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Abstract: Decentralised protocols can be charac- 
terised by successive rounds of message inter- 
changes. In this article, we show that at least 
kN(LN'/'J - 1) messages are required for fully 
decentralised evaluating functions that are both 
associative and commutative if k rounds of 
message interchanges are used in an N-node 
system. We then present a family of fully decen- 
tralised algorithms that requires, at most, a total 
of kN(rN'I'1 - 1) messages to be sent with k 
rounds of message interchanges. Therefore, the 
family of algorithms is optimal with respect to the 
total number of messages exchanged among the 
processing nodes. The problems which can be 
modelled as an evaluation of associative and com- 
mutative functions include extrema findings and 
distributed transaction commitments. 

1 Introduction 

Distributed systems consist of a collection of processing 
nodes connected via a communication network such that 
multiple processing nodes can interact to address the 
processing requirements of the users. The main use of 
such systems is in handling distributed applications/ 
algorithms which require that parts of the processing be 
carried out at different nodes and that the nodes 
communicate with each other. In this paper, we assume 
that the communication network provides a point-to- 
point message based communication facility in which 
error-free, in-sequence delivery of messages is assured. 
We also assume that nodes do not share any global 
memory or any central clock. 

In a distributed algorithm designed to achieve a global 
objective, each processing node has to carry out its com- 
putations and actions based on the information available 
to it. To achieve the global objective therefore, an algo- 
rithm has to be designed to coordinate the processes in 
such a way that the proper, consistent information is 
available to each processing node at the proper time. 

An algorithm using a centralised control mechanism 
contains a single process, called the coordinator, which 
coordinates the actions of others. The two-phase commit 
protocol 113 is a good example of such an algorithm. In 
this algorithm, the coordinator sends a transaction 
request to all other nodes and waits for their replies in 

the first phase. After receiving all replies, the coordinator 
sends a final decision to the others in the second phase. 

Decentralised algorithms do not use a single coordi- 
nator. All participants are considered to be coordinators, 
and they all execute an identical program. Since there 
is no central controller in a decentralised algorithm, the 
information required for a node to accomplish the global 
objective cannot be obtained by exchanging messages 
with the controller only. So how to coordinate the 
message flow such that every node only exchange mes- 
sages with a few other nodes to obtain all required infor- 
mation becomes a major issue for designing decentralised 
algorithms. 

Although the centralised algorithms usually require 
fewer messages than their decentralised counterparts, the 
use of a single central controller for interprocess co- 
ordinations may lead to some severe problems. The 
central coordinator becomes the critical point of the 
whole system. If it fails, the whole system has to stop 
operation until a new coordinator is designated. Further, 
the failure of the coordinator may result in the loss of 
some critical information. To prevent this situation from 
happening, backup controllers are introduced to keep 
track of the information of the primary controller. 
Another problem of the centralised algorithms is that the 
controller may become a performance bottleneck for a 
large distributed system because usually the coordinator 
has to exchange information with all others. 

In this article, we consider the case where the global 
objective is to evaluate a function or predicate that is 
both associative and commutative. Each node possesses 
one of the arguments of the function initially. The com- 
putation is required to be decentralised and the result of 
the computation to be known by all processing nodes. 
Such a problem includes many decentralised applications 
such as extrema finding 12-71, coordination of distrib- 
uted checkpoints 181, and maintenance of transaction 
atomicity 19-113. 

One simple way to carry out this computation is by 
requiring each process to send its information to every 
other process. The relevant computation can then be per- 
formed by each node. This method requires N(N - 1) 
messages, where N is the number of nodes in the system, 
to be sent at one round of message exchange. Lakshman 
uses a communication structure based on the finite pro- 
jective plane [12] to construct decentralised protocols 
with O [ N J ( N ) ]  messages and two rounds of message 
exchanges. 
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Distributed computations can be classified into two cate- 
gories: centralised and decentralised. A centralised com- 
putation contains a special node called coordinator 

Computation model and problem domain 



In general, a fully decentralised computation can be 
defined in terms of rounds. In each round, nodes 
exchange messages and then carry out some local com- 
putations. The local computation at each node in round i 
is based on the information 

Exchange information Communication phase 

Compute Computation phase 
-_-__-_-----  Round i 

where Vpi, p E P,  Ipi - p j l  < 1, satisfies n:=l (pi + 1) 2 
N with pi being minimum. Assume that 
Q = {4i I i = 1, 2, . . . , k} satisfies n;= (4i + 1) > N with 

E Q with 
I 4i - 4 j  I 2 2. Without loss generality, we let qi 2 4 j  + 2. 

4i being minimum and there exists q i ,  

Exchange information Communication phase 
Round (i + 1) - - - - - - - - - - - - 

available at that node up to and including the commun- 
ication phase of round i. A node can proceed with its 
local computation of ith round whenever its communica- 
tion phase of round i completes. 

The problem we are considering here is to evaluate an 

From Q, we can construct a new set of k positive integers 
Q = {411 i = 1, 2, ..., k} where V I  # i, j, 4; = 4 , ,  41 = qi 
- 1, and 4;. = 4 j  + 1. 

k k 

n(4; + 1) - (4, + 1) 
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at most, one. if the set Q is not P, because the zt= q; is 
minimum, the maximal element in Q must be less than, 
or equal to, the maximal element in P. Otherwise, since 
no two elements in Q differ more than 1, and no two 
elements in P differ more than 1, the minimal element in 
Q must be greater than the minimal element in P also. 
Thus 41 is greater than pi. This contradicts the 
assumption that E= qi is minimum. 

Without loss generality, we assume that 
V l < i < j < k , p i > p j a n d 4 ~ > 4 ; w h e r e p i , p j E P a n d  
gi, gi E Q .  Since the maximal element in Q is no greater 
than the maximal element in P, there exists at least one 
element in Q being less than its counterpart in P. Let I be 
the smallest integer between 1 and k such that 
V1 C i < I - 1,q i  = pi and q; < pI. There are two cases to 
be considered. 

Case 1: I Q m: Since pI = rN1/kl - 1, 4; c pI - 1 = 
rN1lk1 - 2 Q LN'"J - 1. Thus VI < i < k, 4; < LN'/'J 
- 1. Therefore, 

, - ~ l / k ] I - l [ ~ l / k  k 1 + 1  1 -  
< r ~ l / k l m - l L N l / k J k - m + l  

< N  (5 )  

This is contradictory to the assumption that nf=l (41 
+ 1) 2 N. 

Case 2: I > m: Since pI  = [N'"] - 1, 4; < pr - 1 = 
LN'/~J - 2. Thus, VI < i < k, qi < [N1/k] - 2. 

< r~l/~lnLNl/kJI-m-l(~Nl/kJ - 1)k-l+1 

< r ~ l / ~ ~ ~ - ~ ~ ~ l / k ] k - n - l ~ N ~ / ~ ~ ( L N l / k J  - 1) 

Q rNllk1n- l L N l / k J k - m -  1 

x ( ~ ~ ~ 1 ~ 1  + I ) (LN~/~J  - 1) 
< r N l / k i m - l  LN l / k  J k - m - 1  L N ~ / ~ J ~  
= r ~ l / k l m - l L N l / k J k - m + l  

< N  (6) 
This is contradictory to the assumption that nf=, (41 + 1) > N. 

Therefore, for any set Q satisfying (4, + 1) N 
with q, being minimum, we can always find a corre- 
sponding set P which satisfies flf=l (pi + 1) 2 N with c= q, being minimum and contains exactly m elements 
of rN'l'1 - 1 and k - m elements of LN""~ - 1. There- 
fore, the minimum of the p, is m(rN1/kl - 1) 
+ (k - m)(~N'/'j - 1). Since 

m(rN"'1- 1) + (k - m)(LN'/'J - 1) > k(LN'"J - 1) (7) 

0 

Theorem 3.1: Any algorithm for evaluating associative 
and commutative functions fully decentralised in an 
N-node system with k rounds of message exchanges 
requires at least kN(LNIIkJ - 1) messages passed among 
the N nodes. 

Proof: Assume that, for all i, 1 < i < k, in the ith round 
of message exchange, each node sends out pi messages. 
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the E= p, is at least k(LN'/'J - 1). 

Since in the fully decentralised computation, all nodes 
execute the same programme, send out the same number 
of messages, and receive the same number of messages in 
each round. Therefore, after the first round, there are at 
most (pl + 1) nodes having the knowledge about the 
initial value of node 1. After the second round, there are 
at most (pl + lXpz + 1) nodes having the knowledge 
about the initial value of node 1. Therefore, after the kth 
round, there are at most n:=l (pi + 1) nodes having the 
knowledge about the initial value of node 1. Since only k 
rounds of message interchanges are used, nfXl (pi + 1) 
should be at least N. Otherwise, some nodes would have 
no knowledge about the initial value of node 1, so they 
will not be able to evaluate the function. 

Since each node sends out pi messages in round i, 
1 Q i 6 k, the total number of messages passed among 
the N nodes is N pi. Because nf=, (pi + 1) > N 
and for any k positive integers pl, pz, . . . , pt, the E:= p, 
is at least k(~N'"j - 1) (from Lemma 3.1), the total 
number of messages N pi is at least kN(LN'I'J - 1). 

4 The KDAMS structure 

We have shown that decentralised evaluation of associa- 
tive and commutative functions require at least 
kN([N'/'] - 1) messages for k rounds of message inter- 
changes in an N-node systems. In this Section, we 
discuss a communication structure called KDAMS which 
can be used to develop protocols achieving the lower 
bound of message complexity. 

In Lemma 3.1, we have shown that gven positive 
integers N and k, a set of k positive integers pl, p2, . . . , pk 
can be found to minimise the If=, pi becoming 
m(rN1lk1 - 1) + (k - m)(LN'"J - 1) under the constraint 
of n:=l (pi + 1) 2 N, where 0 < m < k and 

fore, if every node sends out pi messages at the ith round 
of message interchange and after the ith round, there are 
E=l (pj + 1) nodes having the knowledge of the initial 
value of any node, the lower bound can be achieved. 

For any given N and k, from Lemma 3.1, we first find 
a set of k positive integers pl, pz, ..., pk such that ntZl (pi + 1) 2 N and pi is the minimum. We then 
add M - N dummy nodes into the system, where M = nf=l (pi + 1). We consider the M-node system as a k- 
dimensional array of [O ... pl,  0 ... p 2 ,  ..., 0 ... pk] such 
that every node X ,  0 Q X Q M - 1 can be addressed as a 
k-tuple ( x l ,  x z ,  ..., x&, where Vi, 1 < i < k, x i  is integer 
between 0 and pi and X = x:=l (xi  ni=i+l (pj + 1)). 
Since there are napi s equal to ([N"'] - 1) and (k - m)pi s 
equal to (LN'/'J - l), where 0 < m < k and 
rNl/klmLNl/tjk-m 2 N > [ N l / k ] m - l  LN l / k  J k-n+l (from 
the proof of Lemma 3.1), M - N < fN1/klm-l. 
LN1/k]k-"'+l < N, each real node only has to emulate at 
most one dummy node. The KDAMS communication 
structure is defined as follows. 

4.1 KDAMS structure 
At round i, 1 Q i Q k: Every node X ( x l ,  x z ,  ..., xk)  
exchanges information with nodes addressed as 
( x l ,  ..., xi-l, yi, x i + l ,  ..., x&, where 0 < yi < p i  and 
yi # X i .  

In other words, the KDAMS structure is to arrange 
nodes into a k-dimensional array and at round i, 
1 < i < k, each node exchange messages with all nodes 
that differ from itself only in the ith dimension. Thus, for 
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a 2D array, each node communicates with nodes in the 
same column at the first round, and then with nodes in 
the same row at the second round. 

5 The message optimal algorithm 

The actions of the algorithm at each site are modelled by 
a finite state automation (FSA). The local state trans- 
itions of FSAs involve readindwriting messages to the 
network and transiting to another local state. For given 
N and k, from Lemma 3.1, there exists an integer m such 
that rNIIki"LN1/klk-" 2 N > rN"kl"-lLN1/k~k-m+l.  k t  

dummy nodes to the system and address every node X ,  
0 Q X Q M - 1 by a k-tuple (x  , x 2 ,  ..., xk), where Vi, 
1 < i Q k, 0 < x i  < p i  and X = b=, ( x i m = i + l  (pi + 1)). 
Initially, each real node 0 Q X Q N - 1 has the value V, 
and all dummy nodes are assigned a special value which 
cannot affect the outcome of the computation (i.e. 0 for 
summation function and 1 for multiplication function). In 
the algorithm, we use the symbol '@' to represent the 
special value. 

The FSA of the algorithm for a node X(x , ,  x z  , . . . , xk) 
is shown in Fig. 1. The actions of each state for the node 
X(x , ,  x 2 , .  . ., xk) are described as follows. 

p1 = p 2 = . . ' = p ~ = ( ~ N l ' k l - 1 ) , p n + ,  = p m + t = " ' =  
p k  = (LN"'] - I), and M = fl:=, (pi + 1). Add M - N 

FSA for normal node FSA for dummy nodes 

send own value send the special symbol '@' 

send new result send new result 

perform computation 

Fig. 1 

State q for normal nodes: Send own value to all nodes 
addressed as (y,, x z ,  ..., xk), where 0 C y ,  C p,, and 
move to state w,.  

State q for dummy nodes: Send the special value '@' to all 
nodes addressed as (yl, x 2 ,  ..., xk), where 0 < y, Q p l ,  
and move to state w l .  

State w, ,  1 Q i Q (k - I): Upon receiving values from all 
nodes addressed as ( x l .  ..., y,, x i + , ,  .. ., xk), where 
0 C yi C p i ,  perform the operation Y among received 
values (ignoring the special symbol '@') and the local 
value, send the result to all nodes addressed as ( x l ,  . . . , 
x i ,  yi+l ,  x i + 2 ,  ..., Xk), where 0 c yi+l  < p i + l ,  replace the 
local value by the new result, and move to state w ~ + ~ .  

State wk: Upon receiving values from all nodes addressed 
as (XI,  . . . , xk- yb, where 0 Q yk 6 p k ,  perform the oper- 
ation Y among received values and the local value and 
move to state f. 

State f :  Final state. 
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FSAs for computations of commutativefunctions 

The following theorem shows the correctness of the pro- 
tocol. 

Theorem 5.1: If a node is in state ft it contains the value 
of Yr:: Vo(i), where Vo(i) = is the initial value of 
node i. 

Proof: We show it by induction. 

Inductive hypothesis: After the ith round of message 
exchanges, where 1 C i < k, a node X addressed as (x , ,  
x z ,  ..., x,J will have the value Vi(- = Y$':=oy;i=~ ... 

Base case: After the first round of message exchange, the 
node X has received values from nodes (yl, x 2 ,  . . . , x3 ,  
where 0 < y1 6 p l ,  which have the initial values Vo(+v,, 
x 2 ,  . . . , x,J Therefore, the node X will contain the value 

y ~ ~ = O ~ 0 ( y 1 , ~ 2 , . . ~ , y i , X I + 1 , ~ ~ ~ , X k ) ~  

= y$: = O  Vo(yl, x2 ,  . . . xk). 

Inductive case: Assume for i = Z - 1, where I Q k, the 
inductive hypothesis is true. After the ( I  - 1)th round of 
message exchange, the node X would have the value of 
V'-'(X) which is Y;;=, 'U;;=, . . . Y Er:=, Vofjl, y2, . . . , 
y l - , ,  X I ,  ..., X k ) .  After the Zth round of message 
exchanges, the node X would receive values from nodes 
( x l ,  . . . , x l -  I, y, ,  x , + ~ ,  . . . , x&, where 0 c y ,  Q p I ,  which 
have values V1- ' (x1 , .  . ., x I w l ,  y , ,  x , + ~ ,  . . ., x3 .  Therefore, 

V'(X) = Y K = o  V ' - ' ( X ~ ,  . . ., ~ i - 1 ,  J J ~ ,  xi+1, .,., x 3  (8) 
= Y;;=o(Y;;=oY;~~o .'. Y$;I:=o V 0  

- - Y ; ; ~ o Y $ ; = o . ~  . Y P 1 - 1  y r - , = O Y ; ; = O  V 0  
x 011, Y2 I . . ' 9  YI- I,  Y1, X I + , ,  . . .> XkN 

(yl, y2 I . . .) yI-1, Y l ,  XI+,, ...> x k )  (9) 
So the inductive hypothesis is true for all i ,  1 C i 6 k. 
Thus, after k rounds of message interchanges, a node X 
should contain the value V k ( X )  = Y$;=, Y;;=o . . . 

0 

Because every node sends pi messages in round i, the 
total number of messages passed among the N nodes is 
N p i .  Since every pi is either LN'I~J - 1 or 
L N ' / ~ J  - 1, the E=, pi should be less than or equal to 
k(rNIIkl - l), so the total number of messages 
C kN(rN'I'1 - l), because the lower bound 
kN(LN1lkJ - 1) and kN(rN1/kl  - 1) have the same order 
of O(kNN'I9. The algorithm is optimal with respect to 
the message complexity. 

y;:= 0 vo(Y1, yZ , . . . f yk) = = F(V0 9 VI, . . . , VN - 1) 

6 Anexample 

Assume that we want to evaluate the summation function 
in a 12-node system with three rounds of message 
exchanges. From Lemma 3.1 and the KDAMS structure, 
we note that m = 1 and p i  = 2, pz = 1, and pa = 1. 
Therefore, each node X, 0 Q X C 11, can be addressed as 
a triple ( x l ,  x z ,  xa), where 0 d x 1  < 2, 0 4 x 2  < 1 ,  and 
0 Q x 3  C 1. Assume that nodes have initial values as 
follows: 

V:oo = 10 VZo1 = 31 V:,, = 43 V:ll = 50 

Vyoo = 1 Vyol = 39 Vylo = 17 Vyll = 3 

V:oo = 28 V:ol = 9 Vgl0 = 20 V:ll = 11 
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According to the KDAMS structure, in the first round, 
every node sends its current value to all nodes whose 
addresses differ itself only in the first dimension. After 
receiving all values, every node sums them and its initial 
value to be its new local value. Thus, the local values 
after the first round are as follows: 

VAoo = Vgoo + Vyo0 + Vioo = 10 + 1 + 28 = 39 

Vi00 = Vtoo + Vyoo + V:oo = 10 + 1 + 28 = 39 

Vioo = Vzoo + V:oo + V’$oo = 10 + 1 + 28 = 39 

VAol = Vgol + VyOl + V:ol = 31 i- 39 + 9 = 79 

Viol = Vgol + Vyol + V:ol = 31 + 39 + 9 = 79 

Viol = Vtol + Vyol + Viol = 31 + 39 + 9 = 79 

Vtlo = Vtlo + Vylo + V:lo = 43 + 17 + 20 = 80 

V:lo = Gl0 + Vylo + V:lo = 43 + 17 + 20 = 80 
Vklo = Vglo + Vylo + V:lo = 43 + 17 + 20 = 80 

Vkll = Vtl1 + Vyll + v;,, = 50 + 3 + 11 = 64 
V i l l  = VIll + Vyll + ql1 = 50 + 3 + 11 = 64 

V i l l  = Vgll + VYl1 + V:ll = 50 + 3 + 11 = 64 
In the second round, every node sends its current value 
to all nodes whose addresses differ itself only in the 
second dimension. After receiving all expected values, 
every node sums them and its current local value to be its 
new local value. The local values after second round are 
as follows: 

Vioo = VAoo + VAlo = 39 + 80 = 119 

Vg10 = Vhoo + VAlo = 39 + 80 = 119 
Viol = Viol  + Vhll = 79 + 64 = 143 

Vi11 = VAol + VA1l = 79 + 64 = 143 
V f o o  = Vioo + Vi lo  = 39 + 80 = 119 

Vf10 = Vtoo + Vila = 39 + 80 = 119 

Vfol = Viol + V i l l  = 79 + 64 = 143 

Vf11 = Viol + Vi11 = 79 + 64 = 143 

Vi00 = Vioo + Vila = 39 + 80 = 119 

V&o = Vioo + Vil,, = 39 + 80 = 119 

Vio l  = Viol + V i l l  = 79 + 64 = 143 

V&l = Viol + V i l l  = 79 + 64 = 143 
In the third round, every node sends its current value to 
all nodes whose addresses differ itself only in the third 
dimension. After receiving all expected values, every node 
sums them and its current local value to be the final 
result. The final vaues are as follows: 

V& = Vioo + Viol = 119 + 143 = 262 

Vi01 = Vioo + Viol = 119 + 143 = 262 

Vi10 = Vi lo  + V i l l  = 119 + 143 = 262 

V&1 = Vi lo  + V i l l  = 119 + 143 = 262 

V:oo = V f o o  + Vfol = 119 + 143 = 262 

V;o1 = V f o o  + Vfol = 119 + 143 = 262 

V;lo = Vi lo  + V:ll = 119 + 143 = 262 

V:ll = Vflo + Vfl l  = 119 + 143 = 262 

V;oo = V:oo + Viol = 119 + 143 = 262 

Viol = Vzoo + V$ol = 119 + 143 = 262 

V210 = V;lo + V i l l  = 119 + 143 = 262 

V i l l  = Vzl0 + Vgl1 = 119 + 143 = 262 

7 Concluding remarks 

We have shown that fully decentralised evaluating 
associative and commutative functions require at least 
kN(LN1”J - 1) messages in an N-node system with k 
rounds of message exchanges. A family of fully decentral- 
ised algorithm for evaluatiop of associative and commu- 
tative function with optimal message complexity is 
developed by using the KDAMS communication struc- 
ture. The family of algorithms are symmetric and require 
at most a total number of kN([N1’k] - 1) messages for k 
rounds of message interchanges in an N-node system. 
This family of algorithms also permit a trade-off between 
the number of rounds of message exchanges and the total 
number of messages passed among the nodes. By associ- 
ating proper operations, optimal decentralised algorithms 
for distributed transaction commitments, extrema 
finding, and computation of summation can be derived 
from the algorithm described in Section 5. 
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