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In this work, we study the cluster synchronization of chemically coupled and generally formulated

networks which are allowed to be nonidentical. The sufficient condition for the existence of stably

synchronous clusters is derived. Specifically, we only need to check the stability of the origins of m
decoupled linear systems. Here, m is the number of subpopulations. Examples of nonidentical networks

such as Hindmarsh-Rose (HR) neurons with various choices of parameters in different subpopulations,

or HR neurons in one subpopulation and FitzHugh-Nagumo neurons in the other subpopulation are

provided. Explicit threshold for the coupling strength that guarantees the stably cluster synchronization

can be obtained. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862484]

Cluster synchronization has attracted increasing attention

due to its applications in brain science, engineering con-

trol, ecology, communication engineering, and distributed

computation. Most of the existing works with application

to brain science focused on networks of neurons that are

electrically coupled. The first theoretical work for investi-

gating cluster synchronization in networks of neurons with

chemical synapses is due to Belykh and Hasler.
1,2

However, their work is not completely rigorous. In this pa-

per, we study this topic and obtain essential condition on

network topology so that our sufficient conditions for clus-

ter synchronization are amount to checking if the origins

of a certain decoupled linear systems are asymptotically

stable. We are then able to derive explicit thresholds for

the coupling strength that generates various stable dynam-

ics in their clusters. Moreover, our model is generally for-

mulated that is allowed to be nonidentical.

I. INTRODUCTION

Intercellular communication among brain cells is one of

the most important characteristics of all animal species. Brain

connectivity has a hierarchy of different levels ranging from

the microscale to the mesoscale to the macroscale. The sim-

plest macroscale rhythm in networks of neurons is the com-

plete synchrony when all neurons fire in unison. There are

many theoretical works3–14 on this matter. Typically, irregular

bursting synchronization, regular bursting synchronization,

and fixed point synchronization arise, respectively, at a lower

coupling strength, an intermediate coupling strength and a

larger coupling strength. Moreover, its synchronization

depends heavily on the intrinsic properties of the individual

neurons, the coupling strength and its network topology.

Cluster synchronization,15–19 a mesoscale phenomenon,

is another example of cooperative rhythms. In this case, all

neurons within each subpopulation (cluster) fire in perfect

synchrony. Most of the theoretical work in this direction con-

sider the diffusively (electrically) coupled network.

Recently, the cluster synchronization of a synaptically

(chemically) and identically coupled network of HR neurons

was investigated by Belykh and Hasler.1,2

The purpose of this paper is to study the existence and sta-

bility of synchronous clusters of generally formulated and syn-

aptically coupled networks of possibly nonidentical neurons.

Our results contain the following. First, we give a necessary and

sufficient condition on the network topology so that cooperative

rhythm in subpopulations is a possibility. Second, the sufficient

condition for the existence of stably synchronous clusters is

derived. In particular, we only need to check the stability of the

origins of m decoupled linear systems. Here, m is the number of

clusters in the network. Third, examples of nonidentical net-

works such as HR neurons with various choices of parameters

in different subpopulations, or HR neurons in one subpopulation

and FitzHugh-Nagumo neurons in the other subpopulation are

provided. Explicit threshold for the coupling strength that guar-

antees the stably cluster synchronization is obtained.

We organize the paper as follow. The abstract formula-

tion of model is introduced in Sec. II. The sufficient and nec-

essary condition for the existence of cluster synchronization

manifold (CSM) is also recorded there. In Sec. III, we derive

a sufficient condition for the existence of stably synchronous

clusters. The comparisons between our problem and results

with some related work in the recent literatures are given in

the end of the section. In Sec. IV, some examples are pro-

vided to illustrate the effectiveness of our results. These

examples give the coexistence of the various stable dynamics

such as spiking and fixed point on their clusters. Some con-

cluding remarks are stated in Sec. V. The proof of our main

result is recorded in the Appendix.

II. FORMULATION

The spiking or bursting behaviors of a single neuron can

be captured by neuron equations such as Hodgkin-Huxley,

Hindmarsh-Rose, Morris-Lecar, and FitzHugh-Nagumo

models. These models take the form

a)E-mail: jjuang@math.nctu.edu.tw
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_V ¼ f1ðV;w; pÞ;
_w ¼ f2ðV;w; pÞ;

(1)

where V 2 R represents the membrane potential of the neu-

ron, and w 2 Rn�1 are currents taking into the account the

transport of ions across the membrane via the ion channels.

p 2 Rk are the parameters describing various types of neu-

rons, and f1, f2 are some continuous functions of V, w, and p.

In this paper, we study the chemically coupled network

of N neurons for which each single neuronal dynamics is

governed by equations having the form of Eq. (1). The equa-

tions of motion then read, for i ¼ 1;…;N,

_Vi ¼ fi;1ðVi;wi; piÞ � ðVi � vÞ
XN

j¼1

gijcijCðVjÞ;

_wi ¼ fi;2ðVi;wi; piÞ;
(2)

where Vi 2 R and wi 2 Rni�1. Here, gij is the strength of the

synaptic coupling from neuron j to neuron i,
cij 2 f�1; 0; 1g, v is the synaptic reversal potential with v
>Vi(t) for all time t, and C is the synaptically coupling func-

tion. Here, cij¼ 1 (respectively, �1) if neuron i receives syn-

aptic current from excitatory (respectively, inhibitory)

neuron j, otherwise cij¼ 0. Let

V ¼ ðV1;…;VNÞT ;

and
w ¼ ðw1;…;wNÞT :

Then in vector-matrix form, Eq. (2) becomes

_V ¼ F1ðV;w; pÞ þ gsðvIN � diagðVÞÞCCðVÞ;
_w ¼ F2ðV;w; pÞ;

(3)

where CðVÞ :¼ ðCðV1Þ;…;CðVNÞÞT ; FiðV;w; pÞ :¼ ðfi;1

ðV1;w1; p1Þ;…; fi;NðVN;wN; pNÞÞ; i ¼ 1; 2, p :¼
ðp1;…; pNÞT ; IN is the identity matrix of size N � N, gs is

the normalized strength of the synaptic coupling of the sys-

tem, and C :¼ gij

gs
cij

� �
:¼ �cijð Þ. Note that C depicts the syn-

aptically coupled network, and the element �cij > 0 implies

that the current injected from neuron j to i is positive (excita-

tory) and hence depolarization occurs in neuron i. On the

other hand, �cij < 0 implies that the current injected from

neuron j to i is negative (inhibitory) and hence hyperpolar-

ization occurs in neuron i. Herein, the sign of �cij could be ei-

ther positive or negative, and C could be nonsymmetric.

The objective of this paper is to study the synchrony

phenomena in neurons. Since Eq. (2) consists of possibly

nonidentical systems, we are led to consider the notion of

cluster synchronization of the model. To this end, we assume

the model of N neurons is divided into m types of neurons

where the neurons of each type are governed by an identical

equation. It should be remarked that the governing equations

between different types of neurons are allowed to be differ-

ent. We further assume that the number of neurons in the rth

type is Nr (
Pm

r¼1 Nr ¼ N). Under above assumptions, the

notations in Eq. (2) can be further simplified. The following

notations are so set up that within each type the vector field f
and the parameters p are the same and that the superscript is

used to distinguish f and p among the different types. Let

*ð1Þ¢*1 ¼ *2 ¼ � � � ¼ *N1
;

�

*ðrÞ¢*P
s<r

Nsþ1
¼ *P

s<r

Nsþ2
¼ � � � ¼ *P

s�r

Ns
;

�

*ðmÞ¢*P
s<m

Nsþ1
¼ *P

s<m

Nsþ2
¼ � � � ¼ *P

s�m

Ns
;

(4)

where * denotes parameters p or nonlinearities f :¼ ðf1; f2ÞT ,

as shown in Eq. (1). We are now in a position to give the pre-

cise definition of the cluster synchronization.

Definition 1. Let xi ¼ ðVi;wiÞT and x ¼ ðx1;…; xNÞT .

Then

(i) Define the set

N ¼ fx 2 RnN : x1 ¼ � � � ¼ xN1
;

xN1þ1 ¼ � � � ¼ xN1þN2
;…;

xN�Nmþ1 ¼ � � � ¼ xNg: (5)

Then N is said to be the CSM.

(ii) A trajectory x(t) is said to be clusteringly synchron-
ized if

lim
t!1

dðxðtÞ;NÞ ¼ 0;

where d is a metric from a point to a set.

(iii) The CSM N is said to be locally stable if each trajec-

tory x(t) whose initial value x(0) is sufficiently close

to N will stay close to N for all time t and is cluster-

ingly synchronized.

To investigate the cluster synchronization, the first step is to

ensure the invariant property of the CSM N. The following

proposition gives the sufficient and necessary condition for

N to be invariant.

Proposition 1. Assume that coupled system (2) satisfies
Eq. (4). Then its CSM N is invariant if and only if C can be
partitioned into the form

C ¼

C11 C12 … C1m

C21 C22 … C2m

� . .
.

�

Cm1 Cm2 … Cmm

0
BBB@

1
CCCA; (6)

where Crs 2 RNr�Ns , and each row sum of Crs; 1 � r; s � m,

is equal to krs.

The proof of Proposition 1 is clear and hence is omitted.

This proposition implies that for CSM to be invariant, each neu-

ron in the rth type of neurons receives the same amount of the

total connection weights krs from any neurons in the sth type.

Remark 1. If there exists an r such that not all the row

sum of Crr are the same, then Crr can be further decoupled

into smaller blocks until Eq. (6) is satisfied. This classifica-

tion also indicates that the distinction of neuron types not
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just depends on the parameters p and the vector field f but

also on the total connection weights krs.

We next describe the dynamics on the invariant manifold

N. As defined in Eq. (5), the dynamics on N is determined byPm
r¼1 nr variables. Let ðVðrÞc ; w

ðrÞ
c Þ ¢xP

s<r
Nsþ1

¼ xP
s<r

Nsþ2
¼… ¼ xP

s�r
Ns
; r ¼ 1;…;m. Then, the dy-

namics on N is governed by the following equations:

_Vc ¼ Fc;1ðVc;wc; pcÞ þ gsðvIm � diagðVcÞÞKCðVcÞ;
_wc ¼ Fc;2ðVc;wc; pcÞ;

(7)

where Vc ¼ ðVð1Þc ;…;V
ðmÞ
c ÞT ; wc ¼ ðwð1Þc ;…;w

ðmÞ
c ÞT ;

pc ¼ ðpð1Þ;…; pðmÞÞT , Fc;iðVc;wc;pcÞ¼ðf
ð1Þ
i ðV

ð1Þ
c ; w

ð1Þ
c ;pð1ÞÞ;

…; f
ðmÞ
i ðV

ðmÞ
c ;w

ðmÞ
c ;pðmÞÞÞT ; i¼1;2, and K¼ðkrsÞ2Rm�m. In

the special case that krs¼0, 8r 6¼ s, Eq. (7) can be further

reduced to m separable subsystems.

Proposition 2. Suppose krs ¼ 0; 8r 6¼ s. Then, Eq. (7)

can be written as the following form:

_V
ðrÞ
c ¼ f

ðrÞ
1 ðVðrÞc ;wðrÞc ; pðrÞÞ þ krrgsðv� VðrÞc ÞCðVðrÞc Þ;

_wðrÞc ¼ f
ðrÞ
2 ðVðrÞc ;wðrÞc ; pðrÞÞ; (8)

for r ¼ 1;…;m.

The proof of Proposition 2 follows directly from Eq. (7),

and hence is omitted. Note that Eq. (8) implies that the dy-

namics of each type of neurons is independent of other types

of neurons on the CSM N.

III. STABILITY OF CLUSTER SYNCHRONIZATION
MANIFOLD

In this section, some sufficient criteria for the local sta-

bility of CSM N will be derived. We begin with the deriva-

tion of the variational equations of Eq. (2) along the CSM N.

The vector equations read, for r ¼ 1;…;m,

_dV r ¼
@

@V
f
ðrÞ
1 ðuðrÞc ÞdVr þ

@

@w
f
ðrÞ
1 ðuðrÞc Þdwr

�gs

Xm

s¼1

krsCðVðsÞc ÞdVr

þgsðv� VðrÞc Þ
Xm

s¼1

C0ðVðsÞc ÞCrsdVs;

_dwr ¼
@

@V
f
ðrÞ
2 ðuðrÞc ÞdVr þ

@

@w
f
ðrÞ
2 ðuðrÞc Þdwr;

(9)

where u
ðrÞ
c ¼ðVðrÞc ;w

ðrÞ
c ;pðrÞÞ; dVr 2RNr , and dwr 2Rðnr�1ÞNr .

Next, we define matrices

Er ¼

1 �1 0 … 0

0 1 �1 . .
.

�

� . .
. . .

. . .
.

0

0 … 0 1 �1

0
BBBBB@

1
CCCCCA
ðNr�1Þ�Nr

;

and

E
†

r ¼

1 1 … 1

0 1 … 1

� . .
. . .

.
�

0 . .
.

0 1

0 … 0 0

0
BBBBBBBB@

1
CCCCCCCCA

Nr�ðNr�1Þ

;

and let nr ¼ ErdVr and gr ¼ Erdwr; r ¼ 1;…;m. Note that

ErE
†

r ¼ INr
. Then from Eq. (9), we have

_nr ¼
@

@V
f
ðrÞ
1 ðuðrÞc Þnr þ

@

@w
f
ðrÞ
1 ðuðrÞc Þgr

�gs

Xm

s¼1

krsCðVðsÞc Þnr

þgsðv� VðrÞc Þ
Xm

s¼1

C0ðVðsÞc ÞðErCrsE
†

sÞns;

_gr ¼
@

@V
f
ðrÞ
2 ðuðrÞc Þnr þ

@

@w
f
ðrÞ
2 ðuðrÞc Þgr: (10)

By the definitions of nr and gr, it is clear that the local

stability of the CSM N is equivalent to that of the equilib-

rium 0 of Eq. (10). Now, we derive a sufficient criterion for

the stability of 0 of Eq. (10).

Theorem 1. Let Crs be the Nr � Ns matrices as defined
in Eq. (6). Assume that all rows of the matrices Crs with r
< s, are the same, and krs ¼ 0, 8r 6¼ s. Let the equilibrium 0
of each of the following linear systems, r ¼ 1;…;m,

_nr ¼
@

@V
f
ðrÞ
1 ðuðrÞc Þ � gskrrCðVðrÞc Þ

� �
nr þ

@

@w
f
ðrÞ
1 ðuðrÞc Þgr

þgsðv� VðrÞc ÞC0ðVðrÞc ÞðErCrrE
†

rÞnr;

_gr ¼
@

@V
f
ðrÞ
2 ðuðrÞc Þnr þ

@

@w
f
ðrÞ
2 ðuðrÞc Þgr; (11)

is globally exponentially asymptotically stable. Then, the

CSM N is locally stable.

The proof of Theorem 1 is given in Appendix. The condi-

tion that all rows of Crs are the same means either there is no

connection from the sth type of neurons to the rth type of neu-

rons or each rth type of neurons receives the same totally syn-

aptic coupling weights from the sth type of neurons. Note that

the system of equations in Eq. (11) is uncoupled.

Consequently, the error dynamics of the rth type of neurons is

independent of sth type of neurons under the assumptions.

Moreover, the advantage of such decoupling is that some well

developed methods such as the construction of Lyapunov

functions1,2 or the monotone dynamics approach14 can be

applied directly to show the stability of Eq. (11) with respect

to the equilibrium 0 and hence the local stability of N.

Remark 2. In this Remark, we compare our problem and

results with some related work in the recent literatures. To the

best of our knowledge, most work concerning cluster synchro-

nization are formulated as the (electrically) diffusively

coupled network15–19 rather than the (chemically) synaptically

coupled network as given in Eq. (2). Nevertheless, we shall

compare the network topology considered there with ours. In

013110-3 J. Juang and Y.-H. Liang Chaos 24, 013110 (2014)
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Ref. 16, Cao and Li considered the case where

ErCrsE
†

s ¼ 0; 8 1 � r; s � m. But, we only require that the

above equalities be true for r < s in our work. In Ref. 17, Lu,

Liu, and Chen considered the case where C satisfies the com-

mon intercluster coupling condition, i.e., if Crs 6¼ 0 then each

row of Crs contains at least one nonzero element. But in

Theorem 1, we do not need this assumption. In Ref. 18, Wu,

Jiao, and Chen considered the assumption where all eigenval-

ues of C are real. Such limitation is not required in our work.

It should be mentioned that in Ref. 16, authors also considered

the effect of the delay and that in Refs. 17 and 18, the assump-

tion that all row of Crs are the same is not required there. The

most related work to ours is that of Belykh and Hasler.1,2

They studied the chemical coupling network of the identical

Hindmarsh-Rose neurons, and derived some sufficient criteria,

which are not completely rigorous for the local stability of N.

It should be mentioned that the assumptions between the net-

work topology of theirs and ours are neither mutually exclu-

sive nor inclusive. Specifically, their assumptions are that krs

6¼ 0 for some r, s but ErCrsE
†

s ¼ 0; 8 1 � r; s � m.

IV. APPLICATIONS

In this section, some examples are given to illustrate the

effectiveness of our theory. The synaptically coupling func-

tion C under consideration in this section is modeled by the

sigmoidal function20

CðVjÞ ¼
1

1þ expf�kðVj � hsÞg
; (12)

where hs is the threshold for the neuronal firing and the value

is chosen so that every spike of a single neuron can reach the

threshold. In the limit k ! 1, the above sigmoid function

reduces to a Heaviside step function. In the following exam-

ples, the parameters h and k and the synaptic reversal poten-

tial v are set to be �0.25, 7.5, and 2, respectively.

The connection topology under consideration is column-

consistence, i.e., the nonzero entries in the columns of the

coupling matrix C are of the same sign. Biologically, such

consistence means that all the synapses that a neuron proj-

ects to other neurons are either excitatory or inhibitory. We

also remark that in Ref. 12, a model of neurons for which

neurons could make both excitatory and inhibitory synapses

with other neurons is considered. It should be mentioned that

our model can be applied to such scenarios as well.

A. Coupled HR neurons with different parameters

The Hindmarsh-Rose model was obtained by biological

consideration over the response to stimuli of a real neuronal

cell. It can be used to describe the bursting or spiking of neu-

rons. The model takes the form

_x ¼ ax2 � x3 þ y� zþ I;

_y ¼ �y� dx2 þ 1;

_z ¼ lðbðx� x0Þ � zÞ:
(13)

Here, x denotes the membrane potential of the neuron,

w :¼ (y, z) are the currents flowing in/out of neurons through

the ion channels, and p :¼ ða; b; d; l; I; x0Þ are the parameters.

Consider the neural network consisting of 12

Hindmarsh-Rose neurons with 3 different types:

Type 1: The number N1 of neurons in type 1 is 4, and the

parameters p are chosen as pð1Þ ¼
ð2:8; 20; 4:4; 0:001; 1; �1:11Þ. The neuronal

dynamics in type 1 represents regular spiking.

Type 2: The number N2 of neurons in type 2 is 4, and the

parameters p are chosen as

pð2Þ ¼ ð3; 4; 5; 0:006; 3; �1:56Þ. Its dynamics

represents irregular bursting.21

Type 3: The number N3 of neurons in this subpopulation

is 4, and the parameters p are chosen as

pð3Þ ¼ ð2:6; 4; 5; 0:01; 4; �1:6Þ. Its neuronal

dynamics represents regular bursting.14

The coupling topology, Fig. 1, of the synaptically coupled

network under consideration has the following matrix form:

C ¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

0
B@

1
CA; (14)

where

C11 ¼ C22 ¼ C33 ¼
1

10

0 17 0 �7

11 0 �1 0

8 3 0 �1

17 0 �7 0

0
BBBB@

1
CCCCA;

C12 ¼ C23 ¼

0 1 0 �1

0 1 0 �1

0 1 0 �1

0 1 0 �1

0
BBBB@

1
CCCCA;

C21 ¼ C32 ¼

1 0 0 �1

0 1 0 �1

0 1 �1 0

1 0 �1 0

0
BBBB@

1
CCCCA;

and

C13 ¼ C31 ¼ 0:

It then follows from Theorem 1 that if the corresponding

equations (11) for r ¼ 1;…; 3 are all exponentially stable,

then the CSM

N ¼ fx 2 R27 : x1 ¼ x2; x3 ¼ x4 ¼ x5;

x6 ¼ x7 ¼ x8 ¼ x9g (15)

is also locally stable.

We shall apply the Lyapunov function technique devel-

oped in Ref. 2 on Eq. (11) with r ¼ 1 to show that its equilib-

rium 0 is asymptotically stable. In particular, we need to find

(c,gs1) so that the following inequality is satisfied:

cð3� cd2Þxð1Þc

2 � cð2a� dÞxð1Þc �
1

4

� �

þ cgs1 k11Cðxð1Þc Þ � ðv� xð1Þc ÞC0ðxð1Þc Þk2ðC11Þ
� �

> 0; (16)
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for x< v. Here, k2ðC11Þ ¼ �0:2 is the second maximum eigen-

value of C11. A direct verification would yield that the choice of

ðc; g�s1Þ ¼ ð0:12; 11:81Þmakes the inequality in Eq. (16) hold.

To study Eq. (11) with r¼ 2, 3, we shall use the mono-

tone dynamic technique proposed in Corollary 1 of Ref. 14.

The resulting answers are that if gs > gs2� 0.87 and gs

> gs3� 0.87, then the equilibrium 0 of equation (11) for r¼ 2,

3 is asymptotically stable, respectively. Consequently, if

gs > maxf11:81; 0:87g, then the CSM is locally stable. It

should be noted that if one applies the Lyapunov function

technique developed in Ref. 2 on Eq. (11) with r¼ 2, 3, then

gs2 and gs3 need to be much larger than 11.81 to have the cor-

responding inequality in Eq. (16) satisfied. On the other hand,

if one applies the monotonic dynamic technique derived in

Ref. 14 on Eq. (11) with r¼ 1, then the choice of gs1 has to be

much larger than 11.81. Our choice of combined methods on

studying the stability of Eq. (11) with r¼ 1, 2, 3 gives the bet-

ter estimate of the coupling strength gs as compared to apply-

ing either one of the single method on Eq. (11).

The clusteringly synchronous dynamics with gs¼ 11.82

is illustrated in Fig. 2. As one can see in Fig. 2, the first type

of neurons achieve the relaxation oscillation synchroniza-

tion, while the second and the third type of neurons achieve

the fixed-point synchronization.

B. Coupled HR and FN neurons

In this example, we consider the network consisting of

two Hindmarsh-Rose neurons (i¼ 1, 2) and two FitzHugh-

Nagumo neurons (i¼ 3, 4). Here, the dynamics of

Hindmarsh-Rose neurons is governed by Eqs. (13) with pa-

rameters pð1Þ ¼ ð2:8; 20; 4:4; 0:001; 1; �1:11Þ and the dy-

namics of FitzHugh-Nagumo neurons is determined by

_x ¼ �xðx� aÞðx� 1Þ � cyþ J

_y ¼ �ðx� byÞ:
(17)

Where parameters pð2Þ ¼ ða; c; b; �; JÞ ¼ ð0:01; 2; 0:15;
0:008; 0:1Þ. Moreover, the network topology under consider-

ation is

FIG. 1. Network topology describing by C as given in Eq. (14). The solid (dot-

ted) line denotes the connection between two neurons is excitatory (inhibitory).

FIG. 2. Time series of x(t) with

gs¼ 11.82. The graph demonstrates the

local stability of the CSM N as in Eq.

(15).
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Using the Lyapunov function technique,2 we have that

suppose there exist c and g* such that

cð3� 19:36cÞx2 � 1:2cx� 1

4

� �
þ cg�XðxÞ > 0;

3x2 � 2:02xþ 0:01ð Þ þ g�CðxÞ > 0;

(18)

for x < v. Here, XðxÞ :¼ 20CðxÞ þ 4ðv� xÞC0ðxÞ. Then, the

CSM is locally stable provided gs > g*. It is numerically

estimated that g* � 0.6. Hence, we can conclude that the

CSM N is locally stable if gs > g� � 0:6 (Fig. 3).

V. CONCLUSION

In the recent years, the study of the cooperative behavior

of complex dynamical networks has been shifted toward the

cluster synchronization. However, most of theoretical works

are networks of synaptically coupled neurons from linearly

(gap-junction) coupled neurons. In this paper, the cluster

synchronization of nonidentically, chemically, and generally

formulated coupled networks is investigated. The sufficient

condition, resulting in verification of the stability of the ori-

gins of some decoupled linear systems, for the existence of

stably synchronous clusters is obtained. Examples of noni-

dentical systems having different synchronized dynamical

behaviors are provided to show the effectiveness of our theo-

retical prediction.

For the future work, it is worthwhile to study the com-

bined effect of electrically and chemically synaptical cou-

plings in the networks for the stability of the cluster

synchronization manifold. Moreover, the extension of our

work to the delayed or stochastic neural networks is an inter-

esting and important issue.
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APPENDIX: PROOF OF THEOREM 1

Proof. The condition that all rows of Crs; 8r < s, are the

same implies that ErCrsE
†

s ¼ 0; 8 r < s. Upon using the con-

dition that krs ¼ 0, 8r 6¼ s, we can rewrite Eq. (10) as the

form

_fr ¼ ArðtÞfr þ
X
s<r

BrsðtÞfs; (A1)

where fr ¼ ðnr; grÞT , and

ArðtÞ ¼
Ar;11ðtÞ Ar;12ðtÞ
Ar;21ðtÞ Ar;22ðtÞ

 !
;

with

Ar;11ðtÞ ¼
@

@V
f
ðrÞ
1 ðuðrÞc Þ � gskrrCðVðrÞc Þ

� �
INr

þgsðv� VðrÞc ÞC0ðVðrÞc ÞðErCrrE
†

rÞ;

Ar;12ðtÞ ¼
@

@w
f
ðrÞ
1 ðuðrÞc Þ;

Ar;21ðtÞ ¼
@

@V
f
ðrÞ
2 ðuðrÞc Þ;

Ar;22ðtÞ ¼
@

@w
f
ðrÞ
2 ðuðrÞc Þ;

and

FIG. 3. Time series of x(t) with

gs¼ 0.62. The graph demonstrates the

local stability of the CSM N.
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BrsðtÞ ¼ gsðv� V
ðrÞ
c ÞC0ðVðsÞc ÞðErCrsE

†

sÞ 0

0 0

 !
:

For r¼ 1, Eq. (A1) becomes _f1 ¼ A1ðtÞf1. Then by assump-

tion (11) for r¼ 1, we have f1ðtÞ converges exponentially to

0. For r¼ 2, Eq. (A1) becomes

_f2 ¼ A2ðtÞf2 þ B21ðtÞf1: (A2)

Let U2(t) be the fundamental solution of _f2 ¼ A2ðtÞf2, then

by assumption (11) for r¼ 2, we have kU2ðtÞU�1
2 ðsÞk

� c2e�r2ðt�sÞ; 8t � s for some c2, r2 > 0. Moreover,

kf2ðtÞk ¼ kU2ðtÞU�1
2 ðTÞf2ðTÞ

þ
ðt

T

U2ðtÞU�1
2 ðsÞB21ðsÞf1ðsÞ dsk

� c2e�r2ðt�TÞkf2ðTÞk

þ c2

ðt

T

e�r2ðt�sÞds �max
t�T
kB21ðtÞf1ðtÞk:

Since f1ðtÞ converges exponentially to 0, we have, via

the above inequality, that f2ðtÞ also converges exponentially

to 0.

Continuing above process for r ¼ 3;…;m, we can

obtain the conclusion that frðtÞ converge exponentially to 0,

for r ¼ 1;…;m. Hence, the statement of Theorem 1 holds

true and the proof of the theorem is completed. �
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