
Message optimal fully decentralised evaluation of
associative and commutative functions

S.-Y. Yuan

Indexing terms: Associatiue ond commutotiuefunctions, Distributed algorithms, Decentralised computations, k-dimensional m a y , Message compkxity

Abstract: Decentralised protocols can be charac-
terised by successive rounds of message inter-
changes. In this article, we show that at least
kN(LN'/'J - 1) messages are required for fully
decentralised evaluating functions that are both
associative and commutative if k rounds of
message interchanges are used in an N-node
system. We then present a family of fully decen-
tralised algorithms that requires, at most, a total
of kN(rN'I'1 - 1) messages to be sent with k
rounds of message interchanges. Therefore, the
family of algorithms is optimal with respect to the
total number of messages exchanged among the
processing nodes. The problems which can be
modelled as an evaluation of associative and com-
mutative functions include extrema findings and
distributed transaction commitments.

1 Introduction

Distributed systems consist of a collection of processing
nodes connected via a communication network such that
multiple processing nodes can interact to address the
processing requirements of the users. The main use of
such systems is in handling distributed applications/
algorithms which require that parts of the processing be
carried out at different nodes and that the nodes
communicate with each other. In this paper, we assume
that the communication network provides a point-to-
point message based communication facility in which
error-free, in-sequence delivery of messages is assured.
We also assume that nodes do not share any global
memory or any central clock.

In a distributed algorithm designed to achieve a global
objective, each processing node has to carry out its com-
putations and actions based on the information available
to it. To achieve the global objective therefore, an algo-
rithm has to be designed to coordinate the processes in
such a way that the proper, consistent information is
available to each processing node at the proper time.

An algorithm using a centralised control mechanism
contains a single process, called the coordinator, which
coordinates the actions of others. The two-phase commit
protocol 113 is a good example of such an algorithm. In
this algorithm, the coordinator sends a transaction
request to all other nodes and waits for their replies in

the first phase. After receiving all replies, the coordinator
sends a final decision to the others in the second phase.

Decentralised algorithms do not use a single coordi-
nator. All participants are considered to be coordinators,
and they all execute an identical program. Since there
is no central controller in a decentralised algorithm, the
information required for a node to accomplish the global
objective cannot be obtained by exchanging messages
with the controller only. So how to coordinate the
message flow such that every node only exchange mes-
sages with a few other nodes to obtain all required infor-
mation becomes a major issue for designing decentralised
algorithms.

Although the centralised algorithms usually require
fewer messages than their decentralised counterparts, the
use of a single central controller for interprocess co-
ordinations may lead to some severe problems. The
central coordinator becomes the critical point of the
whole system. If it fails, the whole system has to stop
operation until a new coordinator is designated. Further,
the failure of the coordinator may result in the loss of
some critical information. To prevent this situation from
happening, backup controllers are introduced to keep
track of the information of the primary controller.
Another problem of the centralised algorithms is that the
controller may become a performance bottleneck for a
large distributed system because usually the coordinator
has to exchange information with all others.

In this article, we consider the case where the global
objective is to evaluate a function or predicate that is
both associative and commutative. Each node possesses
one of the arguments of the function initially. The com-
putation is required to be decentralised and the result of
the computation to be known by all processing nodes.
Such a problem includes many decentralised applications
such as extrema finding 12-71, coordination of distrib-
uted checkpoints 181, and maintenance of transaction
atomicity 19-113.

One simple way to carry out this computation is by
requiring each process to send its information to every
other process. The relevant computation can then be per-
formed by each node. This method requires N(N - 1)
messages, where N is the number of nodes in the system,
to be sent at one round of message exchange. Lakshman
uses a communication structure based on the finite pro-
jective plane [12] to construct decentralised protocols
with O [N J (N)] messages and two rounds of message
exchanges.

0 IEE, 1994
Paper 1165E (C2, C3), received 27th August 1993
The author is with the Department of Computer & Information
Science, National Chiao Tung University, Hsinchu, Taiwan 30050,
Republic of China

238

2

Distributed computations can be classified into two cate-
gories: centralised and decentralised. A centralised com-
putation contains a special node called coordinator

Computation model and problem domain

In general, a fully decentralised computation can be
defined in terms of rounds. In each round, nodes
exchange messages and then carry out some local com-
putations. The local computation at each node in round i
is based on the information

Exchange information Communication phase

Compute Computation phase
-_-__-_----- Round i

where Vpi, p E P, Ipi - p j l < 1, satisfies n:=l (pi + 1) 2
N with pi being minimum. Assume that
Q = {4i I i = 1, 2, . . . , k} satisfies n;= (4i + 1) > N with

E Q with
I 4i - 4 j I 2 2. Without loss generality, we let qi 2 4 j + 2.

4i being minimum and there exists q i ,

Exchange information Communication phase
Round (i + 1) - - - - - - - - - - - -

available at that node up to and including the commun-
ication phase of round i. A node can proceed with its
local computation of ith round whenever its communica-
tion phase of round i completes.

The problem we are considering here is to evaluate an

From Q, we can construct a new set of k positive integers
Q = {411 i = 1, 2, ..., k} where V I # i, j, 4; = 4 , , 41 = qi
- 1, and 4;. = 4 j + 1.

k k

n(4; + 1) - (4, + 1)

IEE Roc.-Comput. Digit. Tech., Vol. 141, No. 4, July 1994 239

at most, one. if the set Q is not P, because the zt= q; is
minimum, the maximal element in Q must be less than,
or equal to, the maximal element in P. Otherwise, since
no two elements in Q differ more than 1, and no two
elements in P differ more than 1, the minimal element in
Q must be greater than the minimal element in P also.
Thus 41 is greater than pi. This contradicts the
assumption that E= qi is minimum.

Without loss generality, we assume that
V l < i < j < k , p i > p j a n d 4 ~ > 4 ; w h e r e p i , p j E P a n d
gi, gi E Q . Since the maximal element in Q is no greater
than the maximal element in P, there exists at least one
element in Q being less than its counterpart in P. Let I be
the smallest integer between 1 and k such that
V1 C i < I - 1,q i = pi and q; < pI. There are two cases to
be considered.

Case 1: I Q m: Since pI = rN1/kl - 1, 4; c pI - 1 =
rN1lk1 - 2 Q LN'"J - 1. Thus VI < i < k, 4; < LN'/'J
- 1. Therefore,

, - ~ l / k] I - l [~ l / k k 1 + 1 1 -
< r ~ l / k l m - l L N l / k J k - m + l

< N (5)

This is contradictory to the assumption that nf=l (41
+ 1) 2 N.

Case 2: I > m: Since pI = [N'"] - 1, 4; < pr - 1 =
LN'/~J - 2. Thus, VI < i < k, qi < [N1/k] - 2.

< r~l/~lnLNl/kJI-m-l(~Nl/kJ - 1)k-l+1

< r ~ l / ~ ~ ~ - ~ ~ ~ l / k] k - n - l ~ N ~ / ~ ~ (L N l / k J - 1)

Q rNllk1n- l L N l / k J k - m - 1

x (~ ~ ~ 1 ~ 1 + I) (LN~/~J - 1)
< r N l / k i m - l LN l / k J k - m - 1 L N ~ / ~ J ~
= r ~ l / k l m - l L N l / k J k - m + l

< N (6)
This is contradictory to the assumption that nf=, (41 + 1) > N.

Therefore, for any set Q satisfying (4, + 1) N
with q, being minimum, we can always find a corre-
sponding set P which satisfies flf=l (pi + 1) 2 N with c= q, being minimum and contains exactly m elements
of rN'l'1 - 1 and k - m elements of LN""~ - 1. There-
fore, the minimum of the p, is m(rN1/kl - 1)
+ (k - m)(~N'/'j - 1). Since

m(rN"'1- 1) + (k - m)(LN'/'J - 1) > k(LN'"J - 1) (7)

0

Theorem 3.1: Any algorithm for evaluating associative
and commutative functions fully decentralised in an
N-node system with k rounds of message exchanges
requires at least kN(LNIIkJ - 1) messages passed among
the N nodes.

Proof: Assume that, for all i, 1 < i < k, in the ith round
of message exchange, each node sends out pi messages.

240

the E= p, is at least k(LN'/'J - 1).

Since in the fully decentralised computation, all nodes
execute the same programme, send out the same number
of messages, and receive the same number of messages in
each round. Therefore, after the first round, there are at
most (pl + 1) nodes having the knowledge about the
initial value of node 1. After the second round, there are
at most (pl + lXpz + 1) nodes having the knowledge
about the initial value of node 1. Therefore, after the kth
round, there are at most n:=l (pi + 1) nodes having the
knowledge about the initial value of node 1. Since only k
rounds of message interchanges are used, nfXl (pi + 1)
should be at least N. Otherwise, some nodes would have
no knowledge about the initial value of node 1, so they
will not be able to evaluate the function.

Since each node sends out pi messages in round i,
1 Q i 6 k, the total number of messages passed among
the N nodes is N pi. Because nf=, (pi + 1) > N
and for any k positive integers pl, pz, . . . , pt, the E:= p,
is at least k(~N'"j - 1) (from Lemma 3.1), the total
number of messages N pi is at least kN(LN'I'J - 1).

4 The KDAMS structure

We have shown that decentralised evaluation of associa-
tive and commutative functions require at least
kN([N'/'] - 1) messages for k rounds of message inter-
changes in an N-node systems. In this Section, we
discuss a communication structure called KDAMS which
can be used to develop protocols achieving the lower
bound of message complexity.

In Lemma 3.1, we have shown that gven positive
integers N and k, a set of k positive integers pl, p2, . . . , pk
can be found to minimise the If=, pi becoming
m(rN1lk1 - 1) + (k - m)(LN'"J - 1) under the constraint
of n:=l (pi + 1) 2 N, where 0 < m < k and

fore, if every node sends out pi messages at the ith round
of message interchange and after the ith round, there are
E=l (pj + 1) nodes having the knowledge of the initial
value of any node, the lower bound can be achieved.

For any given N and k, from Lemma 3.1, we first find
a set of k positive integers pl, pz, ..., pk such that ntZl (pi + 1) 2 N and pi is the minimum. We then
add M - N dummy nodes into the system, where M = nf=l (pi + 1). We consider the M-node system as a k-
dimensional array of [O ... pl, 0 ... p 2 , ..., 0 ... pk] such
that every node X , 0 Q X Q M - 1 can be addressed as a
k-tuple (x l , x z , ..., x&, where Vi, 1 < i < k, x i is integer
between 0 and pi and X = x:=l (xi ni=i+l (pj + 1)).
Since there are napi s equal to ([N"'] - 1) and (k - m)pi s
equal to (LN'/'J - l), where 0 < m < k and
rNl/klmLNl/tjk-m 2 N > [N l / k] m - l LN l / k J k-n+l (from
the proof of Lemma 3.1), M - N < fN1/klm-l.
LN1/k]k-"'+l < N, each real node only has to emulate at
most one dummy node. The KDAMS communication
structure is defined as follows.

4.1 KDAMS structure
At round i, 1 Q i Q k: Every node X (x l , x z , ..., xk)
exchanges information with nodes addressed as
(x l , ..., xi-l, yi, x i + l , ..., x&, where 0 < yi < p i and
yi # X i .

In other words, the KDAMS structure is to arrange
nodes into a k-dimensional array and at round i,
1 < i < k, each node exchange messages with all nodes
that differ from itself only in the ith dimension. Thus, for

IEE Proc.-Comput. mga. Tech., Vol. 141, No. 4, July 1994

[N1/k]"[Nl/k]'-" 2 N > [~l/k]"-l[~l/k]k-n+l. There-

a 2D array, each node communicates with nodes in the
same column at the first round, and then with nodes in
the same row at the second round.

5 The message optimal algorithm

The actions of the algorithm at each site are modelled by
a finite state automation (FSA). The local state trans-
itions of FSAs involve readindwriting messages to the
network and transiting to another local state. For given
N and k, from Lemma 3.1, there exists an integer m such
that rNIIki"LN1/klk-" 2 N > rN"kl"-lLN1/k~k-m+l. k t

dummy nodes to the system and address every node X ,
0 Q X Q M - 1 by a k-tuple (x , x 2 , ..., xk), where Vi,
1 < i Q k, 0 < x i < p i and X = b=, (x i m = i + l (pi + 1)).
Initially, each real node 0 Q X Q N - 1 has the value V,
and all dummy nodes are assigned a special value which
cannot affect the outcome of the computation (i.e. 0 for
summation function and 1 for multiplication function). In
the algorithm, we use the symbol '@' to represent the
special value.

The FSA of the algorithm for a node X(x , , x z , . . . , xk)
is shown in Fig. 1. The actions of each state for the node
X(x , , x 2 , . . ., xk) are described as follows.

p1 = p 2 = . . ' = p ~ = (~ N l ' k l - 1) , p n + , = p m + t = " ' =
p k = (LN"'] - I), and M = fl:=, (pi + 1). Add M - N

FSA for normal node FSA for dummy nodes

send own value send the special symbol '@'

send new result send new result

perform computation

Fig. 1

State q for normal nodes: Send own value to all nodes
addressed as (y,, x z , ..., xk), where 0 C y , C p,, and
move to state w,.

State q for dummy nodes: Send the special value '@' to all
nodes addressed as (yl, x 2 , ..., xk), where 0 < y, Q p l ,
and move to state w l .

State w, , 1 Q i Q (k - I): Upon receiving values from all
nodes addressed as (x l, y,, x i + , , .. ., xk), where
0 C yi C p i , perform the operation Y among received
values (ignoring the special symbol '@') and the local
value, send the result to all nodes addressed as (x l , . . . ,
x i , yi+l , x i + 2 , ..., Xk), where 0 c yi+l < p i + l , replace the
local value by the new result, and move to state w ~ + ~ .

State wk: Upon receiving values from all nodes addressed
as (XI, . . . , xk- yb, where 0 Q yk 6 p k , perform the oper-
ation Y among received values and the local value and
move to state f.

State f : Final state.

IEE Proe.-Comput. Digit. Tech., Vol. 141, No. 4, July 1994

FSAs for computations of commutativefunctions

The following theorem shows the correctness of the pro-
tocol.

Theorem 5.1: If a node is in state ft it contains the value
of Yr:: Vo(i), where Vo(i) = is the initial value of
node i.

Proof: We show it by induction.

Inductive hypothesis: After the ith round of message
exchanges, where 1 C i < k, a node X addressed as (x , ,
x z , ..., x,J will have the value Vi(- = Y$':=oy;i=~ ...

Base case: After the first round of message exchange, the
node X has received values from nodes (yl, x 2 , . . . , x3 ,
where 0 < y1 6 p l , which have the initial values Vo(+v,,
x 2 , . . . , x,J Therefore, the node X will contain the value

y ~ ~ = O ~ 0 (y 1 , ~ 2 , . . ~ , y i , X I + 1 , ~ ~ ~ , X k) ~

= y$: = O Vo(yl, x2 , . . . xk).

Inductive case: Assume for i = Z - 1, where I Q k, the
inductive hypothesis is true. After the (I - 1)th round of
message exchange, the node X would have the value of
V'-'(X) which is Y;;=, 'U;;=, . . . Y Er:=, Vofjl, y2, . . . ,
y l - , , X I , ..., X k) . After the Zth round of message
exchanges, the node X would receive values from nodes
(x l , . . . , x l - I, y, , x , + ~ , . . . , x&, where 0 c y , Q p I , which
have values V1- ' (x1 , . . ., x I w l , y , , x , + ~ , . . ., x3 . Therefore,

V'(X) = Y K = o V ' - ' (X ~ , . . ., ~ i - 1 , J J ~ , xi+1, .,., x 3 (8)
= Y;;=o(Y;;=oY;~~o .'. Y$;I:=o V 0

- - Y ; ; ~ o Y $; = o . ~ . Y P 1 - 1 y r - , = O Y ; ; = O V 0
x 011, Y2 I . . ' 9 YI- I, Y1, X I + , , . . .> XkN

(yl, y2 I . . .) yI-1, Y l , XI+,, ...> x k) (9)
So the inductive hypothesis is true for all i , 1 C i 6 k.
Thus, after k rounds of message interchanges, a node X
should contain the value V k (X) = Y$;=, Y;;=o . . .

0

Because every node sends pi messages in round i, the
total number of messages passed among the N nodes is
N p i . Since every pi is either LN'I~J - 1 or
L N ' / ~ J - 1, the E=, pi should be less than or equal to
k(rNIIkl - l), so the total number of messages
C kN(rN'I'1 - l), because the lower bound
kN(LN1lkJ - 1) and kN(rN1/kl - 1) have the same order
of O(kNN'I9. The algorithm is optimal with respect to
the message complexity.

y;:= 0 vo(Y1, yZ , . . . f yk) = = F(V0 9 VI, . . . , VN - 1)

6 Anexample

Assume that we want to evaluate the summation function
in a 12-node system with three rounds of message
exchanges. From Lemma 3.1 and the KDAMS structure,
we note that m = 1 and p i = 2, pz = 1, and pa = 1.
Therefore, each node X, 0 Q X C 11, can be addressed as
a triple (x l , x z , xa), where 0 d x 1 < 2, 0 4 x 2 < 1 , and
0 Q x 3 C 1. Assume that nodes have initial values as
follows:

V:oo = 10 VZo1 = 31 V:,, = 43 V:ll = 50

Vyoo = 1 Vyol = 39 Vylo = 17 Vyll = 3

V:oo = 28 V:ol = 9 Vgl0 = 20 V:ll = 11

241

According to the KDAMS structure, in the first round,
every node sends its current value to all nodes whose
addresses differ itself only in the first dimension. After
receiving all values, every node sums them and its initial
value to be its new local value. Thus, the local values
after the first round are as follows:

VAoo = Vgoo + Vyo0 + Vioo = 10 + 1 + 28 = 39

Vi00 = Vtoo + Vyoo + V:oo = 10 + 1 + 28 = 39

Vioo = Vzoo + V:oo + V’$oo = 10 + 1 + 28 = 39

VAol = Vgol + VyOl + V:ol = 31 i- 39 + 9 = 79

Viol = Vgol + Vyol + V:ol = 31 + 39 + 9 = 79

Viol = Vtol + Vyol + Viol = 31 + 39 + 9 = 79

Vtlo = Vtlo + Vylo + V:lo = 43 + 17 + 20 = 80

V:lo = Gl0 + Vylo + V:lo = 43 + 17 + 20 = 80
Vklo = Vglo + Vylo + V:lo = 43 + 17 + 20 = 80

Vkll = Vtl1 + Vyll + v;,, = 50 + 3 + 11 = 64
V i l l = VIll + Vyll + ql1 = 50 + 3 + 11 = 64

V i l l = Vgll + VYl1 + V:ll = 50 + 3 + 11 = 64
In the second round, every node sends its current value
to all nodes whose addresses differ itself only in the
second dimension. After receiving all expected values,
every node sums them and its current local value to be its
new local value. The local values after second round are
as follows:

Vioo = VAoo + VAlo = 39 + 80 = 119

Vg10 = Vhoo + VAlo = 39 + 80 = 119
Viol = Viol + Vhll = 79 + 64 = 143

Vi11 = VAol + VA1l = 79 + 64 = 143
V f o o = Vioo + Vi lo = 39 + 80 = 119

Vf10 = Vtoo + Vila = 39 + 80 = 119

Vfol = Viol + V i l l = 79 + 64 = 143

Vf11 = Viol + Vi11 = 79 + 64 = 143

Vi00 = Vioo + Vila = 39 + 80 = 119

V&o = Vioo + Vil,, = 39 + 80 = 119

Vio l = Viol + V i l l = 79 + 64 = 143

V&l = Viol + V i l l = 79 + 64 = 143
In the third round, every node sends its current value to
all nodes whose addresses differ itself only in the third
dimension. After receiving all expected values, every node
sums them and its current local value to be the final
result. The final vaues are as follows:

V& = Vioo + Viol = 119 + 143 = 262

Vi01 = Vioo + Viol = 119 + 143 = 262

Vi10 = Vi lo + V i l l = 119 + 143 = 262

V&1 = Vi lo + V i l l = 119 + 143 = 262

V:oo = V f o o + Vfol = 119 + 143 = 262

V;o1 = V f o o + Vfol = 119 + 143 = 262

V;lo = Vi lo + V:ll = 119 + 143 = 262

V:ll = Vflo + Vfl l = 119 + 143 = 262

V;oo = V:oo + Viol = 119 + 143 = 262

Viol = Vzoo + V$ol = 119 + 143 = 262

V210 = V;lo + V i l l = 119 + 143 = 262

V i l l = Vzl0 + Vgl1 = 119 + 143 = 262

7 Concluding remarks

We have shown that fully decentralised evaluating
associative and commutative functions require at least
kN(LN1”J - 1) messages in an N-node system with k
rounds of message exchanges. A family of fully decentral-
ised algorithm for evaluatiop of associative and commu-
tative function with optimal message complexity is
developed by using the KDAMS communication struc-
ture. The family of algorithms are symmetric and require
at most a total number of kN([N1’k] - 1) messages for k
rounds of message interchanges in an N-node system.
This family of algorithms also permit a trade-off between
the number of rounds of message exchanges and the total
number of messages passed among the nodes. By associ-
ating proper operations, optimal decentralised algorithms
for distributed transaction commitments, extrema
finding, and computation of summation can be derived
from the algorithm described in Section 5.

8 References

1 GRAY, J.N.: ‘Notes on database operating systems’, in ‘Operating
systems: an advanced course’ (Springer-Verlag, Berlin, 1979)

2 CHANG, E., and ROBERTS, R.: ‘An improved algorithm for
decentralised extrema finding in circular configurations of pro-
cessors’, Convnun. ACM, 1979,22, pp. 281-283

3 HIRSCHBERG, D., and SINCLAIR, J.: ‘Decentralised extrema-
finding in circular configurations of processors’, Commun. ACM,
1980,23, pp. 627-628

4 FRANKLIN, W.R.: ‘On an improved algorithm for decentralised
extrema-finding in circular configurations of processors’, Cornnun.
ACM, 1982, U, pp. 336-337

5 PETERSON, G.L.: ‘An a(n log n) unidirectional algorithm for the
circular extrema problem’, ACM Trans., 1982, CS-4, pp. 758-762

6 DOLEV, D., KLAWE, M., and RODEH, M.: ‘An o(n log n) uni-
directional distributed algorithm for extrema finding in a circle’, J.
Algorithms, 1982,3, pp. 245-260

7 FREDERICKSON, G.N., and LYNCH, N.: The impact of syn-
chronous communication on the problem of electing a leader in a
ring’. Proceedings of the 16th ACM symposium on theory of com-
puting, Washington, DC, 1984, pp. 493-503 ACM

8 SON, S.H., and AGRAWALA, A.K.: ‘A non-intrusive checkpointing
scheme in distributed database system’. Proceedings of the 15th
international symposium on fault-tolerant computing, 1985, pp,
99-104 IEEE

9 SKEEN, D.: ‘Nonblochng commit protocols’. ACM SIGMOD
international conferace on management of data, 1981, pp. 133-142
ACM

10 MOHAN, C., and LINDSAY, B.: ‘Efficient commit protocols for
the tree of processes model of distributed transactions’. Procecdigs
of the 2nd ACM SIGACT/SIGOPS symposium on principles of dis-
tributed computing, Montreal, Canada, 1983, pp. 76-80

11 SKEEN, D., and STONEBRAKER, M.: ‘A formal model of crash
recovery in a distributed system’, IEEE Tram., 1983, SE9, pp. 219-
228

12 LAKSHMAN, T.V., and AGRAWALA, A.K.: ‘Efficient decentral-
ised consensus protocols’, IEEE Trans., 1986, SEl2, (9, pp. 600-
607

242 IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 4, July 1994

