
Ṽ ′′

X (n) − n2

2
f̃ ′′
1 (n)2 + · · · ,

under suitable growth conditions and a suitably chosen k. Thus the asymptotics of the variance is reduced to that of Ṽ (n)

and its derivatives. Further extensions of this approach are discussed in detail elsewhere.

Asymptotics of the variance. We now show that the variance of Xn can also be handled in a general way by reducing the
required asymptotics to essentially checking conditions for JS-admissibility.

Theorem 4.2. Let 0 < θ < π/2, α < 1 and β ∈ R. Assume g̃2 ∈ JS and Ṽ T (z) = O (|z|α(log+ |z|)β) as |z| → ∞ in the sector
|arg(z)| � θ .
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(a) If p = q = 1/2, and g̃1 ∈ JS α,β or g̃1 ∈ JS 1,0 , then

V(Xn)

n
= 1

log 2

∑
k∈Z

Φ1(−1 + χk)n
−χk + o(1), (25)

where χk = 2kπ i
log 2 and Φ1(s) = M [Ṽ T + φ̃1; s].

(b) Assume p �= q.
(i) If g̃1 ∈ JS α,β , then

V(Xn)

n
= G(−1)

h
+ F [G](r log1/p n) + o(1).

Here G(s) = Φ1(s) + Φ2(s), where Φ1(s) = M [Ṽ T + φ̃1; s] and Φ2(s) is the analytic continuation of M [φ̃2; s].
(ii) If g̃1 ∈ JS and g̃1 = z + O (|z|α(log+ |z|)β) uniformly as |z| → ∞ and |arg(z)| � θ , then

V(Xn)

n
= pq log2(p/q)

h3
log n + d

h
+ pq log2(p/q)(p log2 p + q log2 q)

2h4
+ F [G](r log1/p n) + o(1).

Here G(s) = Φ1(s) + Φ2(s), where Φ1(s) = M [Ṽ T + φ̃1; s] and Φ2(s) is the meromorphic continuation of M [φ̃2; s], and
d = Φ1(−1) + lims→−1(Φ2(s) + pq log2(p/q)/(h2(s + 1))).

Proof. Since Ṽ T is assumed to be small (less than linear), we first show that, under the assumptions of the theorem, both
φ̃1 and φ̃2 are also small; see (23).

If g̃1 ∈ JS α,β , then f̃1 ∈ JS 1,0 by Proposition 3.4. These imply, by Proposition 3.5, that h̃2 ∈ JS and

h̃2(z) = 2g̃1(z) f̃1(z) + 2zg̃′
1(z) f̃ ′

1(z) − 2g̃1(z)2 − 2zg̃′
1(z)2 + O

(|z|α−1(log+ |z|)β)
= 2g̃1(z)

(
f̃1(pz) + f̃1(qz)

) + 2zg̃′
1(z)

(
p f̃ ′

1(pz) + q f̃ ′
1(qz)

) + O
(|z|α−1(log+ |z|)β)

,

uniformly as |z| → ∞ and |arg(z)| � θ . It follows, by (24), that φ̃1(z) = O (|z|α−1(log+ |z|)β). Similarly, if g̃1 ∈ JS 1,0, then

h̃2 ∈ JS and φ̃1(z) = O (log+ |z|) as |z| → ∞ in the sector |arg(z)| � θ .
Without loss of generality, we may assume that all generating functions f involved here have the property that f (0) =

f ′(0) = 0.
Consider first Ṽ T + φ̃1. By assumption and by the preceding analysis, we see that M [Ṽ T + φ̃1; s] exists in the strip

〈−2,−α − ε〉, with ε > 0 arbitrarily small. Thus we argue as in Proposition 3.4 and obtain (25). Note that θ > 0 is crucial
here.

We now turn to φ̃2, which is zero when p = q. So assume now p �= q. If g̃1 ∈ JS α,β , then its Mellin transform G1 exists
in the strip 〈−2,−α − ε〉 and, by applying the Exponential Smallness Lemma, is exponentially small at c ± i∞. Thus from
the integral representation

f̃ ′
1(pz) − f̃ ′

1(qz) = − 1

2π i

∫
(−1−ε)

wG1(w)(p−w−1 − q−w−1)

1 − p−w − q−w
z−w−1 dw,

it follows that f̃ ′
1(pz) − f̃ ′

1(qz) = o(1) and consequently by (24) φ̃2(z) = o(|z|) as |z| → ∞ and |arg(z)| � θ . Thus the Mellin
transform Φ2(s) of φ̃2(z) exists in the strip 〈−3,−1〉 and

Φ2(s) = pq

2π i

∫
(−1/2)

(p−w − q−w)(pw−1−s − qw−1−s)

(1 − p1−w − q1−w)(1 − pw−s − qw−s)
(w − 1)G1(w − 1)(s − w)G1(s − w)dw. (26)

Note that

p−w − q−w

1 − p1−w − q1−w
= −(1 − p−w) + (1 − q−w)

p(1 − p−w) + q(1 − q−w)
.

If log p/ log q = r/
 ∈ Q, where gcd(r, 
) = 1 are positive integers, then any zero of the form 2rkπ i/ log p of the denominator
is also a zero of the numerator. Thus the integration path can be moved to the imaginary axis.

By summing over all residues of poles with real parts less than −α (see [21] for a detailed study), we see that Φ2(s)
can be extended to a meromorphic function beyond the line �(s) = −1 which is analytic on �(s) = −1. Consequently, the
asymptotic estimate in case (b)(i) follows as in Proposition 3.4.

The analysis for the last part (ii) is similar with the only difference that now φ̃2(z) = pq log2(p/q)z/h2 + o(|z|) uniformly
as |z| → ∞ and |arg(z)| � θ . Hence, one can again extend M [φ̃2; s] to a meromorphic function beyond the line �(s) = −1,
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but there is a simple pole on �(s) = −1 at s = −1 with the singular expansion M [φ̃2; s] = −pq log2(p/q)/(h2(s + 1)) +
d + · · · . Thus similar arguments used in Proposition 3.4 apply. This completes the proof. �
Calculation of the Fourier coefficients Φ2(−1+χk). We outline here an approach by residue calculus to simplify the Fourier
coefficients Φ2(−1+χk), which will be applied several times later. Similar techniques have been employed in the literature;
see [75,95].

We begin with the integral representation (26), which we first shift to the imaginary axis. Then, we use the following
decomposition

Φ2(−1 + χk) = 1

2π i

∫
(0)+

(
1

1 − p1−w − q1−w
+ p1+w + q1+w

1 − p1+w − q1+w

)

× (w − 1)G1(w − 1)(−1 + χk − w)G1(−1 + χk − w)dw

=: J0 + J ,

where the integration contour
∫
(0)+ is the imaginary axis but with a sufficiently small indentation to the right of each zero

of the equation 1 − p1−it − q1−it = 0 for real t (only one when log p
log q �= Q, and an infinite number of equally-spaced ones

otherwise).
By the change of variables w �→ χk − w and then by moving the line of integration to the right, we have

J0 = 1

2π i

∫
(0)−

(w − 1)G1(w − 1)(−1 + χk − w)G1(−1 + χk − w)

1 − p1+w − q1+w
dw

= −1

h

∑
j∈Z

(χ j − 1)G1(χ j − 1)(−1 + χk− j)G1(−1 + χk− j)

+ 1

2π i

∫
(0)+

(w − 1)G1(w − 1)(−1 + χk − w)G1(−1 + χk − w)

1 − p1+w − q1+w
dw,

where the integration contour
∫
(0)− = − ∫

(0)+ . The last integral equals

1

2π i

∫
(0)+

(w − 1)G1(w − 1)(−1 + χk − w)G1(−1 + χk − w)dw + J .

Note that

1

2π i

∫
(0)+

(w − 1)G1(w − 1)(−1 + χk − w)G1(−1 + χk − w)dw =
∞∫

0

g̃′
1(t)

2t−1+χk dt.

Combining these relations, we obtain

Φ2(−1 + χk) = 2 J − 1

h

∑
j∈Z

(χ j − 1)G1(χ j − 1)(−1 + χk− j)G1(−1 + χk− j) +
∞∫

0

g̃′
1(t)

2t−1+χk dt. (27)

To further simplify the integral J , we write

g̃1(z) =
∑
j�2

b̃ j

j! z j.

Then it follows from the Direct Mapping Theorem (see [29]) of Mellin transform that G1(s) can be extended to a meromor-
phic function to the left of �(s) = −2 with simple poles at s = − j, the residue there being equal to b̃ j/ j!.

If we assume that −(s − 1)G1(s − 1) has no singularity to the right of the imaginary axis, then we obtain

J =
∑
j�2

b̃ j(p j + q j)

( j − 1)!(1 − p j − q j)
( j − 2 + χk)G1( j − 2 + χk). (28)

This and (27) will be useful later.
This procedure is very effective in many applications having linear variance (namely, the situation of Theorem 4.2(b)(i));

similar but slightly more involved arguments can be used in more general situations such as n log n-variance.
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5. Applications

We apply or slightly modify the schemes developed in the previous sections to a few standard examples in the literature
for which new results are proposed for the asymptotics of the variance.

5.1. Size of random tries

The size of a trie is defined to be the number of internal nodes used, which becomes a random variable when the input
sequence is random. For example, eight internal nodes are used in the trie in Fig. 4. Under the Bernoulli model, we see
that the size Xn satisfies (1) with X0 = X1 = 0 and Tn = 1 for n � 2, where n denotes the total number of input keys (or
external nodes). Under different guises and different initial conditions, this is the most studied random variable defined on
tries or related structures in the literature. See, for example, [5,9,15,63,80,86,102] and the references therein for the mean,
and [60,65,66,68,69,78,96] for the variance.

Since Tn = 1, we have

g̃1(z) = g̃2(z) = 1 − (1 + z)e−z.

From Proposition 3.2, we see that both functions g̃1, g̃2 ∈ JS 0,0. Also we have

Ṽ T (z) := g̃2(z) − g̃2
1(z) − zg̃′

1(z)2 = e−z(1 + z − (
1 + 2z + z2 + z3)e−z), (29)

and (see (24))

φ̃1(z) = 2e−z((1 + z)
(

f̃1(pz) + f̃1(qz)
) − z2(p f̃ ′

1(pz) + q f̃ ′
1(qz)

))
. (30)

Both functions are exponentially small for large |z| with �(z) > 0.
The application of both Theorems 4.1 and 4.2 is straightforward. Since

G1(s) = M [g̃1; s] = −(s + 1)Γ (s),

we thus obtain, when X0 = X1 = 0,

E(Xn)

n
= 1

h
+ F [G1](r log1/p n) + o(1),

a well-known result. When X0 = a and X1 = b, then a direct modification of the same argument gives

E(Xn)

n
= b − a + (a + 1)

(
1

h
+ F [G1](r log1/p n)

)
+ o(1). (31)

As regards the variance, the functions involved become more complicated. We state our results by distinguishing between
symmetric case p = 1/2 and asymmetric case p �= q.

Theorem 5.1 (Symmetric case: p = 1/2). The variance of the size of random symmetric tries satisfies asymptotically (χk :=
2kπ i/ log 2)

V(Xn)

n
= 1

log 2

∑
k∈Z

G(−1 + χk)n
−χk + o(1),

where the mean value of the periodic function is given by

G(−1)

log 2
= 1

log 2

(
1

4
+ 2

∑
j�1

(−1) j( j − 1)

2 j − 1

)
≈ 0.845858623076001 . . . , (32)

and for k �= 0

G(−1 + χk) = −χkΓ (−1 + χk)(1 + χk)
2

4
+ 2

∑
j�1

(−1) j j( j( j + χk) − 1)Γ ( j + χk)

( j + 1)!(2 j − 1)
. (33)

The numerical value in (32) coincides with that given in [96], where they derived the alternative expression

1

2 log 2
− 1

log2 2
− 2

log 2

∑ (−1) j

2 j − 1
− 4π2

log3 2

∑ j

sinh 2 jπ2 ; (34)

j�1 j�1 log 2
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Fig. 6. Periodic oscillations of the variance when p = 1/2: V(Xn)/n in logarithmic scale (left) and the fluctuating part 1
log 2

∑
k �=0 G(−1 + χk)e−2kπ ix (right).

see also [69]. This expression can also be derived by the simplification procedure for deriving (27) (see also Theorem 5.2
below). Equating the above two expressions yields the identity

∑
j�1

(−1) j j

2 j − 1
= 1

8
− 1

2 log 2
− 2π2

log2 2

∑
j�1

j

sinh 2 jπ2

log 2

, (35)

which can be proved directly by the residue calculus similar to that used in deriving (27). Of special mention here is that
the series on the right-hand side is less than 1.1 × 10−10, meaning that the first two terms on the right-hand side already
provide a very accurate approximation to the series on the left-hand side. A third expression with the same numerical value
is given in [78, Section 5.4]

1

log 2

(
1

2
+ 2

∑
j�1

1

2 j + 1

)
− 1

log2 2
− 4π2

log3 2

∑
j�1

j

sinh 2 jπ2

log 2

,

which can be obtained from (34) by the identity

∑
j�1

1

2 j + 1
=

∑
j�1

(−1) j−1

2 j − 1
.

Regarding the oscillating terms, Kirschenhofer and Prodinger derived in [69] (with terms slightly simplified and with minor
corrections)

G(−1 + χk) = −3χkΓ (−1 + χk) − (1 − χk)(2 − χk)Γ (χk)

(
1

2
−

∑
j�1

(χk + j)
(−χk

j−1

)
( j + 1)(2 j − 1)

)

− χkΓ (1 + χk)

log 2
− 2Γ (1 + χk)

(
5 − χk

4(1 − χk)
−

∑
j�1

(χk + j + 1)
(−χk−1

j−1

)
( j + 1)(2 j − 1)

)

+ 1

log 2

∑
j+m=k
j,m �=0

χ jΓ (−1 + χ j)χmΓ (1 + χm),

which is to be compared with our expression (33). Numerically, the amplitude of the oscillating part is bounded above by∑
k �=0 |G(−1 + χk)|/ log 2 � 1.7 × 10−6; see Fig. 6.
We now state the result in the asymmetric case.

Theorem 5.2 (Asymmetric case: p �= q). The variance of the size of random asymmetric tries satisfies

V(Xn) = G(−1) + F [G](r log1/p n) + o(1),

n h
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Fig. 7. Periodic oscillations of the variance when p = (
√

5 − 1)/2: V(Xn)/n in logarithmic scale (left) and the fluctuating part F [G](x) (right).

where

G(−1) = 1

2
− 1

h
+ 2

∑
j�2

(−1) j(p j + q j)

1 − p j − q j
−

⎧⎪⎨
⎪⎩

1
h log p

∑
j�1

4r jπ2

sinh 2r jπ2
log p

, if log p
log q ∈Q;

0, if log p
log q /∈Q,

(36)

and for k �= 0 (only when log p
log q ∈ Q)

G(−1 + χk) = χkΓ (−1 + χk)

(
1 − χk + 3

21+χk

)
− 1

h

∑
j∈Z

Γ (χ j + 1)Γ (χk− j + 1)

− 2
∑
j�1

(−1) j( j + 1 + χk)Γ ( j + χk)(p j+1 + q j+1)

( j − 1)!( j + 1)(1 − p j+1 − q j+1)
. (37)

These expressions also hold in the symmetric case. However, the expressions for the Fourier coefficients in Theorem 5.1
are simpler.

While the asymptotic pattern of the variance has long been known, the expressions for the Fourier coefficients have, as
far as we were aware, never been stated before in the above explicit forms.

Consider, for concreteness, the special rational case when q = p2. Then p = (
√

5 − 1)/2 is the reciprocal of the golden
ratio (which is sometimes also called the golden ratio conjugate or the silver ratio). From (36), we see that the non-periodic
dominant term for the ratio between the variance and n is given by

G(−1)

h
= 1

h

(
1

2
− 1

h
+ 2

∑
j�2

(−1) j(p j + p2 j)

1 − p j − p2 j
− 1

h log p

∑
j�1

4 jπ2

sinh 2r jπ2

log p

)

≈ 1.008345264470994 . . . ,

which is larger than the symmetric case (32). In general, G(−1) = G(−1; p) is a symmetric bath-tub-shaped function of p
with its lowest value reached at p = 0.5. The fluctuation of the periodic part is bounded above in modulus by 7.3 × 10−8;
see Fig. 7.

Proof of Theorems 5.1 and 5.2. We look first at Φ1(s) = M [Ṽ T + φ̃1; s]. By (29) and (30), we have

Φ1(s) = (s + 1)Γ (s)

(
1 − s2 + 4s + 8

2s+3

)
+ 2Y1(s),

where

Y1(s) :=
∞∫

zs−1e−z((1 + z)
(

f̃1(pz) + f̃1(qz)
) − z2(p f̃ ′

1(pz) + q f̃ ′
1(qz)

))
dz. (38)
0
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To simplify this integral, we use the inverse Mellin integral

f̃1(z) = − 1

2π i

∫
(− 3

2 )

(w + 1)Γ (w)

1 − p−w − q−w
z−w dw,

which, by taking derivative with respect to z,

f̃ ′
1(z) = 1

2π i

∫
(− 3

2 )

Γ (w + 2)

1 − p−w − q−w
z−w−1 dw. (39)

Substituting these into (38) yields

Y1(s) = − 1

2π i

∫
(− 3

2 )

(w + 1)((1 + w)(s − w) + 1)Γ (w)Γ (s − w)(p−w + q−w)

1 − p−w − q−w
dw

=
∑
j�1

(−1) j j( j( j + s + 1) − 1)Γ ( j + s + 1)(p j+1 + q j+1)

( j + 1)!(1 − p j+1 − q j+1)
,

where the last expression is obtained by shifting the line of integration to the left and by collecting all the residues encoun-
tered.

In particular, when p = 1/2,

Φ1(s) = (s + 1)Γ (s)

(
1 − s2 + 4s + 8

2s+3

)
+ 2

∑
j�1

(−1) j j( j( j + s + 1) − 1)Γ ( j + s + 1)

( j + 1)!(2 j − 1)
, (40)

which proves (32) and (33).
We now consider Φ2(s) = M [φ̃2; s] (see (24)). By (26),

Φ2(s) = pq

2π i

∫
(0)

Γ (w + 1)(p−w − q−w)

1 − p1−w − q1−w
· Γ (s − w + 2)(pw−s−1 − qw−s−1)

1 − pw−s − qw−s
dw, (41)

where we shifted the line of integration to the imaginary axis. Since the above function is also analytic on �(s) = −1, we
can substitute s = −1 + χk . The expressions (36) and (37) are then obtained by the simplification procedure that we used
to derive (27) (for Φ2(−1 + χk)) and (28) with g̃1(z) = 1 − (1 + z)e−z and G1(s) = −(s + 1)Γ (s). �

An alternative way of simplifying Φ2(−1 +χk) is to shift the line of integration of (41) to the left and collect all residues
encountered. This then yields the somehow more complicated expression

Φ2(−1 + χk) = pq
∑
j�1

(−1) j−1Γ ( j + χk + 1)(p j − q j)(p− j − q− j)

( j − 1)!(1 − p1+ j − q1+ j)(1 − p1− j − q1− j)
−

∑
ω j

Γ (ω j + 1)Γ (−ω j + χk + 1)

p1+ω j log p + q1+ω j log q
,

where ω j runs over all zeros of 1 − p1+w − q1+w = 0 with �(ω j) < 0, and we used the relation

pq(pω j − qω j )(p−ω j − q−ω j )

1 − p1−ω j − q1−ω j
= 1.

Here the convergence of the second series follows from the exponential decay of Gamma function at c± i∞ and the property
that the zeros ω j are isolated in nature (and equally spaced along vertical lines when log p

log q ∈ Q); see [21] for details. Then
we apply the same procedure for deriving (27) to further simplify the second series.

5.2. External path length

The cost of constructing tries is directly proportional to the external path length, which is the sum of all the distances
between each external node (where keys are stored) to the root. For example, the external path length of the trie showed
in Fig. 4 equals 2 + 3 + 4 × 3 + 5 × 2 = 27. Under the same Bernoulli model, the external path length is a random variable,
still denoted by Xn , satisfying (1) with Tn = n. This implies that the Poisson generating functions of the first two moments
of Tn are given by

g̃1(z) = z
(
1 − e−z) and g̃2(z) = z

(
1 + z − e−z).
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Thus JS-admissibility of these two functions follows directly from Proposition 3.2. Also g̃1(z) = z + O (|z|−δ) uniformly as
|z| → ∞ and |arg(z)| < π/2 − ε for all ε, δ > 0. Moreover, Ṽ T (z) = ze−z(1 − e−z(1 − z + z2)) and

φ̃1(z) = e−z(2z f̃1(pz) + 2z f̃1(qz) + 2pz(1 − z) f̃ ′
1(pz) + 2qz(1 − z) f̃ ′

1(qz)
)
,

both being again exponential small.
For the expected value, we have G1(s) := M [g̃1; s] = −Γ (s + 1) and thus

lim
s→−1

(
G1(s) + 1

s + 1

)
= γ ,

where γ is Euler’s constant. Applying Theorem 4.1, we obtain

E(Xn)

n
= 1

h
logn + γ

h
+ p log2 p + q log2 q

2h2
+ F [G1](r log1/p n) + o(1).

While this result has been widely known and discussed (see, for example, [74,59,78]), the variance is rarely addressed (see
[59,60,71]) due partly to its complexity and partly to methodological limitations.

Theorem 5.3. The variance of the total external path length satisfies

V(Xn)

n
= 1

log 2

∑
k∈Z

Φ1(−1 + χk)n
−χk + o(1),

in the symmetric case (when p = 1/2), and

V(Xn)

n
= pq log2(p/q)

h3
logn + d

h
+ pq log2(p/q)(p log2 p + q log2 q)

2h4
+ F [G](r log1/p n) + o(1),

in the asymmetric case, where G = Φ1 + Φ2 with Φ1 , Φ2 and d given below in (42), (44), and (43), respectively.

The proof follows the same pattern as that used for the size, details being omitted here. In particular, we have

Φ1(s) = Γ (s + 1)

(
1 − s2 + s + 4

2s+3

)
+ 2

∑
j�1

(−1) j( j(s + j) − 1)(p j+1 + q j+1)Γ (s + j + 1)

j!(1 − p j+1 − q j+1)
, (42)

where

d = Φ1(−1) + pq
log2(p/q)

h2

(
γ + 1 + p log2 p + q log2 q

2h
+ log p + log q

2

)
+ I1(−1), (43)

and for k �= 0,

Φ2(−1 + χk) = pq
log2(p/q)

h2
(χk − 1)Γ (χk) + I1(−1 + χk), (44)

where

I1(−1) = 1

4
− log 2 + π2

6h
− 1

h
+ p log3 p + q log3 q

6h2
+ (p log2 p + q log2 q)2

4h3
− 2

∑
j�1

(−1) j( j2 − 1)(p j+1 + q j+1)

j(1 − p j+1 − q j+1)

+
⎧⎨
⎩

1
h

∑
j �=0(χ

2
j − 1)Γ (χ j)Γ (−χ j), if log p

log q ∈Q,

0, if log p
log q /∈Q,

and for k �= 0,

I1(−1 + χk) = Γ (χk)

(
χk − 1 + χ2

k − 3χk + 4

22+χk

)
+ 2Γ (χk)

h
(1 − χk)

(
ψ(χk + γ ) − χk

)
− 1

h

∑
j �=0,k

(χ j − 1)Γ (χ j)(χk− j − 1)Γ (χk− j)

+ 2
∑
j�1

(−1) j−1( j + 1)(χk + j − 1)Γ (χk + j)(p j+1 + q j+1)

j!(1 − p j+1 − q j+1)
.

The Fourier series is new.
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In particular, in the symmetric case the Fourier coefficients of the periodic function are given by

Φ1(−1)

log 2
= 1

log 2

(
1

4
+ log 2 + 2

∑
j�1

(−1) j( j2 − j − 1)

j(2 j − 1)

)
≈ 4.352906698945400 . . . ,

and for k �= 0

Φ1(−1 + χk)

log 2
= (1 − χk)Γ (χk + 1)

4
+ 2

∑
j�1

(−1) j( j( j − 1 + χk) − 1)Γ ( j + χk)

j!(2 j − 1)
.

The above numerical value for Φ1(−1)/ log 2 is in accordance with that obtained in [71] where the authors derived the
alternative expression

1 + 1

2 log 2
− 1

log2 2
− 2

log 2

∑
j�1

(−1) j( j + 1)

j(2 j − 1)
− 4π2

log3 2

∑
j�1

j

sinh 2 jπ2

log 2

.

Equating them gives the same identity (35) as we encountered in the size of tries.

5.3. Radix sort

Bucketing is a common design paradigm used for sorting or selecting elements with specified properties; see [14]. For
sorting purposes, a simple procedure, called radix sort, is to distribute elements into b buckets according to their values
and then sort within each bucket recursively; see [74,77]. Since we can always normalize elements into the unit interval,
splitting into b buckets amounts to using b-ary digit expansion of each element and then distribute according to the leading
digits. Thus the radix sorting process induces a trie with up to b branches at each node.

If we assume that the n elements to be sorted are independent and identically distributed uniform random variables
(from the unit interval), then the cost Xn of radix sort (number of digit extractions needed to sort) satisfies (see [77])

P̃ (z, y) = (
1 − e y)ze−z + e−(1−e y)z P̃

(
e y z

b
, y

)b

,

where P̃ (z, y) := e−z ∑
n�0 E(e Xn y)zn/n!. This is nothing but the Poisson generating function for the external path length of

random bucket tries with branching factor b (using b-ary expansion). All analysis above carries through and we have

f̃1(z) = b f̃1(z/b) + z
(
1 − e−z),

and the corresponding Ṽ (z) := f̃2(z) − f̃1(z) − z f̃ ′
1(z) satisfies

Ṽ (z) = bṼ (z/b) + g̃(z),

where

g̃(z) := e−z(2bz f̃1(z/b) + 2z(1 − z) f̃ ′
1(z/b) + z

(
1 − e−z) + z2e−z(1 − z)

)
.

Then the Mellin transform of g̃ is given by

G(s) = Γ (s + 1)
(
1 − 2−s−1 − s2−s−3 − s22−s−3)

+ 2
∑
k�1

(−1)kΓ (s + k + 1)

k!(bk − 1)

(
k(s + k) − 1

) (�(s) > −2
)
. (45)

It follows, by the same Mellin analysis and JS-admissibility, that (χk := 2kπ i/ log b)

E(Xn)

n
= logb n + γ

log b
+ 1

2
+ 1

log b

∑
k∈Z\{0}

Γ (χk)n
−χk + o(1),

V(Xn)

n
= 1

log b

∑
k∈Z

G(−1 + χk)n
−χk + o(1).

An expression for G(s) was derived in [77, p. 755], which is more messy than (45). Indeed, one can simplify that expression
and obtain

G(s) = 1 − 2−s−1 − s2−s−3 − s22−s−3 − 2(s + 1)(s + 2)U (s + 3) + 2(s + 1)U (s + 2) + 2V (s + 1),

Γ (s + 1)
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where (U (s) = V (s − 1) − V (s))

U (s) :=
∑
k�1

b−k(1 + b−k)−s
, V (s) :=

∑
k�1

(
1 − (

1 + b−k)−s)
.

Such an expression for G(s) is on the other hand also easily obtained from (45) by the binomial theorem.
In particular, by (45),

G(−1) = 1

4
+ log 2 + 2

∑
k�1

((
bk + 1

)−2 + log
(
1 + b−k)).

From this we obtain the following numerical table.

b G(−1)/ log b ≈
2 4.35290669894540060374
3 1.80839118999278196720
4 1.18266255423984825415
5 0.91013813774917045524
6 0.75883877609090635697
7 0.66265993661111750882
8 0.59600352646003323615
9 0.54696009129353034188

10 0.50926083872624761651

Thus increasing the number of buckets in radix sort reduces the variance of the cost, with the most drastic change from 2 to 3.

5.4. Peripheral path length

We define the peripheral path length of a tree as the sum of the fringe-sizes of all leaf-nodes, where the fringe-size of a
leaf is defined to be the number of external nodes of the subtree rooted at its parent-node. This parameter was investigated
in [16] where it was called the w-parameter. It was also studied in phylogenetics in the context of sum of all minimal clade
sizes (see [4]).

If we define Tn

(Tn|In = k) =
{

n − 1, if k = 1 or k = n − 1,

0, otherwise,

for n � 3 and with n − 1 replaced by 2 for n = 2, then the peripheral path length Xn of random tries of n keys satisfies (1)
with the initial conditions X0 = 0 and X1 = 1.

Since Tn depends on In , such a parameter does not directly fit in our schemes. However, the same approach applies. The
moment generating function of Xn then has the recursive form

Mn(y) =
∑

k �=1,n−1

πn,k Mk(y)Mn−k(y) + e(n−1)yn
(

pqn−1 + qpn−1)Mn−1(y),

for n � 2 with M0(y) = 1 and M1(y) = e y . It follows that

g̃1(z) = pqz2(e−pz + e−qz),
g̃2(z) = pqz2(2e−z + (1 + qz)e−pz + (1 + pz)e−qz),

which are both exponentially small and JS-admissible by Proposition 3.2. The function h̃2(z) (see (22)) is now given by

h̃2(z) = 2e−z
∑
n�2

∑
0�k�n

πn,k(μk + μn−k)E(Tn|In = k)
zn

n!
= pqz2(2e−pz f̃1(qz) + 2e−qz f̃1(pz) + 2e−pz f̃ ′

1(qz) + 2e−qz f̃ ′
1(pz) + 2e−pz + 2e−qz),

which is also JS-admissible by Proposition 3.2. This gives rise to the following expression for φ̃1(z) (see (24))

φ̃1(z) = 2pqz2(−e−pz f̃1(pz) − e−qz f̃1(qz) + e−pz + e−qz + (1 − 2p + pqz)e−qz f̃ ′
1(pz)

+ (1 − 2q + pqz)e−pz f̃ ′ (qz) − (
2p − p2z

)
e−pz f̃ ′ (pz) − (

2q − q2z
)
e−qz f̃ ′(qz)

)
.
1 1
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Finally,

Ṽ T (z) = pqz2(2
(
1 − 4pqz + pqz2 − p2q2z3)e−z + (1 + qz)e−pz + (1 + pz)e−qz

− pqz
(
4 + z − 4pz + p2z2)e−2pz − pqz

(
4 + z − 4qz + q2z2)e−2qz).

All these functions are exponentially small for large |z| with �(z) > 0.
Observe that G1(s) := M [g̃1; s] = pq(p−s−2 + q−s−2)Γ (s + 2). An application of Theorem 4.1 then gives

E(Xn)

n
= 1 + 1

h
+ F [G1](r log1/p n) + o(1),

where the additional term 1 on the right-hand side arises from the initial condition.
Although Theorem 4.2 does not apply directly to the variance of Xn , the same method of proof works well as in Theo-

rem 4.2(b)(i), and we obtain

V(Xn)

n
= G(−1)

h
+ F [G](r log1/p n) + o(1),

where a series-form for G(s) can be derived as the discussions above. For simplicity, we have, in the symmetric case,

G(s) = s(s + 1)Γ (s)

(
2s+1(s + 3) − s3 + 5s2 + 22s + 24

16

)
− 2s+2

∑
j�1

(−1) jΓ (s + j + 2)

( j − 1)!(2 j − 1)

(
j(s + j + 2) − j − 1

)
.

In particular, the average value of the periodic function is given by

13

8
− 2

∑
j�1

(−1) j j( j2 − 1)

2 j − 1
= 13

8
− 12

∑
j�1

1

4 j(1 + 2− j)4
≈ 0.557304953249505 . . . .

Note that we can also derive the identity

2
∑
j�1

(−1) j j( j2 − 1)

2 j − 1
= 1

log 2
− 3

8
+ 4π2

(log 2)4

∑
k�1

k((2kπ)2 + (log 2)2)

sinh 2kπ2

log 2

,

the series on the right-hand side being smaller than 6 × 10−9.

5.5. Leader election (or loser selection)

The coin-flipping process is applicable to single out a leader in real life or in abstract models: every individual involved
throws a coin and those who get head continue until only one is left; see [94]. In this case, the approach we use so far
leads to extremely simple forms for the number of coin-flippings; this example thus has a more instructional value. Let
Xn denote the total number of coin flippings used in the leader election procedure of n people. Then X0 = X1 = 0 and the
exponential generating function P (z, y) := ∑

n�0 E(e Xn y)zn/n! satisfies

P (z, y) = (
e yz/2 + 1

)
P

(
yz

2
, y

)
− e yz/2 + (1 − y)z.

Instead of the usual Poisson generating function, we consider, as in [94], the Bernoulli generating function

f̃m(z) := 1

ez − 1

∑
n�0

E(Xm
n )

n! zn.

Then f̃1(0) = 0 and

f̃1(z) = f̃1(z/2) + z,

which gives the identity f̃1(z) = 2z. Thus E(Xn) ≡ 2n for n � 2. Also the normalized function Ṽ := f̃2 − f̃ 2
1 − z( f̃ ′

1)
2 satisfies

Ṽ (z) = Ṽ (z/2) + z + 3z2

ez − 1
.

Standard Mellin analysis yields

Ṽ (z) = 2z + π2

2 log 2
+ 3

log 2

∑
ζ(2 + χk)Γ (2 + χk)z−χk + O

(|z|−1),

k∈Z\{0}
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as |z| → ∞ in the half-plane �(z) > 0, where ζ(s) denotes Riemann’s zeta function. Consequently, a similar de-
Poissonization argument leads to

σ 2
n = 2n + π2

2 log 2
+ 3

log 2

∑
k∈Z\{0}

ζ(2 + χk)Γ (2 + χk)n
−χk + O

(
n−1).

Thus, with an average of 2n coin-tossings and a
√

n-order of standard deviation, selecting a leader or a loser by such a naive
splitting process is a very efficient procedure.

6. Further extensions

Since BSPs appear in a large number of diverse contexts, many extensions of our frameworks are possible. We briefly
discuss some examples in this section.

6.1. Internal path length of random tries

If, instead of summing over all the distances between the root and each external node (where records are stored), we
add up all the distances between the root and each internal node, then we have the system of recurrences for the number
of internal nodes Nn (already discussed in Section 5.1) and the internal path length Xn in a random trie of n elements under
the Bernoulli model⎧⎨

⎩ Nn
d= NIn + N∗

n−In
+ 1,

Xn
d= XIn + X∗

n−In
+ NIn + N∗

n−In
,

for n � 2, with initial conditions N0 = N1 = I0 = I1 = 0, where N∗
n and X∗

n are independent copies of Nn and Xn , respectively.
We will see that the variance changes completely its asymptotic behavior and is asymptotic to n(log n)2 weighted by

a periodic function. This estimate is independent of the rationality of log p
log q . This was previously observed in [89] but with

incomplete proof; see also the recent paper [44] for a study of Wiener index.
The asymptotics of the variance can be addressed by the same approach we used for the node-wise path length of

random digital search trees in [55]. We begin with the moment generating function Mn(u, v) = E(eNnu+Xn v), which satisfies
the recurrence

Mn(u, v) = eu
∑

0�k�n

πn,k Mk(u + v, v)Mn−k(u + v, v) (n � 2).

We then deduce that the Poisson generating functions of E(Nn) and E(Xn), denoted by f̃1,0(z) and f̃0,1(z), respectively,
satisfy the functional equations

f̃1,0(z) = f̃1,0(pz) + f̃1,0(qz) + 1 − (1 + z)e−z,

f̃0,1(z) = f̃0,1(pz) + f̃0,1(qz) + f̃1,0(pz) + f̃1,0(qz).

Let f̃2,0(z), f̃1,1(z) and f̃0,2(z) denote the Poisson generating functions of E(N2
n),E(Nn Xn) and E(X2

n ), respectively. Then we
define the Poissonized versions of the variance and the covariance as

Ṽ (z) := f̃2,0(z) − f̃1,0(z)2 − z f̃ ′
1,0(z)2,

C̃(z) := f̃1,1(z) − f̃1,0(z) f̃0,1(z) − z f̃ ′
1,0(z) f̃ ′

0,1(z),

W̃ (z) := f̃0,2(z) − f̃0,1(z)2 − z f̃ ′
0,1(z)2.

A lengthy calculation then gives

Ṽ (z) = Ṽ (pz) + Ṽ (qz) + g̃2,0(z),

C̃(z) = C̃(pz) + C̃(qz) + Ṽ (pz) + Ṽ (qz) + g̃1,1(z),

W̃ (z) = W̃ (pz) + W̃ (qz) + 2C̃(pz) + 2C̃(qz) + Ṽ (pz) + Ṽ (qz) + g̃0,2(z),

where

g̃2,0(z) := e−z{2(1 + z)
(

f̃1,0(pz) + f̃1,0(qz)
) − 2z2(p f̃ ′

1,0(pz) + q f̃ ′
1,0(qz)

)
+ 1 + z − (

1 + 2z + z2 + z3)e−z} + pqz
(

f̃ ′ (pz) − f̃ ′ (qz)
)2
1,0 1,0
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and

g̃1,1(z) := e−z{(1 + z)
(

f̃1,0(pz) + f̃1,0(qz) + f̃0,1(pz) + f̃0,1(qz)
)

− z2(p f̃ ′
1,0(pz) + q f̃ ′

1,0(qz) + p f̃ ′
0,1(pz) + q f̃ ′

0,1(qz)
)}

+ pqz
(

f̃ ′
1,0(pz) − f̃ ′

1,0(qz)
)(

f̃ ′
1,0(pz) − f̃ ′

1,0(qz) + f̃ ′
0,1(pz) − f̃ ′

0,1(qz)
)

and

g̃0,2(z) := pqz
(

f̃ ′
1,0(pz) − f̃ ′

1,0(qz) + f̃ ′
0,1(pz) − f̃ ′

0,1(qz)
)2

.

Then we have

M [ f̃1,0; s] = − (s + 1)Γ (s)

1 − p−s − q−s
,

M [ f̃0,1; s] = − (s + 1)Γ (s)(p−s + q−s)

(1 − p−s − q−s)2
.

It follows that (already derived in Section 5.1)

E(Nn)

n
= 1

h
+ F [G1,0](r log1/p n) + o(1),

where G1,0(s) = −(s + 1)Γ (s). Similarly,

E(Xn)

n
=

(
1

h
+ F [G1,0](r log1/p n)

)
log n

h
+ p log2 p + q log2 q

h3
+ γ − 1

h2
− 1

h
+ 1

h
F [G0,1](r log1/p n) + o(1),

where (ψ being the derivative of log Γ )

G0,1(s) = Γ (s)

((
ψ(s) + h − p log2 p + q log2 q

h

)
(1 + s) + 1

)
.

By the same Mellin analysis, we obtain

M [Ṽ ; s] = Φ1(s) + Φ2(s)

1 − p−s − q−s
,

M [C̃; s] = 1

(1 − p−s − q−s)2

((
p−s + q−s)(Φ1(s) + Φ2(s)

) + (
1 − p−s − q−s)(G2(s) + H2(s)

))
,

M [W̃ ; s] = 1

(1 − p−s − q−s)3

((
p−s + q−s)(1 + p−s + q−s)(Φ1(s) + Φ2(s)

)
+ 2

(
p−s + q−s)(1 − p−s − q−s)(G2(s) + H2(s)

) + (
1 − p−s − q−s)2

H3(s)
)
,

where

Φ1(s) = M
[

g̃2,0(z) − pqz
(

f̃ ′
1,0(pz) − f̃ ′

1,0(qz)
)2; s

]
,

G2(s) = M
[

g̃1,1(z) − pqz
(

f̃ ′
1,0(pz) − f̃ ′

1,0(qz) + f̃ ′
0,1(pz) − f̃ ′

0,1(qz)
); s

]
,

and

Φ2(s) = M
[

pqz
(

f̃ ′
1,0(pz) − f̃ ′

1,0(qz)
)2; s

]
,

H2(s) = M
[

pqz
(

f̃ ′
1,0(pz) − f̃ ′

1,0(qz)
)(

f̃ ′
0,1(pz) − f̃ ′

0,1(qz)
); s

]
,

H3(s) = M
[

pqz
(

f̃ ′
0,1(pz) − f̃ ′

0,1(qz)
)2; s

]
.

From these functions, we can derive, by the same arguments we used above, asymptotic approximations to the covariance
of Nn and Xn , and the variance of Xn .

Theorem 6.1. The variance of the internal path length of random tries satisfies

V(Xn) = F0,2(r log1/p n)
(log n)2

2
+ F [2]

0,2(r log1/p n)
log n + F [3]

0,2(r log1/p n) + o(1),

n h h
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and the covariance of Nn and Xn satisfies

Cov(Nn, Xn)

n
= F0,2(r log1/p n)

log n

h
+ F [2]

1,1(r log1/p n) + o(1),

where F0,2(x) = G(−1)/h + F [G](x) with G given in Section 5.1, and the other F [·]·,· ’s are either constants when log p
log q /∈ Q or periodic

functions with computable Fourier series when log p
log q ∈Q.

For simplicity, we give only the expressions in the symmetric case

F [2]
1,1(x) = − 1

(log 2)2

∑
k∈Z

(
G ′

1(−1 + χk) − G2(−1 + χk) log 2
)
e2kπ ix,

F [2]
0,2(x) = − 2

(log 2)2

∑
k∈Z

(
G ′

1(−1 + χk) − G2(−1 + χk) log 2
)
e2kπ ix,

F [3]
0,2(x) = 1

(log 2)3

∑
k∈Z

(
G ′′

1(−1 + χk) − 2G ′
2(−1 + χk) log 2

)
e2kπx,

where G1(s) is given in (40) and

G2(s) =
∑
j�1

(−1) j jΓ (s + j + 1)

( j + 1)!(2 j − 1)2

(
2 j + 2

)(
j( j + 1 + s) − 1

)
.

An intuitive interpretation of why the variance is of order n(log n)2 is as follows. Any path from the root of length k to
an internal node contributes 1 + 2 + · · · + k = O (k2) to the internal path length. Since the expected values of both internal
and external path lengths are of order n logn, we see that most nodes lie at levels of order log n, and these nodes thus
contribute an order n(log n)2 to the variance.

In a completely similar manner, if Yn denotes the peripheral path length where we change subtree-size to the sum of all
internal nodes (instead of all external nodes), then we can derive the asymptotic approximations to the variance of Yn and
the covariance of Yn and Nn , which are both linear

V(Yn)

n
= F [Y ]

0,2(r log1/p n) + o(1),

Cov(Yn, Nn)

n
= F [Y ]

1,1(r log1/p n) + o(1),

where the F [Y ]·,· ’s are either constants when log p
log q /∈ Q or computable periodic functions when log p

log q ∈Q.

6.2. Contention resolution in multi-access channel using tree algorithms

There is an abundant literature on the subject and we are specially interested in the complexity of tree algorithms used in
resolving the contention before either transmitting information to the common shared channel or performing certain tasks
in a distributed computing environment. The tree algorithm (originally due to Capetanakis, Tsybakov and Mikhailov in the
late 1970s) resolves the conflict (when more than one user is sending simultaneously her message to the common channel)
by the outcome of a coin-flipping at each contender’s site, similar to the splitting rule used for constructing a trie; see [3,80,
81,84,105] for details. The analysis of the time needed for such algorithms to resolve the conflict of n contenders often leads
to recurrences of the form (1) or its extensions. The expected value of the time to resolve all conflicts, which corresponds
essentially to the size of random tries, has been widely addressed in the information-theoretic and communication literature,
but there are very few papers on the variance; see [65,66].

Consider the extended environment where each “coin” has r distinct outcomes with respective probabilities p1, . . . , pr ,
where

∑
1�m�r pm = 1 and none of them is zero. Then the time Xn to resolve the collision of n contenders satisfies (see

[81])

P̃ (z, y) = e y
∏

1�m�r

P̃ (pmz, y) + (
1 − e y)(1 + z)e−z, (46)

where P̃ (z, y) := e−z ∑
n�0 E(e Xn y)zn/n!. For simplicity, we consider a version with X0 = X1 = 0; the situation of nonzero

initial conditions can be manipulated by extending the same arguments we use (only the mean will be altered, the variance
remains the same). From (46), we obtain the functional equation for the Poisson generating function of E(Xn)

f̃1(z) =
∑

f̃1(pmz) + 1 − (1 + z)e−z,
1�m�r
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with f̃1(0) = 0, and, similarly, for Ṽ := f̃2 − f̃ 2
1 − z( f̃ ′

1)
2,

Ṽ (z) =
∑

1�m�r

Ṽ (pmz) + g̃(z),

with Ṽ (0) = 0, where

g̃(z) = e−z(1 + z − (
1 + 2z + z2 + z3)e−z) + 2e−z

(
(1 + z)

∑
1�m�r

f̃1(pmz) − z2
∑

1�m�r

pm f̃ ′
1(pmz)

)

+ z
∑

1�m<l�r

pm pl
(

f̃ ′
1(pmz) − f̃ ′

1(pl z)
)2

.

Then all our analysis extends mutatis mutandis to these functional equations, and we have the following asymptotics for
E(Xn) and V(Xn).

Let

P (s) :=
∑

1�m�r

ps
m.

Then the entropy is

h := −P ′(1) = −
∑

1�m�r

pm log pm.

As in the Bernoulli case, we need to distinguish between rational (periodic) and irrational (aperiodic) cases. The former is
characterized either by the existence of a ρ ∈ R such that pm = ρem , em ∈ N, for 1 � m � r, or by the ratios log pm

log pl
∈ Q for

all pairs (m, l).

Theorem 6.2. The expected value and the variance of Xn (defined in (46)) can asymptotically be approximated by

E(Xn)

n
= 1

h
+ F1(log1/ρ n) + o(1),

VXn

n
= G(−1)

h
+ F2(log1/ρ n) + o(1),

where both F1 = F2 = 0 in the irrational case and (χk = 2kπ i
log ρ )

F1(x) = 1

h

∑
k∈Z\{0}

χkΓ (−1 + χk)e2kπ ix,

F2(x) = 1

h

∑
k∈Z\{0}

G(−1 + χk)n
−χk ,

in the rational case, where G = M [g̃; s] is given in (47) below.

While the dominant term involving the entropy for the expected value is well-known (see [5,9,63]), the corresponding
term G(−1)/h for the variance is far from being intuitive. On the other hand, if we start with X0 = a and X1 = b, then

E(Xn)

n
= (b − a) + (

(r − 1)a + 1
)(1

h
+ F1(log1/ρ n)

)
+ o(1).

The function G in the theorem is described as follows. For �(s) > −2,

G(s) = (s + 1)Γ (s)

(
1 − s2 + 4s + 8

2s+3

)
+ 2

∑
j�1

(−1) j j( j( j + s + 1) − 1)Γ ( j + s + 1)P ( j + 1)

( j + 1)!(1 − P ( j + 1))
+ Φ2(s), (47)

where Φ2(s) ≡ 0 if pm = 1/r for 1 � m � r (the symmetric case), and

Φ2(−1 + χk) = Γ (2 + χk)

22+χk
− 2

∑
j�1

(−1) jΓ ( j + χk + 1)P ( j + 1)

( j − 1)!(1 − P ( j + 1))

−
{ 1

h

∑
j∈Z Γ (χ j + 1)Γ (χk− j + 1), in the rational case,
0, in the irrational case,
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in the asymmetric case. Consequently,

G(−1 + χk) = χkΓ (−1 + χk)

(
1 − χk + 3

21+χk

)
− 2

∑
j�1

(−1) j( j + 1 + χk)Γ ( j + χk)P ( j + 1)

( j − 1)!( j + 1)(1 − P ( j + 1))

−
{ 1

h

∑
j∈Z Γ (χ j + 1)Γ (χk− j + 1), in the rational case;

0, in the irrational case

which reduces to (36) and (37) in the Bernoulli model (r = 2).
When pm = 1/r for 1 � m � r

G(s) = (s + 1)Γ (s)

(
1 − s2 + 4s + 8

2s+3

)
+ 2

∑
j�1

(−1) j jΓ ( j + 1 + s)

( j + 1)!(b j − 1)

(
j( j + 1 + s) − 1

);
compare (32) and (33). Thus the average value of the periodic function is given by

G(−1)

log b
= 1

4 log b
+ 2

log b

∑
k�1

(−1)k(k − 1)

bk − 1
= 1

4 log b
+ 2

log b

∑
k�1

1

(bk + 1)2
.

This is consistent with the expression derived in [65]

1

2 log b
− 1

(log b)2
+ 2

log b

∑
k�1

1

bk + 1
− 4π2

(log b)3

∑
k�1

k

sinh 2kπ2

log b

.

Equating the two expressions leads to the identity

1

2
− 1

log b
+ 2

∑
k�1

1

bk + 1
= 1

4
+ 2

∑
k�1

1

(bk + 1)2
+ 4π2

(log b)2

∑
k�1

k

sinh 2kπ2

log 2

,

which generalizes (35). Our Fourier series for F2 is new even in this simple case.
For many other concrete examples, see [3,56,80,81,84,105] and the references therein.

7. PATRICIA tries

In typical random tries, internal nodes at successive levels may have only one descendant (corresponding to the extreme
probabilities when binomial distribution assumes 0 and n), resulting in an increase in storage. Indeed, the expected number
μn of internal nodes under the initial condition μ1 = 0 is asymptotic to (h−1 + F [G](r log1/p n))n (see Section 5.1). Thus
the expected number of internal nodes with only one child is asymptotic to (h−1 − 1 +F [G](r log1/p n))n. In the symmetric
case, the leading constant (neglecting the fluctuation term) is about 1/ log 2 − 1 ≈ 0.4427, about 44% extra space being
needed, and this is the minimum when p varies between 0 and 1. The idea of PATRICIA1 tries arose when there was a
need to compress such a one-child-in-one-generation pattern; see [74,85]. When removing all such nodes, the resulting tree
has n − 1 internal nodes (for n external nodes). See [106] for an analysis connected to unary nodes of random tries, and
[5,15,63,70,98] for other linear shape measures.

Under the same Bernoulli model, we can construct random PATRICIA tries by using the same rule for constructing an
ordinary trie but compress all internal nodes with only one descendant. If Xn represents an additive shape parameter in a
random PATRICIA trie of size n, then, for n � 2,

Xn
d= XI ′n + X∗

n−I ′n + Tn, (48)

where

P
(

I ′n = k
) = π ′

n,k :=
(n

k

)
pkqn−k

1 − pn − qn
(k = 1, . . . ,n − 1),

and the X∗
n ’s are independent copies of Xn . Since we are mainly interested in the variance, we may assume that X0 = X1 = 0.

This then translates into the recurrence for the moment-generating functions (assuming Tn independent of Xn)

Mn(y) = E
(
eTn y) ∑

1�k<n

π ′
n,k Mk(y)Mn−k(y) (n � 2),

1 PATRICIA is the acronym of “practical algorithm to retrieve information coded in alphanumeric”.
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with M0(y) = M1(y) = 1. It follows that the Poisson generating function f̃1 of E(Xn) satisfies the functional equation

f̃1(z) = f̃1(pz) + f̃1(qz) + g̃1(z) − e−qz g̃1(pz) − e−pz g̃1(qz), (49)

with f̃1(0) = f̃ ′
1(0) = 0, where g̃1 represents the Poisson generating function of E(Tn). For convenience, we also assume

g̃1(0) = g̃′
1(0) = 0.

The same tools we developed for tries readily apply to (49) and the same asymptotic pattern holds.

Theorem 7.1. Let 0 < θ < π/2,α < 1 and β ∈ R.

(a) If more precisely g̃1 ∈ JS α,β , then

E(Xn)

n
= G1(−1)

h
+ F [G](r log1/p n) + o(1),

where G1(s) = M [g̃1(z) − e−qz g̃1(pz) − e−pz g̃1(qz); s].
(b) If g̃1 ∈ JS and g̃1(z) = cz + O (|z|α(log+ |z|)β) uniformly for |arg(z)| � θ , then

E(Xn)

n
= c

h
log n + d

h
+ p log2 p + q log2 q

2h2
+ F [G1](r log1/p n) + o(1),

where G1(s) is the meromorphic continuation of M [g̃1(z)− e−qz g̃1(pz)− e−pz g̃1(qz); s] and d = lims→−1(G1(s)+ c/(s + 1)).

Since the method of proof is the same as that of Theorem 4.1, we omit the details.
For the variance of Xn , we have, using the same notations,

Ṽ X (z) = Ṽ X (pz) + Ṽ X (qz) + Ṽ T (z) + φ̃0(z) + φ̃1(z) + φ̃2(z),

where

φ̃0(z) = −e−qz g̃2(pz) − e−pz g̃2(qz) + 2g̃1(z)
(
e−qz g̃1(pz) + e−pz g̃1(qz)

)
− 2zg̃′

1(z)
(
qe−qz g̃1(pz) + pe−pz g̃1(qz) − pe−qz g̃′

1(pz) − qe−pz g̃′
1(qz)

)
− z

(
qe−qz g̃1(pz) + pe−pz g̃1(qz) − pe−qz g̃′

1(pz) − qe−pz g̃′
1(qz)

)2 − (
e−qz g̃1(pz) + e−pz g̃1(qz)

)2
,

and

φ̃1(z) = h̃2(z) − 2g̃1(z)
(

f̃1(pz) + f̃1(qz)
) − 2zg̃′

1(z)
(

p f̃ ′
1(pz) + q f̃ ′

1(qz)
)

+ 2
(
e−qz g̃1(pz) + e−pz g̃1(qz)

)(
f̃1(pz) + f̃1(qz)

)
− 2z

(
qe−qz g̃1(pz) + pe−pz g̃1(qz) − pe−qz g̃′

1(pz) − qe−pz g̃′
1(qz)

)(
p f̃ ′

1(pz) + q f̃ ′
1(qz)

)
,

φ̃2(z) = pqz
(

f̃ ′
1(pz) − f̃ ′

1(qz)
)2

.

Here h̃2 is given by

h̃2(z) = 2e−z
∑
n�0

E(Tn)
∑

0� j�n

πn, j
(
E(X j) +E(Xn− j)

) zn

n! − 2e−z
∑
n�0

(
pn + qn)E(Tn)E(Xn)

zn

n! .

Note that, by Propositions 3.2 and 3.3, if g̃1 ∈ JS , then f̃1 ∈ JS , which in turn implies, by Proposition 3.5, that h̃2 ∈ JS .
Consequently, if g̃1 ∈ JS and g̃2 ∈ JS , then both f̃1 ∈ JS and f̃2 ∈ JS . Thus our approach applies to V(Xn).

Theorem 7.2. Let 0 < θ < π/2,α < 1 and β ∈ R. Assume g̃1, g̃2 ∈ JS and Ṽ T (z) = O (|z|α(log+ |z|)β) for |arg(z)| � θ .

(a) If p = q = 1/2, and g̃1 ∈ JS α,β or g̃1 ∈ JS 1,0 , then

V(Xn)

n
= 1

log 2

∑
k∈Z

G(−1 + χk)n
−χk + o(1),

where G(s) = M [Ṽ T (z) + φ̃0(z) + φ̃1(z); s].
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(b) Assume p �= q.
(i) If g̃1 ∈ JS α,β , then

V(Xn)

n
= G(−1)

h
+ F [G](r log1/p n) + o(1),

where G(s) = Φ1(s) + Φ2(s) with Φ1(s) = M [Ṽ T (z) + φ̃0(z) + φ̃1(z)] and Φ2(s) is an analytic continuation of M [φ̃2; s].
(ii) If g̃1(z) = z + O (|z|α(log+ |z|)β) uniformly for |arg(z)| � θ , then

V(Xn)

n
= pq log2(p/q)

h3
log n + d

h
+ p log2 p + q log2 q

2h2
+ F [G](r log1/p n) + o(1).

Here G(s) = Φ1(s)+Φ2(s) with Φ1(s) as above, Φ2(s) is a meromorphic continuation of M [φ̃2; s] and d = lims→−1(G(s)+
pq log2(p/q)/(h2(s + 1))).

The proof follows the same arguments as that of Theorem 4.2 and is omitted.
Consider the external path length, which satisfies (48) with Tn = n. In this case, we have

g̃1(z) = z
(
1 − e−z), g̃2(z) = z

(
1 − e−z) + z2,

and

Ṽ T (z) = e−z(z
(
1 − e−z) + z2(1 − z)e−z).

Also

φ̃1(z) = −2zpq
(
(zp − 1)e−pz f̃ ′

1(pz) + (zq − 1)e−qz f̃ ′
1(qz) + (zp + 1)e−qz f̃ ′

1(pz) + (zq + 1)e−pz f̃ ′
1(qz)

)
+ 2qze−pz f̃1(pz) + 2pze−qz f̃1(qz).

Observe that

G1(s) := M
[

g̃1(z) − e−qz g̃1(pz) − e−pz g̃1(qz); s
] = −Γ (s + 1)

(
qp−s−1 + pq−s−1).

Thus, by Theorem 7.1,

E(Xn)

n
= 1

h
logn + γ

h
+ p log2 p + q log2 q

2h2
− 1 + F [G1](r log1/p n) + o(1).

Now by Theorem 7.2, the variance satisfies

V(Xn)

n
= G(−1)

h
+ F [G](r log1/p n) + o(1),

where G = Φ1 +Φ2, as described in Theorem 7.2. Expressions can be derived for G . For brevity, consider only the symmetric
case for which we have

G(s) = Φ1(s) = Γ (s + 1)

(
2s+1(s + 2) − s2 + 3s + 6

4

)
+ 2s+2

∑
j�1

(−1) jΓ (s + j + 2)

( j − 1)!(2 j − 1)
.

Note that the last series has the alternative form

∑
j�1

(−1) jΓ (s + j + 2)

( j − 1)!(2 j − 1)
= −Γ (s + 3)

∑
j�1

1

2 j(1 + 2− j)3+s
.

Hence, the mean value of the periodic function is given by

1 + 3

4 log 2
+ 2

log 2

∑
j�1

1

2 j(1 + 2− j)2
≈ 0.361326059781678 . . .

which is the same as that obtained in [70] with a different expression (equating our expression with theirs gives the same
identity (35)).
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8. Conclusions

The prevalent appearance in diverse modeling contexts and high concentration of the binomial distribution make BSPs
a distinctive subject full of featured properties and numerous extensions. Periodic oscillation is among the phenomena for
which analytic tools proved to be a successful bridge between theory and practical observations. The analytic methodology
developed in this paper, based specially on earlier works founded by Flajolet and his coauthors and aiming at clarifying
the periodic oscillation of the variance, is itself easily amended for other circumstances, including particularly the case
of quadratic shape measures such as the Wiener index (see [44]) or the analysis of partial-match queries (see [42]). The
combination of Mellin analysis and Jacquet and Szpankowski’s analytic de-Poissonization (operated at the more abstract level
of admissible functions) proves once again to be powerful tools for unriddling the intrinsic complexity of the asymptotic
variance, and provides an efficient mechanical art of conjecturing and proving in more general contexts the structure of the
variance. More developments will be discussed in a subsequent paper.
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