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ABSTRACT: This paper investigates the effect of foundation rigidity on impedance 
functions for a circular foundation on a viscoelastic soil medium. In addition to 
vertical and rocking impedances, the paper also investigates the influence on cou- 
pling impedance for horizontal and rocking motions of foundation and horizontal 
impedance. To generate impedance functions for flexible foundation, a substructure 
technique is used. For the substructure of the flexible foundation, classical plate 
theory with neglecting inertial force is employed to obtain the deformation of the 
foundation due to the interaction stress. For the substructure of the soil medium, 
the technique, which can deal with wave equations in cylindrical coordinates with 
arbitrarily prescribed boundary conditions, is employed to obtain the displacement 
field in the soil medium due to the interaction stresses. Then, with the help of the 
variational principle, the displacement continuity condition of both substructures 
is imposed to generate the impedances for the flexible foundation. To demonstrate 
the effectiveness of the presented procedure, comparison with some previous nu- 
merical results is made. Selected numerical results of the presented procedure are 
presented. Also, comparison between results with and without the assumption of 
relaxed stress condition is given in order to show the significance of the assumption. 

INTRODUCTION 

A reliable way to per form dynamic analysis of soil-structure interact ion 
is to use the substructure method  in which the soil medium is t rea ted  as a 
continuum body, and structure itself is modeled by the finite element  method.  
Therefore,  obtaining the impedance ,  which represents  the resistance of  soil 
medium to the vibrat ion of structure,  is an impor tant  step for the interact ion 
analysis. 

A large amount  of  research work has been done for obtaining the imped-  
ance in recent decades.  However ,  in most of the research work the as- 
sumption of rigid foundat ion is made .  For  example ,  Lysmer  (1965) used 
the analytic solution for constant  normal  ring traction on half-space medium 
to generate a vertical compliance function (inverse of  impedance  function) 
for a rigid circular plate;  and Luco and Wes tmann  (1971) calculated all the 
compliance functions for a rigid circular plate on a half-space medium by 
reducing Fredholm integral  equat ions to algebraic equations using the finite 
difference method.  Liou et al. (1991; 1992) deve loped  a technique to de- 
compose the prescr ibed tractions on half-space and layered half-space me- 
dia, which can match with general  solutions of wave equations in cylindrical 
coordinates,  to genera te  all the impedance  functions for a rigid circular plate  
rigidly welded on soil medium.  

Only a small amount  of  research work  investigating the effect of foun- 
dation flexibility on impedance  functions is repor ted  in l i terature.  Lin (1978) 
employed Fredholm integral  equat ions to obta in  the vertical  and rocking 
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impedance functions for thin plate with thick walled cylinder on viscoelastic 
half-space medium. Krenk and Schmidt (1981) applied Green's influence 
function of half-space and the plate theory of Reissner (1975) and Mindlin 
(1951) to solve the vibration problems of the plate on half-space medium. 
Whittaker and Christiano (1982) used a discretization scheme to find the 
elastic solutions for flexible plate and half-space medium independently, 
and then enforced the compatibility condition to solve the foundation-soil 
interaction problems. Iguchi and Luco (1982) employed the idea similar to 
Lin's (1978) to calculate the dynamic responses of flexible circular foun- 
dation with rigid core on layered viscoelastic half-space medium. Rajapakse 
(1989) used Green's function of half-space and classical plate theory to 
calculate the dynamic responses of flexible annular plate on viscoelastic half- 
space medium. 

For the studies regarding the effect of plate flexibility as aforementioned, 
the assumption of relaxed contact stress condition, in which contact shear 
stresses between foundation and soil medium is ignored, is always made. 
Therefore, only the influence of foundation rigidity on vertical and rocking 
impedance can be investigated. However, in addition to vertical and rocking 
impedance, coupling impedance for rocking and horizontal motions of foun- 
dation and horizontal impedance are also influenced by foundation rigidity, 
if the flexible foundation is assumed to be rigidly welded to the soil medium. 
Therefore, investigating this influence is also one of the major purposes of 
this paper. 

In this paper, the contact stresses (interaction stresses) between the foun- 
dation plate and soil medium is assumed to be piecewise linear in the r- 
direction of cylindrical coordinates for each Fourier component with respect 
to azimuth (variable 0). To deal with the foundation-soil system, the sub- 
structure concept is applied. For the substructure of foundation, the classical 
plate theory with ignorance of inertial force is employed to solve the problem 
of the foundation plate subjected to the assumed unknown contact stress. 
For the soil medium with prescribed unknown contact stresses, the tech- 
nique, developed by Liou (1989, 1991, 1992), is employed to decompose 
the prescribed unknown contact stresses in order to match with the general 
solution of wave equations in cylindrical coordinates. Then, the condition 
of displacement continuity for the foundation plate and soil medium is 
imposed through variational principle to obtain the unknown intensities of 
piecewise linear contact stresses and the impedance functions for the foun- 
dation plate. 

Some selected numerical results of the proposed procedure are presented 
in the paper. To demonstrate the effectivenss of the proposed procedure, 
some comparison with previous work reported by Iguchi and Luco (1982) 
is made. For vertical and rocking impedances, the results with and without 
the assumption of relaxed-contact-stress condition are given in the same 
figures in order to show the discrepancy between the two results. For the 
case of foundation rigidly attached to soil medium, the coupling and hori- 
zontal impedances is also influenced by the rigidity of the foundation. The 
results of coupling and horizontal impedances for different foundation rig- 
idities are also given. 

ANALYSIS OF FOUNDATION-SOIL SYSTEM 

For dynamic analysis of a foundation-soil system, the motion of the system 
is assumed to be harmonic with respect to time, and the time harmonic 
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variation (ei'~ will be omitted in the derivations, explanations and math- 
ematical manipulations in the paper for convenience. In the foundation-soil 
interaction system, the foundation is assumed to be rigid to axial deformation 
and flexible to curvature deformation with neglecting shear deformation 
and inertial force. The soil medium can be viscoelastic half-space or layered 
half-space, and the contact condition between foundation and soil can be 
smooth or rigidly welded. 

To obtain the impedance functions for vibrations of flexible foundation, 
substructure technique is employed. The contact stresses (interaction stresses) 
between foundation and soil can be expressed in terms of Fourier compo- 
nents with respect to the azimuth (0 coordinate in cylindrical coordinates). 
For each Fourier component of contact stresses, piecewise linear distribution 
in the r -  direction of cylindrical coordinates is assumed. Let contact area 
be a circle with radius ao. The radius ao can be divided into m equal intervals 
as b = ao/m. The piecewise linear stress model for each Fourier component 
can then be expressed as follows: 

m - 1  

;rrz = 
j x 

m - - 1  

j=l 

m - - 1  

"~0z = E 
j=l 

hj(r)qj  + ho(r)qo + hm(r)qm = hTq (la)  

hj(r)pj  + ho(r )p  o + hm(r)p  m = hTp (lb) 

hj(r)sj  + ho(r)s  o + hm(r)s  m = hTs (lc) 

where 

r - j b  
hi(r) = 1 + b ' if (j - 1)b <- r <- jb  and 1 -<j-< m (ld)  

r - j b  
hi(r) = 1 b ' if j b  <- r <- ( j  + 1)b and O-<j-< m - 1 (le) 

hi(r) = 0; otherwise ( I f )  

and qj, Pi, and sj = unknown intensities of interaction stresses at node j for 
;r,z, ~r~z, and ;r0z, respectively. 

Now, substructure technique is applied. For the substructure of soil me- 
dium with prescribed tractions in (1), Liou et al. (1989, 1991, 1992) have 
developed a technique to decompose the prescribed tractions of (1) in order 
to match with the general solutions of three dimensional wave equations in 
cylindrical coordinates reported by Sezawa (1929)�9 According to Liou's 
reports, the corresponding displacement vector of soil medium at the surface 
(z = 0) contact with foundation can be expressed in terms of the contact 
stress vector of (1) for each Fourier component as follows: 

{ u r ( r ) ]  f o  u z ( r ) ~  = - JQD d k P  cos nO 
u0(r) J 

(2) 
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where contact stress vector px = (qr, pr ,  s r) in which vectors q, p, and s 
are shown in (1); J = 3 x 3 Bessel function matrix; Q = 3 x 3 transfer 
matrix for the soil medium; 3 • 3 (m + 1) matrix D contains the integrations 
involving Bessel functions with respect to variable r, and k = azimuthal 
wave number.  Matrices J,  Q, and D are defined in the papers by Liou et 
al. (1991, 1992) for both layered and half-space soil medium. 

Let traction vector io = (?rz, 6"zz, ?0_,) r cos nO and be defined in (1). If 
one applies variational principle to the substructure of  soil medium for each 
Fourier component ,  the following equation can be obtained: 

s:s: 0:) so~ ~W = ~ironor dO dr = - ~ p r  H JQDr  dk drP 

: - ( 2 ~ ) g P r f o ( f o ~  

where 3(m + 1) x 3  matrix [!o!] 
H = h (3a) 

0 

and vectors h and u. are defined in (1) and (2), respectively. The  coefficients 
2~r and -rr in (3) come from the integrals f ~ '  cosZn0 dO or f ~  sin2n0 dO, 
which are not explicitly expressed in the formulations. In the derivation of 
(3), the relationship f~o H Jr dr = kD T is shown in the paper  by Liou et al. 
(1992). Also, the matrix K~ = - f ~  DTQDk dk is symmetric  as shown in 
the paper  by Liou et al. (1992). 

Numerically, most computat ional  effort in the preceding brief derivation 
is spent on calculating matrix D in which numerical integrations are involving 
Bessel functions with respect to variable r. The matrix D is independent  of 
excitation frequency and complexity of properties of soil medium. The changes 
of excitation frequency or soil propert ies are only reflected in matrix Q in 
(3). Therefore,  one can generate several matrices K1 of (3) for different 
excitation frequencies simutaneously, if one reserves the storage space in 
the computer  for the several matrices K1. This feature of calculating K 1 in 
(3) can save a lot of computat ional  cost for generating impedance functions 
for soil-structure interaction analysis. 

Consider the substructure of foundation. For the analysis of  foundation 
plate subjected to the contact stress assumed in (1), classical plate theory 
is employed with neglecting inertial force. Since the foundation is assumed 
to be rigid to axial stress, only traction component  6zz in (1) has an effect 
on the deformation of  the foundation plate. The  governing equat ion of the 
foundation plate for nth Fourier  component  in cylindrical coordinates can 
be written as 

/ ) ~ 7 2 7 2 w ( r )  = q(r) (4a) 

where 

0 2 1 0 n 2 
w(r)cos nO = [ a z ( r )  - A z ( r ) ] c o s  n O ;  V 2 = - -  + - -  + ( 4 b )  

Or 2 r Or -~ 
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w h e r e / )  = plate rigidity; Az(r)cos nO = displacement field or rigid body 
motion; az(r)cos nO = total displacement field; and q(r) = ~rzz(r) for the 
nth Fourier component  in which 6"zz is defined in (1). Also, note that the 
variation with respect to 0 (cos nO) has been omit ted in (4). By observing 
(4a), one can conclude that  displacement for rigid body motion can occur 
only for vertical motion (n = 0) with Az(r) = A o and rocking motion (n -- 
1) with Az(r)cos 0 = Air cos 0 .  

To solve (4), one can treat  Ozz(rp) drp as concentrated loading applied 
at the location r = rp to find the deformat ion shape of the plate and then 
integrate with respect to rp to obtain the total deformation of the plate in 
terms of the unknown intensities at the nodal ring of piecewise linear stress 
model (1). For the application of concentrated loading ~rzz(rp) drp at r = 
rp, the displacement field of  the plate can be written as follows: 

dWl(r ) = F,(r);  for r < rp (5a) 

dw2(r) = fn(r); for rp < r < ao (5b) 

where 

Fo(r) = Clo + C2o r2 + (730 In(r) + C40 r2 In(r); for n = 0 (5c) 

Fl(r) = Cn + C21 r3 + (731 r-1 + C41r ln(r); for n = 1 (5d) 

where ao = radius of the plate and the expressions for fn(r) are similar to 
that for F,(r) except that the coefficients are different. To determine the 
coefficients, one can use the boundary  conditions of the plate and the con- 
tinuity conditions at r = rp. The final solution of the displacement field of  
the plate subjected to the assumed piecewise linear traction in (1) can be 
obtained by superimposing the integrations of  ( 5 a - b )  with respect to rp. 
This leads to the following equation: 

w(r) = [ l ] rR(r)p  (6a) 

where (m + 1) • (m + 1)mat r ix  

[ Roo(r) "'" Rom(r) ] 
R(r) = �9 ". (6b) 

LRm'o(r) "': Rm,~(r)] 

in which Rij = displacement f ield for  (i - 1)b < r < (i + 1)b due to the 
traction hi(r ) defined in ( la) ;  vector  [1] = (1, 1, . . . .  1)T; and stress 
intensity vector p is defined in Eq. ( lb) .  

The total displacement fiz(r)cos nO of the plate for the nth  Fourier  com- 
ponent can be obtained by including the displacement of rigid body motion 
defined in (4). 

t~z(r)cos nO = [A z + w(r)]cos nO 

= a~(r)cos nO + [1]rR(r)p cos nO = a~(r)cos nO + a~(r)cos nO (7) 

For the other two d isp lacement  components  ar and ao of the foundation 
plate, only the displacement of  rigid body motion is accounted,  since the 
foundation plate is assumed to be rigid for in-plane motions.  

Let displacement vector  be expressed as rio = fir + eot = [(fir, mz, a0) T 
+ (0, w, 0)Z]cos nO, in which u r represents displacement of rigid body 
motion of foundation and u~ represents  flexibility deformat ion of founda- 
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tion. The virtual work done due to the variation of traction in (1) can be 
obtained as follows: 

fa~ 2~r (2~) I fO ~ ~ W =  ~0 ~0 ~[oTflo r d 0 d r  = -- ~pT  H f V r d r  

+ gp" h[llR(r)r drp = (SpTB~A + ~p'K2p) (8) 

where vector A contains amplitudes of no components of rigid body motion; 
B~ = 3(m + 1 ) X n o  matrix; and Kz = (m + 1) • (m + 1) matrix. 

Now, the continuity of displacements for both substructures of soil me- 
dium and foundation plate is imposed through equating (3) to the modified 
(8). The following equations are obtained: 

o r  

o r  

(9a)  

where vector V = generalized displacements at the nodal rings of the as- 
sumed piecewise-linear-stress model. To match with the dimensions of ma- 
trix KI in (3), matrix K2 in (8) is expanded to the dimensions of 3(m + 1) 
• 3(m + 1) and expressed as Ig 2 in (9). The I~2 is simply defined as follows: 

[i~ I~2 = Kz (9c) 
0 

Eq. (9b) gives the relationship between the nodal generalized displace- 
ments of the assumed stress model of (1) and the displacement amplitudes 
of rigid body motion. To obtain the corresponding force-stress relationship 
between forces for rigid body motion and stress intensities of the piecewise- 
linear-stress model, the reciprocal theorem can be used. This leads to the 
following equation: 

where vector F = generalized forces for rigid body motion. Substituting P 
= K-~BIA from (9a) into (10) yields 

The matrix | is the impedance function matrix corresponding to amplitudes 
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of the rigid body motion of the foundation. In the foregoing equations, note 
that matrices KI and K2 can be proved symmetric using reciprocal theorem. 
Therefore, impedance matrix I is symmetric too. This concludes the deri- 
vations of impedance matrix for circular flexible foundation. 

NUMERICAL ANALYSIS 

Two types of foundation plates on viscoelastic half-space medium shown 
in Fig. 1 are selected to calculate impedance functions. One of the two types 
is a circular foundation with a rigid core. Therefore, the connection condition 
between the rigid core and flexible annular plate is rigid. The other type is 
a flexible circular plate with a thin walled cylinder connected to its rim. The 
connection condition with the thin walled cylinder is assumed to be a hinge. 
The contact condition between the foundation plate and soil medium can 
be smooth or rigidly welded. Hysteretic damping with damping ratio ~ = 
0.05 is assumed in the half-space medium. After some extensive study, m 
= 20 for the piecewise linear stress model in (1) can give accurate results. 
Therefore, m = 20 is chosen for the calculation of results presented in this 
paper. 

To investigate the influence of foundation flexibility, the relative rigidities 
of the foundation a = (D/Goa 3) are selected to be 0% 10, 1, 0.1, and 0.01, 
in which/3 is plate rigidity; Go is real part of the complex shear modulus 
of soil medium; and ao is radius of foundation. All of the numerical results 
presented in the figures are nondimensionalized by ao and Go, and the 
vibration frequencies are nondimensionalized by ao and the real part of 
shear wave velocity R(cs)in half-space medium. 

To demonstrate the effectiveness of the proposed procedure, comparison 
of the rocking impedance function with the previous results reported by 
Iguchi and Luco (1982), in which Poisson ratios for soil and foundation are 
0.4 and 0.167, respectively and radius of rigid core is a quarter of the radius 
of the foundation (C = 0.25 in Fig. 1), are made in Fig. 2 for a = 1, 0.1, 
and 0.01. In the figures, dashed lines show the results by the proposed 
procedure and solid lines show the results by Iguchi and Luco (1982). From 
the figures, one observes that both results match pretty well to each other. 

Figs. 3 -6  show the results of impedance functions for a circular foundation 
with a rigid core, In the example, the Poisson ratios of the soil medium and 
foundation plate are 0.33 and 0.21, respectively, and the radius of the rigid 
core is one fourth of the radius of the foundation (C = 0.25 in Fig. 1). In 
the figures, solid lines show the results for rigidly welded contact condition 
and dashed lines show the results for smooth contact condition. If  smooth 

i 

(a) 

FIG. 1. 
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l i  R,,dCoro 
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I Thin Wall 

Hinge 
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(a) Foundation with Rigid Core; (b) Foundation with Thin-Walled Cylinder 
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contact condition is assumed, there is no effect of foundation rigidity on 
coupling impedance for rocking and horizontal motions and horizontal 
impedance. Therefore, Figs. 5 and 6 for coupling and horizontal impedances 
only show the results for rigidly welded contact condition. 

From Figs. 3 and 4, one can find that foundation rigidity does have a 
strong influence on vertical and rocking impedance functions except the 
relative rigidity of foundation ~ - 10. Also, one can observe some dis- 
crepancy between the real parts of the results for smooth and rigidly welded 
contact conditions. The discrepancy is diminishing as the foundation rigidity 
is getting smaller. Figs. 5 and 6 give coupling and horizontal impedance 
foundation. By examining both figures, one can conclude that foundation 
rigidity has a stronger effect on the coupling impedance function and has a 
smaller influence on the horizontal impedance function except that the 
foundation rigidity is small (saying a < 0.01). 

Figs. 7-10 show the results of vertical, rocking, coupling, and horizontal 
impedance functions, respectively, for the case of flexible foundation with 
a thin-walled cylinder connected to its rim. Similar phenomenons to that, 
from the case of the flexible foundation with a rigid core, can be observed. 
However, a larger discrepancy between two contact conditions (smooth and 
rigidly welded) is observed while compared to that of the flexible foundation 
with a rigid core. Also, if one compares Figs. 7 -9  with the corresponding 
Figs. 3-5,  one can find that the influence behaviors of foundation rigidity 
are totally different. This means that not only the foundation rigidity influ- 
ences impedance functions, but also types of supporting system of structure 
has strong effect on impedance functions. 

After some numerical investigations have been done, conclusions can be 
drawn as follows: 

The foundation can be assumed rigid if the relative rigidity of foundation 
is greater than 10. 
For a very flexible foundation (a < 0.01), the effect of foundation rigidity 

on the horizontal impedance function may be important. 
The contact condition between the foundation and surrounding soil is 

important if some degree of precision is wanted to be attained. 
The type of superstructure connected to the foundation is also important 

for calculating impedance functions for soil-structure interaction analysis. 
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