
Journal of Systems Architecture 60 (2014) 271–279
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
A parallel Bees Algorithm implementation on GPU
1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.09.007

⇑ Corresponding author. Tel.: +886 910275912.
E-mail addresses: lasifu@gmail.com (G.-H. Luo), kkuume@gmail.com (S.-K.

Huang), ysc.ntpu@gmail.com (Y.-S. Chang), smyuan@gmail.com (S.-M. Yuan).
Guo-Heng Luo a, Sheng-Kai Huang a, Yue-Shan Chang b, Shyan-Ming Yuan a,⇑
a Dept. of Computer Science and Engineering, National Chiao-Tung University, 1001, University Road, Hsinchu 300, Taiwan, ROC
b Dept. of Computer Science and Information Engineering, National Taipei University, 151, University Road, New Taipei City 237, Taiwan, ROC

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 10 October 2013

Keywords:
Bees Algorithm
Parallel Bees Algorithm
Swarm intelligence
GPGPU
CUDA
Bees Algorithm is a population-based method that is a computational bound algorithm whose inspired by
the natural behavior of honey bees to finds a near-optimal solution for the search problem. Recently,
many parallel swarm based algorithms have been developed for running on GPU (Graphic Processing
Unit). Since nowadays developing a parallel Bee Algorithm running on the GPU becomes very important.
In this paper, we extend the Bees Algorithm (CUBA (i.e. CUDA based Bees Algorithm)) in order to be run
on the CUDA (Compute Unified Device Architecture). CUBA (CUDA based Bees Algorithm). We evaluate
the performance of CUBA by conducting some experiments based on numerous famous optimization
problems. Results show that CUBA significantly outperforms standard Bees Algorithm in numerous dif-
ferent optimization problems.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Finding an optimal solution for the search problem becomes an
important research question nowadays [21–23]. There are increas-
ingly swarm intelligence [4] which is in nature the collective behav-
ior of social animals used for finding a near optimal solution. The
swarm-based optimization algorithms (SOAs) drive a search to-
wards the optimal solution. Various algorithms, such as Ant Colony
Optimization (ACO) proposed by Marco Dorigo [1], Genetic Algo-
rithm (GA) [24], Particle swarm optimization (PSO) [3] developed
by Kennedy, Artificial Bee Colony Algorithm (ABC) by proposed D.
Karaboga [5], and Bees Algorithm proposed by DT Pham [2], mod-
eled the behaviors of the swarm of animals with social organization.
Self-organization is one of the system features that gets global-level
response by means of many different low-level interactions.

In the SOAs, the ACO algorithm is a non-greedy population-
based algorithm which emulates the behavior of real ants. The
GA is based on natural selection and genetic recombination. It effi-
ciently exploits historical information to speculate on new search
areas with improved performance. The PSO is an optimization pro-
cedure based on the social behavior of groups of organizations. And
the ABC is also another optimization algorithm inspired on the
intelligent behavior of honey bee swarms. Bees Algorithm (BA)
[2] is also a population-based method to search optimization of
the problems which is inspired by the behavior of honey bees
[2,6]. The algorithm performs a kind of neighborhood search com-
bined with random search and can be used for both combinatorial
optimization [25,26] and functional optimization [2]. Based on the
BA, researchers have come up with several real-world applications
such as data mining [7], robot controlling [8], electronic engineer-
ing [9], job scheduling [10], E-Testing [35], task allocation [36], and
so on, based on Bees Algorithm.

The swarm-based optimization algorithms have been widely
used to accelerate the performance of the search problems Parall-
elization technique is often used in the various swarm intelligence,
such as a parallel implementation of ant colony optimization
[27,28], parallel genetic algorithm (PGA) [29,30], parallel global
optimization with the particle swarm algorithm [31], parallel Bees
Algorithm (PBA) [18], and parallel artificial bee colony (PABC) algo-
rithm [32] etc. The proposed parallelization strategy does not only
degrade the quality of solutions obtained, but also achieves sub-
stantial speedup. In [28], authors discussed parallelization strate-
gies for Ant Colony Optimization algorithms and empirically
tested the simplest strategy, which of executing parallel indepen-
dent runs of an algorithm. In [30], the PGA uses a mixed strategy.
Subpopulations try to locate good local minima. In [31], parallel
PSO performance was evaluated using two categories of optimiza-
tion problems possessing multiple local minima—large-scale ana-
lytical test problems with computationally cheap function
evaluations and medium-scale biomechanical system identifica-
tion problems with computationally expensive function evalua-
tions. The authors in [32] presented a parallel version of the
algorithm for shared memory architectures. The entire colony of
bees was divided equally among the available processors.

Graphic Processing Units (GPU) is a highly fast parallel micro-
processor. There are many stream processors in a multiprocessor
and each stream processor is a smallest computational unit. There
is shared memory in a multiprocessor among numerous stream

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.09.007&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.09.007
mailto:lasifu@gmail.com
mailto:kkuume@gmail.com
mailto:ysc.ntpu@gmail.com
mailto:smyuan@gmail.com
http://dx.doi.org/10.1016/j.sysarc.2013.09.007
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


272 G.-H. Luo et al. / Journal of Systems Architecture 60 (2014) 271–279
processors, they could communicate with each other by using
shared memory. The GPU can accelerate computations and appli-
cations running on the CPU by loading parts of the code with high
compute-loading. The NVIDIA [11,12] provides CUDA that is a gen-
eral purpose parallel programming model, thus the programmers
do not need to consider the complex low-level issues of GPU. Many
algorithms and applications have been implemented on GPU for
obtaining better performance. It supports many graphic program-
ming APIs (Application Programming Interfaces), so developers
do not have to consider more complexity of low-level problems
while programming with CUDA [11,12]. Much work regarding to
parallel swam intelligence algorithm has be done on GPU, such
as Ant Colony Optimization [13–15], Genetic Algorithm [16,17],
Particle swarm optimization [33,37], and so on. These GPU-based
implementations of swarm-based optimization algorithms have
proven that the GPU can be applied to significantly improve the
performance of the algorithms.

Based on our knowledge, only the authors in [18] adopted Par-
allel Bees Algorithms (PBA) to simultaneously search the location,
size and types of FACTS devices to enhance ATC between sources
and sink area. Obviously, it is not generally used to solve the search
problem to find the near optimal solution. In addition, in [34],
authors adopted another hardware implementation (FPGA) to
implement the ABC algorithm. Therefore, no attention has been
paid to implement parallel Bee Algorithm on GPU yet. In order to
significantly improve the performance of PBA, the objective of this
paper is to design and implement a novel Parallel Bees Algorithm
running on GPU. We choose CUDA framework to implement our
multi-colonies Bees Algorithm on GPU called CUBA and design a
new parallel multi-colonies Bees Algorithm that bring good effi-
ciency. In the proposed algorithm, we group the threads within a
block to several colonies. Each thread is assigned to a honey bee
to search the solution for its colony. The proposed algorithm
divides a block into different colonies by thread ID, and running
Bees Algorithm independently. We evaluate the performance of
CUBA by conducting some experiments based on numerous
famous optimization problems. The result shows the CUBA signif-
icantly outperforms traditional BA in numerous different optimiza-
tion problems.

The rest of the paper is organized as follows. Section 2 reviews
the background of the Bees Algorithm and survey some related
work regarding to GPU-based implementations of swarm-based
optimization algorithms. Section 3 shows the methods how to par-
allel the Bees Algorithm to running on GPU. Section 4 evaluates
and discusses the result of our experiments including the compar-
ison of the Bees Algorithm and the CUDA-based Bees Algorithm. Fi-
nally, we give a concluding remarks and future work in the
Section 5.
2. Background and related work

2.1. Bee colony optimization

In reality, there are various natural systems (i.e. social insects
colonies) such as the Ants Colony and the Bees Colony in which
simple individual organisms can create systems that are able to
perform highly complex tasks by dynamically interacting with
each other. In general, the honey bee colony consists of three kinds
of adult bees: workers, drones, and a queen. Although each mem-
ber in the honey bee colony has a definite task to perform, a lot of
worker bees need to cooperate to complete complex jobs, such as
nest building, food finding and collection, and brood rearing. In
addition, individual bees (workers, drones, and queens) cannot sur-
vive without the support of the colony. Therefore, surviving and
reproducing need to combine the efforts of the entire colony.
For the forage, the honey bee colony will selectively forage from
nectar sources available in the field. The process is initiated by
scout bees being sent to search for promising flower patches. Scout
bees move randomly from one patch to another. Scout bees When
they return to the hive, those scout bees that found a patch which
is rated above a certain quality threshold deposit their nectar or
pollen and go to the ‘‘dance floor’’ to perform a dance known as
the ‘‘waggle dance’’. This mysterious dance is essential for colony
communication, and contains three pieces of information regard-
ing a flower patch: the direction in which it will be found, its dis-
tance from the hive and its quality rating (or fitness) [2]. Authors in
[2,38] summarize the concept of the Bee Colony Optimization
while authors in [6,39,40] explain it in more details.

Each bee will follow a nestmate who has already discovered a
patch of flowers. Upon arrival, the foraging bee takes a load of nec-
tar and returns to the hive relinquishing the nectar to a food storer
bee. After she relinquishes the food, the bee can (a) abandon the
food source and become again uncommitted follower, (b) continue
to forage at the food source without recruiting the nestmates, or (c)
dance and thus recruit the nestmates before the return to the food
source. The bee opts for one of the above alternatives with a certain
probability. Within the dance area, the bee dancers ‘‘advertise’’
different food areas. The mechanisms by which the bee decides
to follow a specific dancer are not well understood, but it is consid-
ered that ‘‘the recruitment among bees is always a function of the
quality of the food source’’. It is also noted that not all bees start
foraging simultaneously [38].

Bee Colony Optimization (BCO) [38] is a metaheuristic capable
to solve difficult combinatorial optimization problems. The
metaheuristic is a swarm intelligence approach, meaning it is char-
acterized by individuals doing repetitive actions and a simple com-
munication method between individuals, resulting in iterative
improvement of solution quality. Therefore, self-organization of
bees is based on a few relatively simple rules of individual insect’s
behavior [39]. The authors in [39] and [40] were used the collective
bee intelligence in solving combinatorial optimization problems.

2.2. The Bees Colony Algorithm

The Bees Colony Algorithm [2] is a population-based method to
find a near-optimal solution for the search problems. It is inspired
by the behavior of honey bees in nature [2,6] and requires several
parameters to be set as following: n (number of scout bees), m (num-
ber of sites selected out of n visited sites), e (number of best sites out
of m selected sites), nep (number of bees recruited for best e sites),
nsp (number of bees recruited for the other (m–e) selected sites),
ngh (initial size of patches which includes site and its neighbour-
hood) and stopping criterion. The algorithm begins with n scout bees
which randomly being placed in the searching domain. The basic
Bees Algorithm is shown in the following subsections. The corre-
sponded flowchart is shown in Fig. 1, detailed please refer to [2,6].

1. Initialize populations with random solutions.
2. Evaluate Fitness of the population.
3. While (stopping criterion not met)
4. Select sites for neighbourhood search.
5. Recruit bees for selected sites (more bees for best e sites) and

evaluate fitness.
6. Select the fittest bee from each patch.
7. Assign remaining bees to search randomly and evaluate

their fitness.
8. End While

In order to increase the search accuracy and avoid superfluous
computations, Dr. Pham proposed a modified version [6], in which
two new procedures were introduced as follows:



Fig. 1. Flowchart of the basic Bees Algorithm.

G.-H. Luo et al. / Journal of Systems Architecture 60 (2014) 271–279 273
2.2.1. Neighbourhood shrinking
The size a = {a1. . ., an} of the flower patches is initially set to a

large value. For each variable ai, it is set as follows.

aiðtÞ ¼ nghðtÞ � ðmaxi �miniÞ
nghð0Þ ¼ 1:0

ð1Þ

where t denotes the tth iteration of the Bees Algorithm main loop.
The size of a patch is kept unchanged as long as the local search pro-
cedure yields higher points of fitness.

The local search is initially defined over a large neighbourhood
(equal to the range of the global search), and has largely explor-
ative feature. The local search procedure finds any better site with
higher fitness, it keeps the size of ngh unchanged. If no improve-
ment during the step, then the size of ngh be decreased. The updat-
ing formula is shown by following:

nghðiþ 1Þ ¼ 0:8 � nghðiÞ; if no improvement
nghðiþ 1Þ ¼ nghðiÞ; else

ð2Þ
2.2.2. Site abandonment
When no fitness improvement after a number of times (stlim:

limit of stagnation cycles for site abandonment) local search even
by neighbourhood shrinking method, it means the local search pro-
cedure perhaps to reach the top of the local fitness peak, in other
words, no further progress will be made. For efficiency, the explo-
ration of the patch is stopped. If no better fitness of other site is
generated during the remaining random search procedure then
abandons this site.

Although there are several researchers come up with new mod-
els based on honeybees, our work is based on this model proposed
by D.T. Pham [6].

2.3. Related work

The authors in [18] presented a parallel-based methodology for
placement of Flexible AC Transmission Systems (FACTS) devices in
order to reduce the time it takes to reach a solution while
maximizing the available transfer capability (ATC) of a given power
system. Parallel Bees Algorithms search simultaneously the loca-
tion, size and types of FACTS devices to enhance ATC between
sources and sink area. Results were very encouraging. In compari-
sons with Bees Algorithm (BA), Genetic Algorithm (GA) and Parallel
Genetic Algorithms (PGA). Results show that parallel computing
technique can be used effectively to reduce time to reach a solution
for large scale network and FACTS devices have proven their utility
for ATC improvement. However, no one implement the algorithm
to be run on GPU.

On the other hand, authors in [13–17,33] have developed parallel
swam intelligence algorithm on GPU. In [13], proposed a
Fine-grained parallel ant colony optimization algorithm (FGACO)
method based on GPU-acceleration, which maps parallel ACO algo-
rithm to GPU through the Compute Unified Device Architecture
(CUDA). The analytical results demonstrate that the proposed meth-
od increases the population size, speeds up its execution and pro-
vides ordinary users with a feasible FGACO solution. In [14],
authors proposed effective parallelization strategies for the Ant Col-
ony Optimization (ACO) metaheuristic on Graphics Processing Units
(GPUs). The Max–Min Ant System (MMAS) algorithm augmented
with 3-opt local search is used as a framework for the implementa-
tion of the parallel ants and multiple ant colonies general parallel-
ization approaches. The four resulting GPU algorithms are
extensively evaluated and compared on both speedup and solution
quality on a state-of-the-art Fermi GPU architecture. A rigorous ef-
fort is made to keep parallel algorithms true to the original MMAS
applied to the Traveling Salesman Problem. In [15], authors dealt
with a GPU implementation of Ant Colony Optimization (ACO), a
population-based optimization method which comprises two major
stages: tour construction and pheromone update. Because of its
inherently parallel nature, ACO is well-suited to GPU implementa-
tion, but it also poses significant challenges due to irregular memory
access patterns. Authors contributed their work within threefold:
(1) a data parallelism scheme for tour construction tailored to GPUs,
(2) novel GPU programming strategies for the pheromone update
stage, and (3) a new mechanism called I-Roulette to replicate the
classic roulette wheel while improving GPU parallelism.

In [17], authors considered mapping of the parallel island based
genetic algorithm with unidirectional ring migrations to NVIDIA



Fig. 2. Framework of the CUBA.

274 G.-H. Luo et al. / Journal of Systems Architecture 60 (2014) 271–279
CUDA software model. The proposed algorithm begins with the in-
put population initialization on the CPU side. Then, chromosomes
and GA parameters are transferred to the GPU main memory using
the system bus. Next, the CUDA kernel performing genetic algo-
rithm on GPU is launched. In [33], authors discussed possible ap-
proaches to parallelizing PSO on graphics hardware within the
CUDA, a GPU programming environment by NVIDIA which sup-
ports the company’s latest cards. In particular, two different ways
of exploiting GPU parallelism are explored and evaluated. In [37], a
novel parallel approach to run standard particle swarm optimiza-
tion (SPSO) on Graphic Processing Unit (GPU) is presented. By
using the general-purpose computing ability of GPU and based
on the software platform of Compute Unified Device Architecture
(CUDA) from NVIDIA, SPSO can be executed in parallel on GPU.

As mentioned above, most of swarm-based optimization algo-
rithms have been implemented to run on GPU, excepting for PBA.
These implementation have proven that the GPU can be applied
to significantly improve the performance of the algorithms. Based
on our knowledge, only [18] adopted Parallel Bees Algorithms
(PBA) to simultaneously search the location, size and types of
FACTS devices. Obviously, it is not generally used to solve the
search problem to find the near optimal solution. In addition, in
[34], authors adopted another hardware implementation (FPGA)
to implement the ABC algorithm. It is obviously there are not any
research to design and implement Parallel Bees Algorithm on
GPU yet.
3. Parallel Bees Algorithm on GPU

The major key of deciding the accelerated effect is the level of
parallelization. In standard Bees Algorithm, most computational
loads are in the neighbourhood search procedure. A naïve method
is to take the neighbourhood search procedure as a kernel to dis-
tribute the computations in loop of the procedure. In fact, the opti-
mal number of the neighbourhood size is fluctuant according to
different features of functions. However, if the size of the neigh-
bourhood is not larger than the number of total threads within
the GPU, then the accelerated effect would not be obvious. Another
common solution is ‘‘multi-colonies’’ that means we should run
many Bees Algorithms independently in each threads. There are
two major disadvantages. The first is that each thread contains
many conditional branch. Obviously, it is difficult to avoid diver-
gent branch, so the overhead would be too expensive. The second
one is that the communication among the threads after a round
would be more complex to do. For the reasons above, we design
a new Bees Algorithm of parallel multi-colonies that bring good
efficiency.
3.1. System overview

CUDA framework is used to implement our multi-colonies Bees
Algorithm on GPU called CUBA. Fig. 2 shows an overview of CUBA
framework. In CUBA framework threads within one block are clas-
sified into several colonies. In other words, each thread is assigned
to a honey bee to search the solution for its colony. A block is di-
vided into different colonies indexed by thread ID, and running
Bees Algorithm independently. When one iteration finished, the
CUBA change the information between colonies in the same block
by using shared memory. Since the communication latency be-
tween colonies is critical for converge time of the algorithm, the
information sharing between threads does not adopt global mem-
ory. In other words, the colonies will not communicate with each
other if they are in different blocks because the shared memory
is shared by threads in the same block.
3.2. Parallelization algorithm

This section describes the parallel Bees Algorithm on CUDA in
detail. To modify standard BA into parallel BA and run it on CUDA,
we need to overcome many implementation issues. This section
we will depict the design idea of CUDA based BA, as shown in
Fig. 3, and examine the implementation issues in detail. Following
we will explain the steps of the algorithm and corresponding
implementation issues.

3.2.1. Parallel initialization
In BA approach, the initialization of population and the evalua-

tion of the fitness of the population will be achieved one-by-one. In
the parallel BA, naturally, it can be done in parallel. Hence, CUBA
will distribute and compute them through parallel threads in
GPU. In the first step, the CUBA need to setup required parameters,
allocate and initiate shared memory for communication, configure
the number of colony, and so on. These are similar with the stan-
dard BA but for parallel BA. In addition, the algorithm also needs
to randomly generate new sites and compute each bee’s fitness
in parallel.

3.2.2. Odd–even sort
It is necessary to sort the fitness of all populations to get the

best m sites. Because the size of the sorting data in this application
is small respect to others, we sort the colonies in the same block
individually by using Odd–Even Sorting algorithm [19,20] that is
based on the Bubble Sort technique of comparing two elements
and switching them by the comparing rule. Although there are a
variety of well-known sorting algorithms can be utilized, this
method only requires n/2 iterations of the two phase sort.

3.2.3. Group Bees into different colonies
We divide threads in the blocks to different colonies according

to their thread ID, each thread is assigned to a honey bee and
searching the solution for its colony, so there are a number of
colonies run Bees Algorithm in parallel. The number of bees and
colonies in the algorithm is depending on what the number of
blocks per grid and number of threads per block we set.

The number of colonies in a block = number of threads per
block / number of bees per colony.

3.2.4. Modified Bees Algorithm
In order to parallelize the standard BA to be parallel, some

implementation issues need to take into account, as follows.

3.2.4.1. Modification of local search. The local search in traditional
BA approach, more bees (nep) recruit for elite sites and fewer bees
(nsp) recruits for the rest of sites from e sites. It is reasonable



Fig. 3. Algorithm of the CUBA.

G.-H. Luo et al. / Journal of Systems Architecture 60 (2014) 271–279 275
because the mechanism is based on probability. But in our system,
we just assign nep bees to recruit m sites for balancing the loading
among the threads, to be more precisely, it does not make sense in
parallel architecture if some threads would do nothing after finish-
ing their jobs and waiting for the others.

3.2.4.2. Random seeds. We have different threads in GPU with dif-
ferent random seeds. It can benefit the performance by generating
random numbers from different sequences in parallel.

3.2.4.3. Neighbourhood shrinking. According to the new procedure
‘‘neighbourhood shrinking’’ in BA, ngh constantly change values,
in our approach, we have numerous local searching in different
sites simultaneously for parallelism, and we let the recruited bees
in different sites with different ngh. Another adjust is that we do
not need to set a such large number of the recruited bees like in
BA, because we have so numerous colonies to search simulta-
neously that the risk which may cause wrong shrink we accept is
much lower. In the meanwhile, the rapid decreasing of ngh could
bring a faster converge time. What shrinking equation we use is
the same with the equation in the Bees Algorithm. Initially, the size
of ngh is set to a large value.

3.2.4.4. Communication with shared memory. In general parallel
architectures may use shared memory or message passing method
to communicate between the multiple processing units. There is a
shared memory in the same block in CUDA architecture, so we use
it to implement the communication in the end of the each itera-
tion. In this strategy, there are three issues we have to concern.
The first is what information to share, the second one is who to
share with, and the last is how long to communicate once.

We had tried and compared several mechanisms for communi-
cation. For example, we sort the best results which are gained from
individual colonies in the same block after neighbourhood search,
and sharing the best to others. To explain in detail, the site with
lowest fitness in each colony is replaced by best one with highest
fitness in the block. The result shows that converge rate is quite
good. However, a sorting procedure often makes an impact on
the execution time, finally, we develop the two-phase communica-
tion that avoiding sorting and with good converge rate, too. The
paired exchange take few time to share, and the second phase im-
prove the global convergence over time. The method is shown in
Fig. 4.

The two kinds of communication are executed alternately one
after one iteration.
4. Experimental results and analysis

To evaluate the performance of the proposed algorithm, we
conducted some experiments to evaluate and compare both of
the execution time with CUDA on GPU and the execution time with
C++ on CPU to verify efficiency of the algorithm. The configuration
of the evaluation platform are shown as Table 1 and described as
flows: We adopt AMD Athlon (tm) II and GeForce GTX 460 for
our computation platform. The host is AMD Athlon(tm) II which
has 4 cores, and each core has clock rate with 3.0 GHz. The device
is GeForce GTX 460 which has 7 multiprocessors (MPs) and each
MP has 48 CUDA cores. Totally, there are 336 CUDA cores in the
device.

4.1. Benchmark functions

Table 2 shows the equations of 9 continuous function minimi-
zation benchmarks [6]. The equations are given together with the
range of the variables and global minimum. These functions are
widely used multi-modal test functions.

4.2. Analysis and result

For CUBA, there are 5 parameters we have to set, GridDim, Block-
Dim, N, M and nep. In the CUDA programming, the code running
parallel is called ‘‘kernel’’, the job size of kernel is so called ‘‘grid’’.
The programmer should set a dimensional number of grid. CUBA
will divide the job to many smaller jobs and distribute them to
different multiprocessors to execute. The size of each smaller job
is called ‘‘block’’. As setting dimensional number of grid, the



Fig. 4. Two-phase communication mechanism.

Table 1
Hardware configurations.

Device CPU GPU

Processor AMD Athlon(tm) II x4 disable 3 cores GeForce GTX 460
Number of cores 4 cores 336 cores (7 MPs)
Clocks 3.0 GHz 675 MHz
Memory DDR3–1333 GDDR5
Memory size 4 GB 512 MB
OS Win7(32 bit)
Compute capability – 2.1
CUDA version – 4.1

Table 2
Benchmark functions.

Function Equation Minimum

Ackley (2D) f ðx1; x2Þ ¼ 20� 20e�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ðx12þx22Þ

p
� e

1
2 cosð2px1Þþcosð2px2Þ½ � þ e;�32 < x1 < x2 ~x ¼ ð~0Þf ð~xÞ ¼ 0

Easom (2D) f ðx1; x2Þ ¼ � cosðx1Þ � cosðx2Þe�ðx1�pÞ2�ðx2�pÞ2 ;�100 < x1 < 100 ~x ¼ ðp;pÞf ð~xÞ ¼ �1

Goldstein and Price (2D) Aðx1; x2Þ ¼ 1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2ÞBðx1; x2Þ
¼ 30þ ð2x1 þ 3x2Þ2ð18� 32x1 þ 12x2

1 � 48x2 þ 36x1x2 þ 27x2
2Þf ðx1; x2Þ ¼ AB;�2 < x1 < s

~x ¼ ð0;�1Þf ð~xÞ ¼ 3

Martin and Gaddy (2D)
f ðx1; x2Þ ¼ ðx1 � x2Þ2 þ ðx1þx2�10Þ

3

h i2
;�20 < xi < 20

~x ¼ ð5;5Þf ð~xÞ ¼ 0

Schaffer (2D)
f ðx1; x2Þ ¼ 0:5þ sinð

ffiffiffiffiffiffiffiffiffiffi
x2

1þx2
2

p
Þ½ �2�0:5

1:0þ0:001ðx2
1þx2

1Þ½ �2
;�100 < xi < 100

~x ¼ ð~0Þf ð~xÞ ¼ 0

Schwefel (2D) f ðx1; x2Þ ¼ �x1 sin jð
ffiffiffiffiffiffiffiffi
jx1j

p
Þ � �x2 sinð

ffiffiffiffiffiffiffiffi
jx2j

p
Þ;�500 < xi < 500 ~x ¼ ð ~420:97Þf ð~xÞ ¼ �837:97

Hyper Sphere (10D) f ð~xÞ ¼
P10

i¼1x2
i ;�100 < xi < 100 ~x ¼ ð~0Þf ð~xÞ ¼ 0

Griewank (10D) f ð~xÞ ¼ 1
4000

P10
i¼1ðxi � 100Þ2 �

Q10
i¼1 cos xi�100ffiffiffiffiffiffi

iþ1
p

� �
þ 1;�600 < xi < 600 ~x ¼ ð ~100Þf ð~xÞ ¼ 0

Rosenbrock (10D) f ð~xÞ ¼ R9
i¼1100ðxiþ1 � x2

i Þ
2 þ ð1� xiÞ2;�50 < xi < 50 ~x ¼ ð~0Þf ð~xÞ ¼ 0

276 G.-H. Luo et al. / Journal of Systems Architecture 60 (2014) 271–279
programmer has to set the dimensional number of block, meaning
how many threads in a block. In our algorithm, there are BlockDim/
N colonies per block. For example if we set BlockDim = 256 and
N = 8, then there are 32 colonies in a block. The parameters are
set according to the results of the experiments, we will discuss in
more detail later.

All the programs both of BA and CUBA in the following experi-
ments were run until either the minimum of the function was
approximated to better than 0.001, or reached a maximum number
of cycles (here we set 5000). In the BA version, because there is
only one colony foraging, if it make a wrong ngh shrinking, the
global optimum solution will never be found. To overcome this,
BA set a quite large nep and nsp to avoid as possible. Ideally, the
CUBA version has more colonies foraged parallel in the same time,
so we can afford more risks that we making a wrong ngh shrinking
procedure. To prove this assumption, we test the 9 functions with
various nep, 1, 2, 4, 8, 16 and 32. At first we set GridDim = 4, Block-
Dim = 256. It is a reasonable number of BlockDim. In most of GPUs,
there are 32 or 64 stream processors (the smallest computation
unit) in a multiprocessor, so we take the number as multiple of
number of stream processors.

When we found adaptive nep for each function, we tried to de-
crease the number of BlockDim, that means the number of colonies
is decreased. Another issue is what will happen if we increase the N
and BlockDim with the same factor, in other words, we increase the
bees for every colony and fix the number of colonies in a block. Fi-
nally, we will use the best parameters set we found from the three
experiments, and take the result to compare with the Bees
Algorithm.
4.2.1. Analysis of nep
First we vary the nep to evaluate the execution time and the

amount of iteration before the benchmark functions convergence.
The result shows in Table 3. For low dimensional functions, we
only need very small nep (about 1 or 2) to get a good solution with
less time. But for high dimensional functions, we need bigger nep,
too small nep will lead the solution converge to the number with



Table 3
nep increasing (execution time and amount of iteration).

Benchmark
functions

nep = 1 nep = 2 nep = 4 nep = 8 nep = 16 nep = 32

Time
(ms)

iterations Time
(ms)

iterations Time
(ms)

iterations Time
(ms)

iterations Time
(ms)

iterations Time
(ms)

iterations

Ackley(2D) 8.13 38 7.51 25 9.50 24 14.28 26 19.87 22 42.35 26
Easom(2D) 6.17 27 6.81 25 8.03 23 14.28 26 15.04 20 25.07 20
Goldstein and

Price(2D)
6.01 22 5.56 12 7.57 17 9.14 14 12.92 13 18.49 11

Martin and
Gaddy(2D)

4.58 17 4.72 16 4.92 14 5.67 15 5.52 8 5.74 5

Schaffer(2D) 7.11 29 7.27 22 9.24 22 11.81 19 16.20 16 33.28 20
Schwefel(2D) 5.52 27 6.35 30 6.48 22 8.33 23 11.18 21 16.20 19
HyperSphere (10D) x x x x 12 41 17.12 42 32.95 52 63.10 59
Griewank (10D) x x 52.51 51 70.95 43 125.23 44 219.76 42 439.90 44
Rosenbrock (10D) x x x x x x 1796.32 439 3140.61 410 4857.48 329

Table 4
Colonies increasing.

Benchmark functions blockDim = 32 blockDim = 64 blockDim = 128 blockDim = 256 blockDim = 512 blockDim = 768

Time
(ms)

iterations Time
(ms)

iterations Time
(ms)

iterations Time
(ms)

iterations Time
(ms)

iterations Time
(ms)

iterations

Ackley(2D) 6.89 40 6.05 31 6.76 32 8.13 38 8.341 27 12.66 30
Easom(2D) x X 5.27 31 6.02 32 6.28 29 7.76 26 10.88 25
Goldstein and Price

(2D)
5.73 32 5.01 24 7.25 19 6.01 22 7.08 28 9.99 17

Martin and Gaddy
(2D)

3.83 24 3.27 7 4.17 14 4.58 17 5.43 12 8.33 17

Schaffer(2D) x x 6.32 33 7.02 33 7.11 29 7.85 22 10.32 17
Schwefel (2D) 4.90 34 5.03 35 5.29 32 5.52 27 7.08 28 9.89 24
HyperSphere(10D) 19.71 67 22.36 56 15.79 42 17.12 42 20.15 41 25.45 41
Griewank (10D) 55.58 61 50.01 54 48.02 49 52.51 51 61.75 52 80.98 51
Rosenbrock (10D) x x x x 810.83 177 1796.32 439 432.984 94 598.962 102

Table 5
Bees increasing.

Benchmark functions blockDim = 128 N = 4 blockDim = 256 N = 8 blockDim = 512 N = 16

Time (ms) Iterations Time (ms) Iterations Time (ms) Iterations

Ackley 6.76 36 8.13 38 9.68 33
Easom 5.72 31 6.28 29 7.87 26
Goldstein and price 5.35 23 6.01 22 7.13 17
Martin and Gaddy 4.11 22 6.01 22 6.00 19
Schaffer 6.76 18 6.35 23 8.72 26
Schwefel 4.70 26 5.52 27 7.61 30
HyperSphere 15.88 46 17.12 42 25.12 49
Griewank 53.62 57 52.51 51 65.10 53
Rosenbrock x x 1796.32 439 2166.75 463

G.-H. Luo et al. / Journal of Systems Architecture 60 (2014) 271–279 277
big error. In addition, the solution with less execution time does
not mean it is with less iterations.
Table 6
Combinations of The Bees Algorithm parameters.

Benchmark n m e nep nsp stlim

Ackley 30 8 1 20 10 5
Easom 20 14 1 30 5 10
GoldsteinAndPrice 10 4 2 30 10 10
MartinAndGaddy 10 7 1 30 10 10
Schaffer 10 4 2 30 10 10
Schwefel 20 14 1 30 5 10
HyperSphere 10 4 2 30 10 10
Griewank 20 18 1 10 5 5
Rosenbrock 10 4 2 30 10 10
4.2.2. Analysis of the number of colonies
Second, we vary the number of colonies to evaluate the execu-

tion time and the amount of iteration before the benchmark func-
tions convergence. The result is shown in Table 4, most of the
functions get good performance and fewer execution time with
small number of BlockDim, excluding the three high dimensional
functions, such as HyperSphere(10D), Griewank(10D), and Rosen-
brock(10D). For these high dimensional function, small number of
BlockDim not always bring the benefit, the best number of Block-
Dim for HyperSphere and Griewank are 128, and 512 for Rosenbrock.
Similarly, the solution with less execution time does not mean it is
with less iterations.
4.2.3. Analysis of the number of bees
Second, we vary the number of bees to evaluate the execution

time and the amount of iteration before the benchmark functions



Table 7
Combinations of CUDA Bees Algorithm parameters.

Benchmark GridDim BlockDim n m nep

Ackley 4 64 8 6 1
Easom 4 64 8 6 1
GoldsteinAndPrice 4 64 8 6 1
MartinAndGaddy 4 64 8 6 1
Schaffer 4 64 8 6 1
Schwefel 4 32 8 6 1
HyperSphere 4 128 8 6 8
Griewank 4 128 8 6 2
Rosenbrock 4 512 8 6 8

278 G.-H. Luo et al. / Journal of Systems Architecture 60 (2014) 271–279
convergence. Table 5 also show that we could set smaller number
of BlockDim and N in low dimensional functions. In high dimen-
sional function, for some functions, we could set a small bees num-
ber for shorter execution time like HyperSphere and Griewank. But
sometimes the number of bees could not be too small, or the solu-
tion will converge with big error like Rosenbrock.
4.2.4. Robustness and Speedup
We calculated the execution times and the success rates of fifty

running times for the two algorithms. For estimating the execution
time of BA, the parameters for all benchmark functions are given in
Table 6 according to the original set in the paper [6], and the Table 7
shows the parameters set of CUBA by using the best parameters set
we have found before.

We also evaluated the success rate of those functions with the
error and got 100% success rates by using both of the algorithms
in 50 times in the standard Bees Algorithm and CUDA-based BA
respectively. It shows that the proposed CUBA can obtain the same
success rate compared with standard BA. Finally, we evaluate the
speedup in terms of execution time and executed iteration be-
tween them. Since CUDA supports fast math library, we are
encouraged to use them as often as possible. The evaluation results
are shown in Table 8 for execution time speedup and for executed
iteration speedup. It is obviously not only the execution time of
Table 8
Speedup (time).

Benchmark Functions Standard BA CUDA-based BA(CUBA) Speedup

Ackley 273 ms 6.05 ms 45.12
Easom 70 ms 5.27 ms 13.28
Goldstein and Price 92 ms 5.01 ms 18.36
Martin and Gaddy 76 ms 3.27 ms 27.24
Schaffer 231 ms 6.32 ms 36.55
Schwefel 279 ms 4.90 ms 56.93
HyperSphere 389 ms 15.79 ms 24.63
Griewank 2520 ms 48.02 ms 52.47
Rosenbrock 5595 ms 432.98 ms 12.92

Table 9
Iteration reduction ratio (# of Standard BA/ # of CUBA).

Benchmark
Functions

Standard
BA

CUDA-based BA
(CUBA)

Iteration reduction
factor

Ackley 90 31 2.90
Easom 44 31 1.41
Goldstein and

Price
49 24 2.04

Martin and Gaddy 50 7 7.14
Schaffer 55 33 1.66
Schwefel 141 34 4.14
HyperSphere 158 42 3.76
Griewank 1487 49 30.34
Rosenbrock 4456 94 47.40
CUBA less than BA, but also less iterations to be executed. The re-
sult shows that the proposed CUDA-based BA has 13 �56 times
faster than BA in various benchmark functions. As the result in Ta-
ble 9, CUBA takes less iterations to find the solutions. It makes hu-
ger difference while running the high dimensional functions.
5. Conclusion and future work

In this paper, first we have proposed Parallel Bees Algorithm
based on CUDA. We modify the local search procedure. Running
in SIMT (Single Instruction Multiple Threads) hardware architec-
ture, we merge the two parts of the local searching sites avoiding
wasting the computing powers of GPU. For the same reason, we
have no site abandonment procedure. In addition, we let the bees
recruiting in different sites maintain own ngh, meaning they shrink
independently. We sort the colonies in the same block individually
by using Odd–Even Sorting algorithm to get the benefit of parallel.
The communication mechanism between colonies in the same
block is also important point to decrease the convergence time,
in our algorithm, we choose two-phase communication for better
result.

To find the features of this new algorithm, we modify the
parameters, and get the result of the most of low dimensional func-
tions could be run with good performance by using small nep. That
is one of key points why CUBA runs with faster convergence time
than standard Bees Algorithm. We also try to decrease the number
of colonies in a CUDA block and decrease the number of bees per
colony to optimize the parameters set for each functions. We also
compared the convergence time (error < 0.001) of CUDA Bees Algo-
rithm with The Bees Algorithm. The experimental result shows
CUBA is faster than BA at least 13 times in 9 different functions
of optimization problems.

In the future, we will compare the CUBA to other parallel swarm
based algorithm, and try more parallel sorting algorithm and com-
munication mechanism. Not only for solving the optimization
problem, we would also apply the proposed algorithm to real
world applications. Today, cloud computing becomes more and
more important and popular. There are some platforms which pro-
vide GPU based cloud computing service. We would improve the
proposed algorithm and testing in GPUs clusters environment.

Acknowledgements

We are grateful for the many excellent comments and sugges-
tions made by the anonymous referees. This work was supported
in part by the Nation Science Council of Republic of China under
Grant no. NSC 101-2221-E-009-034-MY2.

References

[1] M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D. thesis,
Politecnico di Milano, Italie, 1992.

[2] D.T. Pham, E. Koc, A. Ghanbarzadeh, S. Otri, S. Rahim, M. Zaidi, The Bees
Algorithm–a novel tool for complex optimisation problems, in: Proceedings of
the Second International Virtual Conference on Intelligent Production
Machines and Systems, 2006, pp. 454–461.

[3] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE
International Conference on Neural Networks, vol. IV, 1995, pp. 1942–1948.

[4] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems, Oxford University Press, New York, 1999.

[5] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm, Global
Optimization 39 (3) (2007). pp. 459–171.

[6] D.T. Pham, M. Castellani, The Bees Algorithm: modelling foraging behaviour to
solve continuous optimization problems, Proceeding of Institute Mechanical
Engineering, C: Journal of Mechanical Engineering and Science 223 (12) (2009)
2919–2938.

[7] D.T. Pham, S. Otri, A. Afify, M. Mahmuddin, H. Al-Jabbouli, Data clustering
using the Bees Algorithm, in: Proceedings of the 40th CIRP International
Manufacturing Systems, Seminar, 2007.

http://refhub.elsevier.com/S1383-7621(13)00187-2/h0005
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0005
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0005
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0010
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0010
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0010
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0015
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0015
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0015
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0015


G.-H. Luo et al. / Journal of Systems Architecture 60 (2014) 271–279 279
[8] D.T. Pham, A.H. Darwish, E.E. Eldukhri, S. Otri, Using the Bees Algorithm to tune
a fuzzy logic controller for a robot gymnast, in: Proceedings of International
Conference on Manufacturing Automation, 2007, pp. 28–30.

[9] K. Guney, M. Onay, Bees Algorithm for design of dual-beam linear antenna
arrays with digital attenuators and digital phase shifters, International Journal
of RF and Microwave Computer-Aided Engineering 18 (4) (2008) 337–347.

[10] D.T. Pham, E. Koc, J.Y. Lee, J. Phrueksanant, Using the Bees Algorithm to
schedule jobs for a machine, in: Proc Eighth International Conference on Laser
Metrology, CMM and Machine Tool Performance, LAMDAMAP, Euspen, 2007,
pp. 430–439.

[11] NVIDIA CUDA Programming Guide Version 4.2: NVIDIA Corporation, 2012.
[12] NVIDIA CUDA Best Practices Guild, 4.2 edition, NVIDIA Corporation, 2012.
[13] Jianming Li, Xiangpei Hu, Zhanlong Pang, Kunming Qian, A parallel Ant colony

optimization algorithm based on fine-grained model with CPU-acceleration,
International Journal of Innovative Computing, Information and Control, 5
11(A) (2009) 3707–3716.

[14] Audrey Delévacq, Pierre Delisle, Marc Gravel, Michaël Krajecki, Parallel ant
colony optimization on graphics processing units, Journal of Parallel and
Distributed Computing 73 (1) (January 2013) 52–61.

[15] José M. Cecilia, José M. García, Andy Nisbet, Martyn Amos, Manuel Ujaldón,
Enhancing data parallelism for Ant Colony Optimization on GPUs, Journal of
Parallel and Distributed Computing, 73(1) (2013) 42–51.

[16] W.B. Langdon, Graphics processing units and genetic programming: an
overview, Soft Computing 15 (8) (August 2011) 1657–1669.

[17] Petr. Pospichal, Jiri. Jaros, Josef. Schwarz, Parallel genetic algorithm on the
CUDA architecture, Lecture Notes in Computer Science 6024 (2010) 442–451.

[18] A.K.R. Mohamad Idris, M.W. Mustafa, A Parallel Bees Algorithm for ATC
enhancement in modern electrical network, in: 2010 Fourth Asia International
Conference on Mathematical/Analytical Modelling and Computer, Simulation,
2010, pp. 450–455.

[19] S. Lakshmivarahan, S.K. Dhall, L.L. Miller, L. Alt Franz, C. Marshall, Yovits, (Eds.),
Parallel Sorting Algorithms, Advances in Computers, vol. 23, Academic Press,
1984, pp. 295–351.

[20] M. Phillips. Available from: <http://homepages.ihug.co.nz/~aurora76/Malc/
Sorting_Array.htm#Exchanging>.

[21] M. Kai, T. Hatori, Parallelized search for the optimal/sub-optimal solutions of
task scheduling problem taking account of communication overhead, in: 2001
IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, vol. 1, pp. 327–330.

[22] C. Nakazawa, S. Kitagawa, Y. Fukuyama, Hsiao-Dong Chiang, A method for
searching multiple local optimal solutions of nonlinear optimization problems,
in: 2005. IEEE International Symposium on Circuits and Systems, ISCAS, vol. 5,
2005, pp. 4907–4910.

[23] I.R. De Pablo, A. Becker, T. Bretl, An optimal solution to the linear search
problem for a robot with dynamics, in: 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 652–657.

[24] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning, Reading: Addison-Wesley Longman, 1989.

[25] Duc Truong Pham, Ashraf Afify, Ebubekir Koc, Manufacturing cell formation
using the Bees Algorithm, in: IPROMS 2007 Innovative Production Machines
and Systems Virtual Conference, Cardiff, UK.

[26] D.T. Pham, E. Koç, J.Y. Lee, J. Phrueksanant, Using the Bees Algorithm to
schedule jobs for a machine, in: Proc Eighth International Conference on Laser
Metrology, CMM and Machine Tool Performance, LAMDAMAP, Euspen, UK,
Cardiff, 2007, p. 430–439.

[27] Marcus. Randalla, Andrew. Lewisb, A parallel implementation of ant colony
optimization, Journal of Parallel and Distributed Computing 62 (9) (2002)
1421–1432.

[28] Thomas. Stützle, Parallelization strategies for ant colony optimization, Lecture
Notes in Computer Science 1498 (1998) 722–731.

[29] Chrisila B. Pettey, Michael R. Leuze, John J. Grefenstette, A parallel genetic
algorithm, in: The Second International Conference on Genetic Algorithms on
Genetic algorithms and their application, 1987, pp. 155–161.

[30] H. Mühlenbein, M. Schomisch, J. Born, The parallel genetic algorithm as
function optimizer, Parallel Computing 17 (6–7) (1991) 619–632.

[31] J.F. Schutte, J.A. Reinbolt, B.J. Fregly, R.T. Haftka, A.D. George, Parallel global
optimization with the particle swarm algorithm, International Journal for
Numerical Methods in Engineering 61 (13) (2004) 2296–2315.

[32] H. Narasimhan, Parallel artificial bee colony (PABC) algorithm, in: 2009 World
Congress on Nature & Biologically Inspired Computing, 2009, pp. 306–311.

[33] Luca Mussi, Fabio Daolio, Stefano Cagnoni, Evaluation of parallel particle
swarm optimization algorithms within the CUDA architecture, Information
Sciences 181 (20) (2011) 4642–4657.

[34] D.M. Munoz, C.H. Llanos, L.D.S. Coelho, M. Ayala-Rincon, Accelerating the
artificial bee colony algorithm by hardware parallel implementations, in: 2012
IEEE Third Latin American Symposium on Circuits and Systems (LASCAS),
March 2 2012, pp. 1–4.

[35] P. Songmuang, M. Ueno, Bees Algorithm for construction of multiple test forms
in E-Testing, IEEE Transactions on Learning Technologies 4 (3) (2011) 209–
221.

[36] A. Jevtic, A. Gutierrez, D. Andina, M. Jamshidi, Distributed Bees Algorithm for
task allocation in swarm of robots, IEEE Systems Journal, 6(2) (2012) 296–304.
[37] You Zhou, Ying Tan, GPU-based parallel particle swarm optimization, IEEE
Congress on Evolutionary Computation, 2009, CEC ‘09, pp. 1493–1500.

[38] Dusan Teodorovic, Panta Lucic, Goran Markovic, Mauro Dell’ Orco, Bee colony
optimization: principles and applications, in: 8th Seminar on Neural Network
Applications in Electrical Engineering, NEUREL-2006, Serbia, September 25–
27, 2006, pp. 151–156.

[39] Scott Camazine�, James Sneyd, A model of collective nectar source selection by
honey bees: self-organization through simple rules, Journal of Theoretical
Biology, 149(4) 21 (April 1991) 547–571.

[40] P. Lu, D.Teodorovi, Bee system: modeling combinatorial optimization
transportation engineering problems by swarm intelligence, in: Preprints of
the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel,
Azores Islands, Portugal, 2001, pp. 441–445.

Sheng-Kai Huang received his Master Degree from
Institute of Computer Science and Engineering of
National Chiao Tung University in 2012. He is now with
Telecommunication Laboratories Chunghwa Telecom
Co., Ltd. His research interests are in Parallel, Cloud and
Mobile Computing.
Guo-Heng Luo received his Master Degree from Insti-
tute of Computer Science and Engineering of National
Chiao Tung University in 2009. He is now a Ph.D. stu-
dent with the Institute of Computer Science and Engi-
neering, National Chiao Tung University. His research
interests are in Web 2.0, Parallel and Cloud Computing.
Yue-Shan Chang received his PhD Degree from Com-
puter and Information Science at the National Chiao
Tung University in 2001. He joined the Department of
Electronic Engineering of the Ming Hsing University of
Science and Technology in August 1992. Since August
2004, he joined the Department of Computer Science
and Information Engineering, National Taipei Univer-
sity, Taipei County, Taiwan. Since August 2010, he had
been a Professor. His research interests are in distrib-
uted systems, web service composition, information
retrieval, mobile computing and grid computing.
Shyan-Ming Yuan received his BSEE degree from
National Taiwan University in 1981, his MS degree in
Computer Science from University of Maryland, Balti-
more County in 1985, and his PhD degree in Computer
Science from the University of Maryland College Park in
1989. Dr. Yuan joined the Electronics Research and
Service Organization, Industrial Technology Research
Institute as a Research Member in October 1989. Since
September 1990, he has been an Associate Professor at
the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan. He
became the Professor in June 1995. His current research

interests include Distributed Objects, Internet Technologies, and Software System
Integration. Dr. Yuan is a member of ACM and IEEE.

http://refhub.elsevier.com/S1383-7621(13)00187-2/h0020
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0020
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0020
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0025
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0025
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0025
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0030
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0030
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0035
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0035
http://homepages.ihug.co.nz/~aurora76/Malc/Sorting_Array.htm#Exchanging
http://homepages.ihug.co.nz/~aurora76/Malc/Sorting_Array.htm#Exchanging
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0045
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0045
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0045
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0050
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0050
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0055
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0055
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0060
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0060
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0060
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0065
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0065
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0065
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0070
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0070
http://refhub.elsevier.com/S1383-7621(13)00187-2/h0070

	A parallel Bees Algorithm implementation on GPU
	1 Introduction
	2 Background and related work
	2.1 Bee colony optimization
	2.2 The Bees Colony Algorithm
	2.2.1 Neighbourhood shrinking
	2.2.2 Site abandonment

	2.3 Related work

	3 Parallel Bees Algorithm on GPU
	3.1 System overview
	3.2 Parallelization algorithm
	3.2.1 Parallel initialization
	3.2.2 Odd–even sort
	3.2.3 Group Bees into different colonies
	3.2.4 Modified Bees Algorithm
	3.2.4.1 Modification of local search
	3.2.4.2 Random seeds
	3.2.4.3 Neighbourhood shrinking
	3.2.4.4 Communication with shared memory



	4 Experimental results and analysis
	4.1 Benchmark functions
	4.2 Analysis and result
	4.2.1 Analysis of nep
	4.2.2 Analysis of the number of colonies
	4.2.3 Analysis of the number of bees
	4.2.4 Robustness and Speedup


	5 Conclusion and future work
	Acknowledgements
	References


