
Research Article
Design and Implementation of File Deduplication
Framework on HDFS

Ruey-Kai Sheu,1 Shyan-Ming Yuan,2 Win-Tsung Lo,1 and Chan-I Ku3

1 Department of Computer Science, Tung Hai University, Taichung, Taiwan
2 Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan
3 Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan

Correspondence should be addressed to Shyan-Ming Yuan; smyuan@cs.nctu.edu.tw

Received 10 January 2014; Accepted 2 March 2014; Published 10 April 2014

Academic Editor: Yue Shan Chang

Copyright © 2014 Ruey-Kai Sheu et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

File systems are designed to control how files are stored and retrieved. Without knowing the context and semantics of file contents,
file systems often contain duplicate copies and result in redundant consumptions of storage space and network bandwidth. It has
been a complex and challenging issue for enterprises to seek deduplication technologies to reduce cost and increase the storage
efficiency. To solve such problem, researchers proposed in-line or offline solutions for primary storages or backup systems at the
subfile or whole-file level. Some of the technologies are used for file servers and database systems. Fewer studies focus on the cloud
file system deduplication technologies at the application level, especially for the Hadoop distributed file system. It is the goal of this
paper to design a file deduplication framework onHadoop distributed file system for cloud application developers.The architecture,
interface, and implementation experiences are also shared in this paper.

1. Introduction

File systems are designed to control how files are stored and
retrieved. Due to the unawareness of structure and semantics
of file contents, a file system often contains duplicate copies of
files which will result in redundant consumptions of storage
space and network bandwidth. As the progress of internet
social applications in recently years, such as Facebook [1],
Youtube [2], and Dropbox [3], the frequency of file dupli-
cation also grows at an explosive rate when users share and
synchronize files between each other.

It has been a complex and challenging issue for enter-
prises to reduce the redundant cost of storage spaces. Accord-
ing to the IDC [4], more than 80% of enterprises are seeking
deduplication technologies to reduce cost and increase the
storage efficiency. File deduplication is the task of identifying
entities of the same real-world object [5]. In a company,
files are usually stored in local disk or primary storages,
network file repositories, document management systems,
and secondary storages, such as backup storage or tapes. For
internet service providers, files are geographically dispersed
locations. Taking Google as an example, files are stored in

Google file system [6]. Generally speaking, most companies
consolidate the storage architecture in a mixture manner,
and it further increases the complexity of file deduplication
solutions design.

Recent advances of deduplication technologies are pro-
posed based on the characteristics of applications. Maddodi
et al. [7] proposed data deduplication techniques and analysis
on data warehouse applications and tried to reduce the
storage consumptions for database or online transaction
processing. There are also literatures that tried to indicate
the considerationswhile choosing file deduplication solution.
For the granularity considerations, deduplication can work at
either the subfile [8, 9] or whole-file [10] level. This would
raise the trade-off evaluation issue in space savings and
performance impacts. The more fine-grained deduplication
creates more opportunities of space savings which may cause
significant performance impacts.

While shifting the paradigm to the file deduplication of
cloud systems, the trade-off of space savings and performance
impacts are still major issues for data deduplication tech-
niques. Chun-Ho Ng’s LiveDFS focused on the deduplication
of VM image in the Open-Source cloud and achieved at least

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 561340, 11 pages
http://dx.doi.org/10.1155/2014/561340

http://dx.doi.org/10.1155/2014/561340

2 International Journal of Distributed Sensor Networks

40% of storage saving for VM images storage with reasonable
performance [11]. SAM [12] is a semantic-aware multitiered
source deduplication framework for cloud backup system.
It gets a high deduplication ratio which is as better as
global chunk-based deduplication and very low overhead
than that of global chunk-based deduplication. Shang and
Li [13] pointed out several shortcomings of existing works
and discussed the corresponding possible solutions for data
deduplication for cloud systems. The challenging issues for
cloud data deduplication are still the balance of trade-off
between storage efficiency and performance.

There are still challenging issues missing in the previous
studies, and they are the processing of large volume of hash
data and the computation and search of hash index. It would
be natural for cloud systems that the file sizes are larger than
traditional storage and the number of files is enormously
increasing from day to day. Less studies paid attentions to
the practical cloud file system. And there is a strong demand
for cloud application developers to have a simple and feasible
data deduplication solution bundled with existing cloud file
system. It is the purpose of this paper to propose a simple
and feasible application framework of data deduplication for
developers based on the most-popular Hadoop [14] system.

The reminder of this paper is as follows. Section 2
provides background and motivation of the work; Section 3
describes the design of our deduplication framework;
Section 4 describes the implementation; Section 5 evaluates
the implementation; and, finally, we give concluding remarks
and future works in Section 6.

2. Background

2.1. Data Replication in HDFS. Hadoop is widely used and
plays the role of mass data storage in the cloud environments
equipped with no data deduplication technologies. Take
the following simple experiment as example. Once three
identical files are stored to the HDFS using different file
names, the HDFS will at least reserve three disk spaces for
each file, respectively. That means that no file deduplication
technologies are leveraged in the HDFS even the contents
of these three files are the same. Considering the scenario
of the sharing of a popular Youtube video between millions
of subscribers, without the deduplication mechanism, it
could waste very large volume of disk storage. To meet the
requirements of HDFS applications, two data deduplication
schemes are proposed based on the application characteris-
tics. They are the FD-HDFS which stands for File Dedupli-
cated HDFS and the RFD-HDFS which stands for Reliable
File Deduplicated HDFS. RFD-HDFS guarantees the data
reliability with deduplication capability. FD-HDFS provides
high performance for data deduplication with negligible
overhead if the application can tolerate minor errors.

2.2. Detection of Similar Data. Generally speaking, the pro-
cess of detection of identical files is mainly based on two
levels of granularities, and they are the file level and the
data block level. For whole-file level detection, the data
mapping is conducted through the hash technology [10,

15]. As for the data block level detection, the fingerprint
is checked through the fixed-sized partition or the check
and deletion of duplicate data is conducted through the
detection technology of content-defined chunking and the
sliding block technology. Most of the detection of the same
data tries to identify the similarity of data characteristics
by the shingle and the bloom filter techniques [16, 17]. The
duplicate data which the same data detection cannot detect
is found out. For similar data, the delta technology is used
to encode, minimize, and compress similar data, further
reducing the storage space and the network bandwidth
usage.

2.3. Source and Target Deduplication. Typically, data-
intensive applications, such as backup and replication, files
are moved from source to the target storage devices through
the network. The source end is the front-end application and
the Host or the Backup server to process and store the raw
data. The target end is usually ultimate storage equipment,
such as VTL or disk arrays. If unnecessary or redundant data
is indicated and deleted in the front-end application, it will
reduce the network transmission bandwidth and time. The
disadvantage of data cancelling at the front-end application is
that it will costmore for duplicate data detection and deletion.
If the data deduplication task is done at the target end, it
will spend more resources in redundant data processing,
data transmission over networks, and computing resource
consumption for redundant data detection. Therefore, it is
recommended that source deduplication is more feasible
than the target one.

2.4. In-Line and Postprocessing. In-line data deduplication
is the process that redundant data deletion is executed
synchronously once the data of instructions of backup, copy,
or writing is sent to the disk. In other words, when the
data is copied for the preparation to the target end through
the network or once the back-end storage device receives
the source data via the internet and prepares to write to
the disk, the data deduplication process will start the data
content comparison and deletion tasks at the same time.
Postprocessing of data deduplication means that the deletion
of redundant data job starts after the data is completely
written to the disk. It might be triggered by specific criteria
or scheduled periodically by some instructions.

The advantages and disadvantages of online in-line pro-
cessing and postprocessing are just at the opposite. Data com-
parison and deletion computing consume lot of processor
resources. If the online real-time processing architecture is
adopted, the system performance will be clearly temporized
and the backup speed will be delayed. On the other hand,
for in-line processing, since the deletion computing has been
conducted before the data is written to the disk, it needs
less data space than postprocessing. Contrarily, the system
performance will not be affected for postprocessing, and we
can start the deduplication tasks at off-peak hours. Before the
deduplication tasks start, all data have to be stored in the disk
for postprocessing. It means that postprocessing mechanism
will occupy more disk storage than the in-line processing.

International Journal of Distributed Sensor Networks 3

2.5. Whole-File or Chunk-Based Data Deduplication. Meyer
and Bolosky [18] proposed that whole-file deduplication
together with sparseness is a highly efficient means of low-
ering storage consumption, even in a backup scenario. It
approaches the effectiveness of conventional deduplication at
a much lower cost in performance and complexity. In our
study, despite environment homogeneity, Hadoop system has
characteristics of diversity of file volumes and sizes as well
as the deep hierarchical namespace. This would lead more
challenges to the chunk-based data deduplication techniques.
Based on this consideration, in this paper, the whole-file
data deduplication techniques are used for our proposed
framework.

2.6. HDFS Hash Functions. The Hadoop distributed file
system is a distributed file system designed to run on
commodity hardware and to be used to replace the high-
priced servers. HDFS provides application data with high
throughput access, to replace the hardware routing shunt
dispersed bandwidth and server load. There are automatic
propagation and flexibility to increase or decrease for mass
storages. Based on HDFS, MapReduce is the most popular
mechanism which may analyze the data and create the
metadata of file for file searching. It might be used to detect
the similarity of different files in the future. SHA-2 (Secure
Hash Algorithm 2) is a set of cryptographic hash functions
(SHA-224, SHA-256, SHA-384, and SHA-512) designed by the
National Security Agency (NSA) and published in 2001 by
the NIST as a US Federal Information Processing Standard
[15]. SHA-2 includes a significant number of changes from
its predecessor, SHA-1. SHA-2 consists of a set of four hash
functions with digests that are 224, 256, 384, or 512 bits.
In 2005, security flaws were identified in SHA-1; namely, a
mathematical weaknessmight exist, indicating that a stronger
hash function would be desirable. Although SHA-2 bears
some similarity to the SHA-1 algorithm, these attacks have not
been successfully extended to SHA-2. In computer science,
a collision or clash is a situation that occurs when two
distinct pieces of data have the same hash value, checksum,
fingerprint, or cryptographic digest [19].

The impact of collisions depends on functions used by
applications to identify similar data sets. For example, hash
functions and fingerprints are used by applications to identify
similar DNA sequences or similar audio files. The functions
are designed so as to maximize the probability of collision
between distinct but similar data. Checksums, on the other
hand, are designed to minimize the probability of collisions
between similar inputs, without regard to collisions between
very different inputs.

The aforementioned technologies are widely used in the
storage devices of enterprise File Server, Database, NAS
(RAID), and Backup Devices. However, there is no related
implementation on Hadoop since HDFS has its special
block mode and network topology demanding to ensure the
reliability of the copy instruction [20]. That is, the detection
of similar or the same data is not just the conditions of remov-
ing duplicate files. Besides the space or time consumption
considerations, the proposed algorithm or framework should

HDFS

Write Read

Figure 1: Programming model of HDFS write and read.

also take the reliability and overhead of recovery process for
frequently happened hard errors that is the reason we suggest
to use Stream Compare function for whole-file level for the
same data detection in HDFS.

3. System Design

3.1. Original HDFS. Figure 1 shows the original HDFS pro-
gramming model for data read and write. Users may access
file by the Hadoop shell command or Hadoop API. HDFS is
the Hadoop Distributed file system. User uses the Write API
to upload files to HDFS and the Read API to download files
from HDFS.

An HDFS client can invoke the create instruction in
Figure 2 to HDFS, and then the HDFS will create a NameN-
ode for it. Once the NameNode is got, the client can write
data to FSData OutputStream which will write data packages
to DataNode with acknowledgements. Similar to the write
instruction, an HDFS client can use the open instruction
shown in Figure 3 to get data block locations and perform the
read instruction from DataNode.

3.2. RFD-HDFS. In the applications which require precise
calculation without any errors, such as financial computing,
errors are definitely not allowed in the computing system.
Due to the SHA Hash Collision, the conflict probability still
cannot be ignored even though it is very low (depending
on the algorithm). In binary comparison, in order to ensure
data accuracy, time and resources will be wasted for the
file comparison. Therefore, the binary comparison circuit
or the MapReduce cluster computing capacity [21] can be
used to speed up file comparison. At the same time, the
postprocessing method is adopted to reduce user’s waiting
time. While files are first uploaded, they will be stored into
a temporary Storage Pool. A data similarity detector process
will then start the file comparison tasks to check whether
the files are duplicated or not. In this paper, the stream
comparison is used to partially retrieve data fragments to
conduct Binary Compare in the sequential serial method.

As shown in Figure 4, we use the following three steps to
determine whether the files are the same:

(a) check whether the Hash value exists or not;
(b) if cache hit in the Hash table, then check whether the

file size is the same;
(c) perform the stream comparison.

4 International Journal of Distributed Sensor Networks

HDFS
client

Distributed
file system

FSData
outputStream

(1) Create

Client JVM

Client node

NameNode

NameNode

(2) Create
(7) Complete(3) Write

(6) Close

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

(4) Write package (5) Ack. package

4

5

4

5HDFS Write

Figure 2: Instruction invoking path of HDFS write.

DataNode DataNode DataNode

HDFS
client

Distributed
file system

FSData
outputStream

(1) Open

Client JVM

Client node

NameNode

NameNode

(2) Get block

(3) Read

(5) Read

(6) Close

DataNode DataNode DataNode

(4) Write package

HDFS Read

locations

Figure 3: Instruction invoking path of HDFS read.

Write Read

RFD-HDFS

Hash Generator

Storage Pool

Binary
Comparator

HDFS

HBASE

Figure 4: RFD-HDFS framework.

Once any difference is found in the comparison work in
each phase, the comparison will be immediately stop to save
computing and memory resources. For the collision policy
of the duplicate files, if the SHA value of the file is the same,
the file size is the same. At the time, it is necessary to first
put the files in the Storage Pool, waiting for the background
process to conduct the stream comparison to decide whether
the hash collision policy is started.Therein, the used file path
is appended after the file name as a handling strategy of hash
collision.

3.3. FD-HDFS. In the application where little errors can be
tolerated, such as web information extraction and vocabulary
and semantic analysis, the repeat collision less likely occurs
and the judgment result application will not be affected.

International Journal of Distributed Sensor Networks 5

The HASHs with the same fingerprints are regarded as the
duplicate files. Thus, the effect of source deduplication can
be reached, can reduce the network bandwidth, can save
upload time, and even can reduce the burden of NameNode
and HBase. Taking the web crawler software for example,
Reiss and Resiss [22] daily need to capture page files to
HDFS. In accordancewith the comparison of theHASHvalue
and the HBASE database, it can quickly learn whether the
website content changes or not. Then, it can save the time for
Binary Compare and the target can be retrieved by directly
generating the SHA value from the source end. If the source
SHA does not change, the time of uploading full content will
be saved further. If Hash generates program to implant the
host from source, the loading ofNameNode andHMaster can
be eased so that a crawl for a website becomes the crawl for
newly added and changed files, which saves not only upload
time and the bandwidth but also server side loading.

For applications which can tolerate some errors, such as
video sharing or mass file sharing, the FD-HDFS provides a
high-performance and low-storage consumption solution for
file deduplication. As shown in Figure 5, the Hash Generator
is used to compute the hash values for firstly coming files and
save storage spaces once hash collision happened.

4. System Implementation

4.1. Implementation of RFD-HDFS. Figure 4 shows the pro-
posed RFD-HDFS framework. Awrapper interface is defined
for HDFS clients, and it will provide reliable data dedu-
plication functions for clients and invoke the HDFS write
instruction in the background processes. Besides the wrapper
interface, there are still threemajor components in the frame-
work, and they are the Hash Generator, Storage Pool, and the
Binary Comparator. The HBase table records the mapping
between Hash key and Full Path of file. Hash Generator can
be implemented using SHA2 and SHA3. Binary Comparator
could be a circuit of hardware or MapReduce function of
Hadoop. Storage Pool is the temporary file pool for post
processing; the Binary Comparator will load the file and do
comparisons in background. All files stored into pool will
be logged for tracking and could be roll back for fail over
purposes.

Figure 6 shows the detail of RFD-HDFSWrite algorithm.
There are two parallel tasks in the RFD-HDFS Write oper-
ation. The first one is controlled by the write controller and
is responsible for storing files into HDFS by invoking the
HDFSAddFileAPI. It first calculates theHash value byHASH
Generator and then stores the value into HBase by HMaster
component for further lookup. After that, two physical files
are stored into HDFS and a temporary file pool, respectively.
The file stored in HDFS is the one of original call path of
HDFS. The one in the temporary file pool will be used for
collision detection which is done by the second task in the
background. A Background Worker process is designed to
calculate the hash value for each files in the temporary file
pool. Once more than one file has the same hash value, the
Background Worker will then update the recode of HBase
and link the physical HDFS file for those files of the same

Write Read

RFD-HDFS

Hash Generator

HDFS

HBASE

Client

Figure 5: FD-HDFS framework.

hash value. In this implementation, after the processes of
Background Worker, the files in the temporary file pool will
be still stored for further usage once a collision occurred.
Once two files of the same hash value are retrieved, the RFD-
HDFS will return those files to user with correct file content.
It will be selective for users to invoke RFD-HDFS Write or
FD-HDFS Write if they can prioritize the storage capacity
consumption and accuracy of file contents.

The detailed implementation of RFD-HDFS Read algo-
rithm is shown in Figure 7. Similar to the RFD-HDFS Write
instruction, the RFD-HDFS Read instruction wrapped the
original HDFS getFilebyHash API by calculating the hash
value of a file with some exception handling logics. The
Read Controller is firstly invoked by a RFD-HDFS client and
triggers the Hash Generator to calculate the hash value of the
target file. The key of the implementation of the RFD-HDFS
Read instruction is that the reliability service guarantee is
transparent to users, and once a hash collision happened,
the HDFS files or the files in the temporary file pool will be
returned to users for reliability service guarantee purpose.

4.2. Implementation of FD-HDFS. If the minor error is
acceptable, we can ignore the collision of hash value. As
shown in Figure 5, we can revise the RFD-HDFS architecture
by moving the Hash Generator to the client side and remov-
ing the Binary Comparator and Storage Pool from the server
side.

The FD-HDFS Write algorithm is shown in detail in
Figure 8. The FD-HDFS Write instruction wrapped the
HDSF AddFileAPI by firstly calculating the hash value of the
given file by invoking the Hash Generator component and
then checking whether it has been stored in the HDFS or
not by invoking the HMaster component. Once it is hit in
the HBase table, the request will be returned right away no
matter how large the file size is because no data transmission
is needed for this case. Once the hit is missed; then a file
transmission from the client side to HDFS is then begun, and
the hash value is recorded into HBase table after the file is
completely written to the HDFS. Comparison to the RDF-
HDFSWrite, there is no need for the temporary file pool, and
the performance for writing files into HDFS is much faster.
But, due to the existence of possibility hash collision between
files, the FD-HDFS is not as reliable as the RFD-HDFS.

6 International Journal of Distributed Sensor Networks

HDFS
client

Distributed
file system

FSData
outputStream

(1) Create

Client JVM

Client node

NameNode

NameNode

(2) Create
(7) Complete(3) Write

(6) Close

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

(4) Write package (5) Ack. package

4

5

4

5
HDFS write

Write
controller

RFD-HDFS

SHA2-512

Hash Generator

HMaster

HBase

(1) Write request
(2) Generate hash

Temp HDFS

Storage pool

SHA2-512

Stream comparator

Append

Collision handler

RFD-HDFS
client

Background
Worker

(3) Check that file exists/add row

(4) Write into HDFS

(5) Write into Pool

(a) Get file

(b) Compare with existing file

(c) Collision happened

(d) Update HBase

RFD-HDFS Write

Figure 6: Instruction invoking path of RFD-HDFS Write.

HDFS
client

Distributed
file system

FSData
outputStream

Client JVM

Client node

NameNode

NameNode

(2) Get block
locations

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

(4) Write package (5) Read

HDFS Read

Read
controller

RFD-HDFS

SHA2-512

Hash Generator

HMaster

HBase

client

(1) Read request (2) Check that file exists

(3) Read from HDFS

RFD-HDFS Read

RFD-HDFS

(1) Open
(3) Read

(6) Close

Figure 7: Instruction invoking path of RFD-HDFS Read.

Figure 9 illustrates the detail of FD-HDFS Read algo-
rithm.While the FD-HDFS Client calls the Read instruction,
it will firstly calculate the hash value for the given file
locally. Then, two parallel tasks are issued for further data
processing.The first one is to check whether the file is already

deduplicated or not byHMaster to check the existence of hash
value in the HBase. If the hash value of the given file exists,
and it is already read by the client, a local cache of previously
loaded file content with file path will be returned. If the file
is not previously loaded, then a normal HDFS read invoking

International Journal of Distributed Sensor Networks 7

HDFS
client

Distributed
file system

FSData
outputStream

(1) Create

Client JVM

Client node

NameNode

NameNode

(2) Create
(7) Complete(3) Write

(6) Close

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

(4) Write package (5) Ack. package

4

5

4

5
HDFS Write

Write
controller

FD-HDFS

HMaster

HBase
FD-HDFS

client

SHA2-512

Hash Generator

FD-HDFS client

FD-HDFS Write

(1) Generate hash

(2) Write request

(3) Check that file exists

(4) Write into HDFS (4) Add row

Figure 8: Instruction invoking path of FD-HDFS Write.

HDFS
client

Distributed
file system

FSData
outputStream

(1) Create

Client JVM
Client node

NameNode

NameNode

(2) Create
(7) Complete(3) Write

(6) Close

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

(4) Write package (5) Ack. package

4

5

4

5
HDFS Write

Read
controller

FD-HDFS

HMaster

HBaseclient

File hash
list

Local table

FD-HDFS client

FD-HDFS Read

(1) Check file hash
locally

(2) Path request

(2) Hash request

(3) Check that file exists

FD-HDFS

Figure 9: Instruction invoking path of FD-HDFS Read.

Table 1: Hadoop node settings.

Host name Items
OS IP HBase role Process

NameNode CentOS 6.3 192.168.74.100 HMaster FD.jar & RFD.jar
DataNode1 CentOS 6.3 192.168.74.101 HRegion
DataNode2 CentOS 6.3 192.168.74.102 HRegion
DataNode3 CentOS 6.3 192.168.74.103 HRegion

8 International Journal of Distributed Sensor Networks

Binary Comparator Storage Pool HDFS HBase

Read file

File content

Get hash value

Hash value

Retrieve file content

File content

Delete file if content is the same

Update file link in HBase

True/false

True/false

Figure 10: The sequence diagram of data similarity detector.

Table 2: The schema and samples on HBase table.

Row key Time stamp Full path File attributes
Permissions Size Time

File HASH 𝑇
1

Test/apache-solr-4.0.0.tgz -rwxr-xr-x 200M 𝑇
11

File HASH 𝑇
2

Test/apache-solr-4.0.1.tgz -rwxr-xr-x 200M 𝑇
12

File HASH 𝑇
3

Test/apache-solr-4.0.2.tgz -rwxr-xr-x 200M 𝑇
13

process will be issued in the other task. The key of FD-HDFS
Read is that the file deduplication is transparent to users.That
is, once files of the same hash value are already loaded into the
HDFS environment, the file contents will be returned right
away from local cache to reduce the file transmission. On the
other hand, if the file is not previously loaded, the original
HDFS file read request will be issued as normal HDFS file
read instruction.

4.3. Implementation of Data Similarity Detection. Data simi-
larity detection is a postprocessing procedure and responsible
for checking the same or similar data after the data files is
received by the proposed deduplication framework. For both
Write instructions of RFD-HDFS and FD-HDFS, if a similar
record exists in HBase, it means that there is at least one file
having the same content that is stored inHDFS. If the existing
file path is the same as the given file, there is no need to

write the file into HDFS. That is, no more file transmission
is needed from client to HDFS server for FD-HDFS because
the HDFS can get the file content from itself. If the existing
file path is not the same as the given file, the RFD-HDFS will
need to create a new record inHBase and store the file into the
temporary file pool to prevent hash collision and guarantee
the reliability of further file content retrieve. Again, for file
Read instructions, the data similarity detector can help to
enhance file downloading performance for FD-HDFS, if the
hash value exists in the HBase table.

Figure 10 shows the detailed implementation of data
similarity detector for the BackgroundWorker component of
the RFD-HDFS framework. To simplify the implementation
of RFD-HDFS, when a file is written to the RFD-HDFS, as
shown in Figure 6, it writes the file toHDFS and creates a new
record in HBase. Then the Background Worker will dedu-
plicate the redundant files in the background by excusing

International Journal of Distributed Sensor Networks 9

0.00

0.50

1.00

1.50

2.00

2.50

HDFS
FD-HDFS and RFD-HDFS

Sp
ac

e u
sa

ge
 (G

B)

Recorded space usage timing

In
iti

al

U
SE

R0
2

U
SE

R0
4

U
SE

R0
6

U
SE

R0
8

U
SE

R1
0

U
SE

R1
2

U
SE

R1
4

U
SE

R1
6

U
SE

R1
8

U
SE

R2
0

Figure 11: Comparison of HDFS and our proposed deduplication
framework.

0

200

400

600

800

1000

1200

1400

1600

131 1001 2051 3024 3992 4989

HDFS
FD-HDFS

U
pl

oa
d

tim
e (

s)

File size (MB)

Figure 12: Performance comparison betweenHDFS and FD-HDFS.

the data similarity detection process. A Binary Comparator
is designed for this purpose, and it firstly retrieves files of
the same hash value from Storage Pool and HDFS. Then, it
compares the content of these files. Once the contents are
the same, The Binary Comparator deletes the files in Storage
Pool for file deduplication purpose. If the contents are not
the same, it will keep the files in the Storage Pool for further
file retrieve requests and replacing the HBase records with
correct physical links of files.

Table 3: Test data.

Host name
Items

File size (MB) File
count

duplicate
(%) File size ∗ 3

USER01 7.2 18 66 21.6
USER02 14.1 25 76 42.3
USER03 6.3 30 30 18.9
USER04 8.3 22 59 24.9
USER05 68.9 24 58 206.7
USER06 10 22 13 30
USER07 23.2 38 42 69.6
USER08 101.6 144 41 304.8
USER09 70.3 120 50 210.9
USER10 15.6 33 57 46.8
USER11 41.9 62 38 125.7
USER12 94.3 164 17 282.9
USER13 61.1 108 26 183.3
USER14 25,3 38 73 75.9
USER15 34.7 62 74 104.1
USER16 24.4 42 83 73.2
USER17 3.6 15 33 10.8
USER18 20.1 31 61 60.3
USER19 12.1 20 75 36.3
USER20 3.7 18 72 11.1
Total 646.7 1036 40.9 1904.1

5. Experimental Analysis

In this paper, we assume that the storage serves as an EndNote
[22] storage over cloud andwe import the collection of papers
from 20 students. Also, we simulate users uploading all the
files to the HDFS.

5.1. Experimental Environment. Thesettings for eachHadoop
node are listed in Table 1. Table 2 gives the schema and
samples of HBase. Table 3 gives the file count, total file size,
and the percentage of duplicated files. The experiments were
running on VMware WorkStation 9, the hard disk drive size
is 1TB, and the rotation speed is 5400 rpm. All of nodes are
deployed on a same host.

5.2. Disk Space Consumption Evaluation. In this experiment,
around 2,000 files are uploaded into HDFS before the
experiment starts. The test scenario repeats uploading files
into HDFS and records the amount size of used disk space.

The results are listed in Table 4 and shown in Figure 11
which illustrates that, after 20 users uploading their files, the
space usages of RFD-HDFS and FD-HDFS are much lower
than normal HDFS. As shown in Table 3, 40.9% of uploaded
test files are duplicated ones. The result shows that only 46%
of HDFS disk space is used for both FD-HDFS and RFD-
HDFS. It appears that the proposed systems can effectively
reduce the disk usage of duplicated files.

10 International Journal of Distributed Sensor Networks

Table 4: Test results.

Time HDFS type
HDFS (GB) FD-HDFS (GB) RFD-HDFS (GB)

Initial 0.00 0.00 0.00
USER01 0.02 0.01 0.01
USER02 0.06 0.01 0.01
USER03 0.08 0.02 0.02
USER04 0.10 0.02 0.02
USER05 0.31 0.04 0.04
USER06 0.34 0.07 0.07
USER07 0.40 0.11 0.11
USER08 0.70 0.28 0.28
USER09 0.91 0.37 0.37
USER10 0.96 0.39 0.39
USER11 1.07 0.42 0.42
USER12 1.21 0.65 0.65
USER13 1.54 0.80 0.80
USER14 1.62 0.83 0.83
USER15 1.72 0.84 0.84
USER16 1.79 0.85 0.85
USER17 1.80 0.86 0.86
USER18 1.86 0.88 0.88
USER19 1.91 0.89 0.89
USER20 1.92 0.89 0.89

Table 5: Test data of performance evaluation.

File ID File size (MB)
File0 131
File1 1001
File2 2051
File3 3024
File4 3992
File5 4989

Table 6: Test result of performance evaluation.

File size DFS file upload time (second)
HDFS FD-HDFS

131 9 10.4
1001 260 270.6
2051 520 548.3
3024 774 881
3992 1020 1073
4989 1305 1383

5.3. File Upload Performance Evaluation. In this experiment,
only the performance of FD-HDFS is evaluated. The per-
formance of RFD-HDFS is very similar to FD-HDFS, since
RFD-HDFS adopts postprocessing for file deduplication.
Only when data similarity detector works, the performance
may be affected. Totally, six files are used in this experiment.
As shown in Table 5, the file sizes are ranged from 131MB to

4989MB. The test scenario is to upload files one by one and
record the upload time for each.

The results of performance evaluation are shown in
Table 6. It shows that the upload performance of FD-HDFS is
comparable to HDFS. Figure 12 illustrates the trend of upload
time. It appears that HDFS upload time is linearly increasing
and the trend of FD-HDFS upload time is very similar to
HDFS upload time. The deduplication processing did not
affect the upload performance significantly, and the overhead
is almost neglectable.

6. Conclusion

In this paper, the deduplication framework based on HDFS
is proposed. The details of design and implementation of
RFD-HDFS and FD-HDFS are shared and evaluated. RFD-
HDFS is suitable for applications which cannot have any
errors, such as financial or nuclear related applications.
On the other hand, FD-HDFS could be used for most
applications with acceptable errors. The experiments results
show that the duplicated data space can be saved and the
upload performance is not affected by the integrated schemes
significantly.That is, the proposed framework indeed reduces
the storage space consumption by removing redundant files
for HDFS.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Science Council
of the Taiwan, Taiwan, under Grant no. 101-2221-E-009-
034-MY2. The authors also would like to express their
deep appreciation to all anonymous reviewers for their kind
comments.

References

[1] Facebook, http://www.facebook.com/.
[2] Youtube, http://www.youtube.com/.
[3] DropBox, http://www.dropbox.com/.
[4] L. DuBois, M. Amaldas, and E. Sheppard, “Key considerations

as deduplication evolves into primary storage,” White Paper
223310, March 2011.

[5] H. Köpcke and E. Rahm, “Frameworks for entity matching: a
comparison,” Data and Knowledge Engineering, vol. 69, no. 2,
pp. 197–210, 2010.

[6] G. Sanjay, G.Howard, and L. Shun-Tak, “The google file system,”
in Proceedings of Symposium of Operating System Principle, pp.
19–22, New York, NY, USA, October 2003.

[7] S. Maddodi, G. V. Attigeri, and A. K. Karunakar, “Data dedu-
plication techniques and analysis,” in Proceedings of the 3rd
International Conference on Emerging Trends in Engineering and
Technology (ICETET ’10), pp. 664–668, November 2010.

International Journal of Distributed Sensor Networks 11

[8] C. Dubnicki, L. Gryz, L. Heldt et al., “Hydrastor: a scalaable
secondary storage,” in Proceedings of 7th USENIX Conference on
File and Storage Technologies, 2009.

[9] C. Ungureanu, B. Atkin, A. Aranya et al., “Hydrafs: a high-
throughput file system for the hydrastor content-addressable
storage system,” in Proceedings of the 8th USENIX Conference
on File and Storage Technologies, 2010.

[10] W. Bolosky, S. Corbin, D. Goebel, and J. Douceur, “Single
instance storage in windows 2000,” in Proceedings of the 4th
USENIX Windows System Symposium, 2000.

[11] C.H.Ng,M.Ma, T. Y.Wong et al., “Live deduplication storage of
virtualmachine images in an open-source cloud,” inProceedings
of the 12th InternationalMiddleware Conference, pp. 80–99, 2011.

[12] Y. Tan, H. Jiang, D. Feng, L. Tian, Z. Yan, and G. Zhou, “SAM:
a semantic-awaremulti-tiered source de-duplication framework
for cloud backup,” in Proceedings of the 39th International Con-
ference on Parallel Processing (ICPP ’10), pp. 614–623, September
2010.

[13] Y. Shang and H. Li, “Data deduplication in cloud computing
systems,” in Proceedings of International Workshop on Cloud
Computing and Information Security, pp. 483–486, 2013.

[14] Hadoop, http://hadoop.apache.org/.
[15] D. Eastlake and P. Jones, “US secure hash algorithm 1,” IETF

RFC 3174.
[16] J. G. Conrad and E. L. Raymond Jr., “Essential deduplication

functions for transactional databases in law firms,” in Proceed-
ings of the 11th International Conference on Artificial Intelligence
and Law, pp. 261–270, June 2007.

[17] J. Zhang, S. Zhang, Y. Lu, X. Zhang, and S. Wu, “Hierarchical
data deduplication technology based on bloom filter array,”
in Proceedings of the International Conference on Information
Engineering and Applications (IEA ’13), vol. 216 of Lecture Notes
in Electronic Engineering, pp. 725–732, Springer, 2013.

[18] D. T. Meyer and W. J. Bolosky, “A study of practical deduplica-
tion,” in Proceedings of the 9th USENIX Conference on File and
Storage Technologies, pp. 1–13, 2011.

[19] J. J. Rao and K. V. Cornelio, “An optimized resource allo-
cation approach for data-intensive workload using topology-
aware resource allocation,” in Proceedings of IEEE International
Conference on Cloud Computing and EmergingMarkets, pp. 1–4,
2012.

[20] J. L. Carter and M. N. Wegman, “Universal classes of hash
functions,” Journal of Computer and System Sciences, vol. 18, no.
2, pp. 143–154, 1979.

[21] B. Nutch, “Open source search,” Queue, vol. 2, pp. 54–61, 2004.
[22] M. Reiss and G. Resiss, “EndNote 5 reference manager—

functions—improvements—personal experiences,” Schweizer-
ische Rundschau für Medizin Praxis, vol. 91, no. 40, pp. 1645–
1650, 200.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

