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This paper presents a general and numerically accurate lattice methodology to price risky corporate
bonds. It can handle complex default boundaries, discrete payments, various asset sales assumptions,
and early redemption provisions for which closed-form solutions are unavailable. Furthermore, it can
price a portfolio of bonds that accounts for their complex interaction, whereas traditional approaches
can only price each bond individually or a small portfolio of highly simplistic bonds. Because of the gen-
erality and accuracy of our method, it is used to investigate how credit spreads are influenced by the bond
provisions and the change in a firm’s liability structure due to bond repayments.
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1. Introduction

A risk-free bond can be priced by simply summing all the dis-
counted future cash flows, independently of other outstanding
bonds of the same issuer. A risky bond in sharp contrast must be
priced simultaneously with other outstanding bonds of the same
issuer because the issuance and each repayment of a bond changes
the financial status of the issuer and thus the likelihood of default
of all the bonds, even more senior ones. This point is most serious
for an issuer with multiple bonds outstanding and a complex liabil-
ity structure. This complex interaction among the bonds due to
their payment schedules and provisions makes pricing them
beyond the reach of analytic approaches (see Lando, 2004).

Given a firm’s liability structure, a credit model is needed to
price risky bonds (Chiarella, Fanelli, & Musti, 2011; Onorato &
Altman, 2005; Saunders, Xiouros, & Zenios, 2007; Westgaard &
Van der Wijst, 2001). One of such models, the structural model,
specifies the evolution of the firm’s asset value and the conditions
leading to default (see Merton, 1974), from which the change in a
firm’s liability structure follows naturally. The bond repayment
financed by selling the firm’s asset, for example, is modeled by a
downward move in the firm’s asset value. So structural models
make explicit the connection between default and the firm’s assets
and liabilities. This paper will focus on structural models.

Merton (1974) assumes the firm’s asset value follows a lognor-
mal diffusion process and default can only occur at the single
bond’s maturity date when the firm’s asset value cannot meet its
payment obligations. Therefore, equities can be viewed as call
options on the firm’s asset and can be priced by the Black–Scholes
formula (see Black & Scholes, 1973). Black and Cox (1976) develop
the first-passage model, which assumes the firm issues only one
bond and it defaults once the asset value hits an exogenous default
boundary. The single-bond case is clearly too restricted for practi-
cal applications. Geske (1977) is the first to price a risky bond in
the presence of other outstanding bonds. He considers a portfolio
consisting of a senior bond with a maturity date of T1 and a subor-
dinated one with a later maturity date of T2. Then he applies the
compound-option framework to price both bonds. In summary,
the analytical methods can only price each bond individually or a
very small portfolio of highly simplistic bonds (see Ericsson &
Reneby, 1998; Glasserman & Nouri, 2012). Generalizing them to
more complicated liability structures remains elusive.
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Fig. 1. The price oscillation phenomenon. The firm’s asset value is assumed to
follow the lognormal diffusion process. The firm’s initial asset value is $100, the
risk-free interest rate is 1%, and the volatility of the asset value is 25%. The firm
issues a zero-coupon bond with one-year maturity and face value $95. The
exogenous default boundary is set to $90. The prices oscillate significantly if the
lattice does not align with the exogenous boundary.
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Bond provisions such as restrictions on asset sales, exogenous
default boundaries, seniorities of bonds, and early redemption (like
put provisions) affect risky bond prices profoundly. We now go
over each of them briefly. The value of a risky bond depends
strongly on the assumptions regarding asset sales (see Lando,
2004). To protect the bond holders, bond provisions may prohibit
equity holders from selling the firm’s asset to finance bond repay-
ments or dividend payouts. This no-asset-sales assumption is often
needed for closed-form solutions (see Leland, 1994). But allowing
asset sales is more common in the real world. To loosen the restric-
tion on asset sales while keeping the problem analytically solvable,
some papers adopt the proportional-asset-sales assumption, which
allows the firm to sell a proportion of its asset (see Kim, Ramasw-
amy, & Sundaresan, 1993; Leland, 1994; Hilberink & Rogers, 2002).
Besides the two aforementioned assumptions, Merton (1974) and
Brennan and Schwartz (1978) assume the payout can be fully fi-
nanced by selling the firm’s asset. We call this third assumption
the total-asset-sales assumption. This assumption significantly in-
creases the difficulty to price the bonds, analytically or otherwise.
This is because a fixed amount of the firm’s asset is sold to finance
the repayments, which is essentially the well-known problem
faced by option pricing with fixed dividends (see Dai, 2009).

We now move onto exogenous default boundaries. The posi-
tive-net-worth covenant forces the firm into bankruptcy if its asset
value hits an exogenous default boundary that depends on the
firm’s liability structure (see Brennan & Schwartz, 1978; Kim
et al., 1993; Longstaff & Schwartz, 1995; Nielsen, Saá-Requejo, &
Santa-Clara, 2001; Briys & De Varenne, 1997). Note that a complex
liability structure entails a complex exogenous default boundary.
We follow Leland (1994) in calling a bond with an exogenous
default boundary a protected bond. The default boundary can also
be determined endogenously based on assumptions on asset sales.
For example, under the no-asset-sales and proportional-asset-sales
assumptions, the firm defaults if the equity holders fail to raise
enough equity capital to meet the bond payments (see Leland,
1994), whereas under the proportional-asset-sales and total-
asset-sales assumptions, the firm defaults when the firm’s asset
is insufficient to cover the payments. Note that the default bound-
ary for a protected bond is shaped by both the exogenous and the
endogenous default boundaries. In contrast, the default boundary
of a bond without protection from the positive-net-worth covenant
is simply the endogenous default boundary. We follow Leland
(1994) in calling this bond an unprotected bond.

Seniority refers to payment priority in the event of bankruptcy.
When the issuer goes bankrupt, senior bonds are repaid before
subordinated ones. But a subordinated bond may still affect the
risk of the senior ones. This is because when a firm is allowed to
sell its asset to finance the bond repayments, the repayment of a
subordinated bond before the maturity of the senior ones increases
the risk of the latter as the asset sale changes the financial status of
the firm.

Finally, we discuss early redemptions. The putable provision
provides some protection for the bond holders against the increase
in interest rate, which reduces the bond value. Our paper will also
show that it can provide some protection against the issuer’s credit
risk. This is because bond holders can exercise the putable right be-
fore the firm’s financial status is weakened due to scheduled bond
repayments.

In summary, real-world bond provisions and the complex inter-
action among bonds make pricing risky bonds infeasible, in most
cases, for analytical approaches and challenging for numerical
ones. To rectify the situation, this paper develops a general lattice
methodology for pricing corporate bonds with complicated liabil-
ity structures and bond provisions under the structural model. A
lattice is a popular numerical method. It divides a certain time
interval into n time steps and the pricing results converge to the
theoretical price as n!1 (see Duffie, 1996). However, some pro-
visions such as exogenous default boundaries will cause naive
implementations to experience price oscillations as Fig. 1 shows.
To eliminate the oscillations, we incorporate the techniques of
Dai and Lyuu (2010) to makes certain nodes or price levels on
the lattice align with the exogenous default boundaries. In addi-
tion, the trinomial structure of Dai (2009) is used to handle the dis-
continuities in the firm’s asset value resulting from asset sales.
Backward induction then handles bond provisions such as senior-
ity and embedded options.

With our proposed lattice method in place, the paper explores
how credit spreads are influenced by the bond provisions and
change in the firm’s liability structure due to each bond repay-
ments. Numerical results reveal that they greatly affect bond
prices, sometimes in unexpected ways. Complex scenarios such
as this are hard to analyze by the traditional approaches, but they
pose no difficulties for our lattice. Finally, our methodology is flex-
ible enough to make it applicable to other complex option-related
problems such as real options (see Ho & Yi, 2004; Zmeškal, 2010).

Our paper is organized as follows. The model, lattice construc-
tions, and the oscillation problem are introduced in Section 2. Sec-
tion 3 describes how our lattice is constructed to cope with
complicated liability structures and various bond provisions. Sec-
tion 4 details how bond provisions are handled in backward induc-
tion. Section 5 analyzes the price behaviors of risky bonds for
complicated liability structures and various bond provisions. Sec-
tion 6 concludes.
2. Basic terms and preliminaries

2.1. The dynamics of the firm’s asset value

Denote the firm’s asset value at time t as Vt , whose dynamics
follows the following process (see Merton, 1974),

dVt ¼ rVt � Pð Þdt þ rVt dz: ð1Þ

Above, r is the risk-free rate, P denotes the firm’s payout financed by
selling the firm’s asset per annum, r denotes the volatility, and dz is
a standard Brownian motion (see Black & Scholes, 1973; Osborne,
1959). P can depend on Vt and t.



(b)(a)

Fig. 2. Binomial lattice and trinomial structure. Fig. 2(a) illustrates a 2-time-step
binomial lattice. Fig. 2(b) illustrates the unique trinomial structure for an arbitrary
node X at time t to connect to 3 successor nodes A;B, and C at time t þ Dt0 .
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The liability structure of the bond issuer (‘‘the firm’’) should be
considered when evaluating a risky bond B. This is because a new
issuance or repayments of other outstanding bonds will affect the
firm’s capacity to repay B. But how a bond repayment influences
the firm’s asset and equity values depends on the assumptions
regarding asset sales. Let us ignore the tax shelter benefit for the
time being. Suppose the payout is made continuously and the pay-
out per annum is C. Under the no-asset-sales assumption, P is set to
0; so the bond payout C is financed by selling equities and will not
affect the firm’s asset value. Suppose the firm is allowed to finance
the payout by selling the firm’s asset. Under the total-asset-sales
assumption, P � C. Under the proportional-asset-sales assumption,
a proportion D of the asset value is sold to finance the payout, so
P � DVt . Under this assumption, if P > C, the extra payment P � C
goes to the equity holders as dividends (see Fan & Sundaresan,
2000); otherwise, the equity holders will either finance the short-
fall by selling equities or let the firm default. D may depend on the
payout amount such as D � C=V0 (Leland, 1994). Suppose the pay-
out is made discretely at time t. Hereafter, t� and tþ denote the
times immediately before and immediately after the payout,
respectively. Under the total-asset-sales assumption, with the
payout C0, we have Vtþ ¼ Vt� � C0, and under the proportional-
asset-sales assumption, with the payout D0Vt� , we have Vtþ ¼
Vt� � D0Vt� . The firm defaults when Vtþ 6 0. We remark that when
the firm issues a bond with a face value of N at time
t;Vtþ ¼ Vt� þ N. If the tax shelter benefit is considered, then part
of the interest payment is covered by the tax benefit, and the equi-
ty holders or the firm only need to pay the remaining amount.
2.2. Lattice constructions and the oscillation problem

2.2.1. Binomial lattice
A lattice is a popular numerical method for discretizing a con-

tinuous-time stochastic process. It partitions the time span from
time 0 to time T into n equal time steps and specifies the value
of the stochastic process at each time step. The length of one time
step Dt equals T=n. Each node on a lattice can branch to ‘ nodes at
the next time step to form an ‘-nomial lattice. For example,
Fig. 2(a) illustrates a 2-time-step binomial lattice: At each time
step, the firm’s asset value V can either make an upward move to
become Vu with probability Pu or a downward move to become
Vd with probability Pd � 1� Pu.

The firm’s asset value is assumed to follow the lognormal diffu-
sion process between two repayment dates. Define the V-log-price
of the firm’s asset value V 0 as lnðV 0=VÞ and the log-distance
between the firm’s asset values V and V 0 as j lnðVÞ � lnðV 0Þj. Under
the lognormal diffusion process, the mean (denoted as l) and var-
iance (denoted as Var) of the Vt-log-price of VtþDt are r � r2=2

� �
Dt

and r2Dt, respectively. To make the lattice converge to the process
for the firm’s asset value, the branching probabilities (Pu and Pd)
and the multiplicative factors (u and d) are chosen to asymptoti-
cally match l and Var. For example, the CRR lattice of Cox, Ross,
and Rubinstein (1979) in Fig. 2(a) adopts the following solution:
u ¼ er

ffiffiffiffi
Dt
p
; d ¼ e�r

ffiffiffiffi
Dt
p
; Pu ¼ ðerDt � dÞ=ðu � dÞ; Pd ¼ ðerDt � uÞ=ðd � uÞ.

The log-distance between any two vertically adjacent nodes on this
lattice (e.g., nodes X and Y in Fig. 2(a) is 2r

ffiffiffiffiffiffi
Dt
p

).
2.2.2. Trinomial structure
Fig. 2(b) illustrates a trinomial structure in which the nodes at

time t þ Dt0 are laid out like the CRR lattice with Dt as the length
of a time step. Node X at time t is connected to 3 successor nodes
(nodes A;B, and C in the figure) at time t þ Dt0 as long as
Dt 6 Dt0 < 2Dt. Denote the firm’s asset value of node Z as vðZÞ.
The trinomial branches should match the mean l and variance
Var of the vðXÞ-log-price of VtþDt0 , where, we recall,
l � r � r2=2
� �

Dt0 and Var � r2Dt0, with the branching probabili-
ties pu; pm, and pd between 0 and 1.

Recall that the log-distance between the vðXÞ-log-prices of any
two adjacent nodes at the same time step of the CRR lattice is
2r

ffiffiffiffiffiffi
Dt
p

(see Fig. 2 (b)). Therefore, at time t þ Dt0, there must exist
a unique node B whose vðXÞ-log-price l̂ lies in the interval
½l� r

ffiffiffiffiffiffi
Dt
p

;lþ r
ffiffiffiffiffiffi
Dt
p
Þ. We select node B and its two adjacent nodes

A and C to construct a trinomial structure from node X. The branch-
ing probabilities from node X (i.e., pu; pm; pd) can be obtained by
asymptotically matching l and Var (see Dai & Lyuu, 2010).

2.2.3. Price oscillation and nonlinearity error
Although the prices generated by the CRR lattice converge to

the theoretical value of a contingent claim as n!1 (Duffie,
1996), the prices may oscillate significantly. According to Figlewski
and Gao (1999), this is due to the error introduced by the nonlin-
earity of the value function of the contingent claim. The nonlinear-
ity error can be much reduced by making a node or a price level of
the lattice coincide with the critical locations where the value
function of the contingent claim is highly nonlinear (see Dai &
Lyuu, 2010). For the structural model, critical locations occur along
the exogenous default boundary and at the time points when bond
or dividend payouts occur. The next section will show that, by
incorporating the above lattice constructions, our lattice can make
a node, a time step, or a price level of the lattice coincide with the
critical locations. The result is drastically suppressed nonlinearity
error (review Fig. 1).

3. Lattice construction

This section describes how to combine the binomial and the tri-
nomial structures to construct a lattice that can cope with compli-
cated liability structures and such bond provisions as various
assumptions on asset sales and positive net-worth covenants.
Other bond provisions, like seniority and early redemption, will
be addressed in Section 4. The example lattice given in Section
3.1 focuses on the total-asset-sales assumption, the most difficult
assumption on asset sales to handle. The extensions to the propor-
tional-asset-sales assumption, the no-asset-sales assumption, and
time-varying default boundaries are straightforward and will be
described in Section 3.2.

3.1. Lattice construction

This subsection uses a generic example to illustrate how to
build a lattice for the total-asset-sales assumption and with an
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exogenous default boundary. Consider two zero-coupon bonds
with face values F1 and F2 and maturities T=2 and T, respectively.
We will refer to Fig. 3 throughout this subsection. Because bond
repayments are fully financed by selling the firm’s asset, the firm
is bankrupt once its asset value falls to the exogenous default
boundary. This subsection assumes the exogenous default bound-
ary is a constant proportion j of the sum of the face values of all
outstanding bonds (see Kim et al., 1993; Longstaff & Schwartz,
1995; Nielsen et al., 2001). Thus it is jðF1 þ F2Þ (the thick black
line) for the time interval ½0; T=2� and jF2 (the thick gray line) for
the time interval ðT=2; T�. To suppress oscillations, the lattice aligns
two price levels with these two default boundaries. Finally, since
the firm defaults when its asset value hits F2 at time T, there should
be a node (node F) to coincide with the face value F2 at time T to
suppress oscillations (but this alignment is not that critical
numerically).

The lattice is composed of two parts: one covers the interval
½0; T=2� and the other covers ðT=2; T�. We focus on the former part
first. The firm’s initial asset value at time 0 is associated with node
X. The lattice emanating from node X is required to have a price le-
vel that coincides with the exogenous default boundary jðF1 þ F2Þ,
which can be accomplished via the technique in Dai and Lyuu
(2010). The trinomial branches from node X can be constructed
by the procedure in Section 2.2.2. The exogenous default boundary
passes through nodes D and E, and the firm defaults once the firm’s
asset value hits the exogenous default boundary.

At time T=2, the vertical, downward jumps from the white
nodes to gray ones by the amount of F1 reflect the fact that the firm
sells its asset to repay the bond obligation. The evolution of the
firm’s asset value for the second part of the lattice begins from
the gray nodes. The gray nodes will be connected to a truncated
CRR lattice beginning at time T=2þ Dt00 by trinomial structures.
To suppress the nonlinearity error, this part of the lattice has a
price level that coincides with the exogenous default boundary
jF2 and a node that coincides with the bond obligation F2 (node
F) at time T. The truncated CRR lattice emanates from nodes J,
Fig. 3. Firm’s asset value with exogenous default boundaries under the total-asset-
sales assumption. At time T=2, the nodes above the exogenous default boundary
jump downward to gray nodes by the amount of F1 as a result of the face value F1

payout. To reduce the nonlinearity error, the lattice has two price levels that
coincide with the two exogenous default boundaries (the thick black and gray lines)
and a node (node F) that coincides with the bond obligation F2 at time T. Nodes A;B,
and C are selected for constructing the trinomial structure. The branching
probabilities from node X are pu; pm , and pd .
K; L;M;N, and O and ends at time T. The firm defaults once its asset
value hits the exogenous default boundary or when the firm can-
not meet the bond obligation F2 at time T.

The effects of tax benefits and bankruptcy costs can be easily
incorporated into our lattice. Suppose a coupon C is due at time
t. The firm’s asset value jumps downward by the amount of the
‘‘after-tax coupon’’ C � sC at time t, where s denotes the corporate
tax rate and sC denotes the tax benefit of repaying the coupon. If
the firm defaults, the bankruptcy cost is subtracted from the firm’s
asset value and the residual value is paid to the bond holders. The
lattice also allows the firm’s asset value to be checked against the
exogenous default boundary only at certain time points. For in-
stance, if the firm’s asset value is only checked at the bond’s repay-
ment dates T=2 and T, then the firm defaults once its asset value
hits nodes E; P;G; I, or Q. This reflects the reality that the firm’s as-
set value is often only monitored regularly at the release of finan-
cial reports.
3.2. Extensions to other assumptions on asset sales and exogenous
default boundaries

Our lattice can be easily extended to deal with the proportional-
asset-sales assumption, the no-asset-sales assumption, and time-
varying default boundaries. Fig. 4(a) illustrates how to deal with
the two above-mentioned assumptions regarding asset sales. The
firm’s asset value at node X at time step 0 will move to either node
A or B at time step 1. P1 and P2 denote the payouts financed by
selling the firm’s asset at nodes A and B, respectively. Under the
proportional-asset-sales assumption, the firm sells a fixed propor-
tion D of its asset value (i.e., P ¼ DVt in Eq. (1)) so P1 ¼ DVuDt and
P2 ¼ DVdDt. On the other hand, under the no-asset-sales assump-
tion, P1 ¼ P2 ¼ 0. In both cases, the nodes associated with the
firm’s asset values after the asset sales (i.e., nodes a and b) will
be connected to the nodes at the next time step via the trinomial
structures described in Section 2.2.2.

Fig. 4(b) depicts the time-varying exogenous default boundary
as a curve. The lattice starts by placing gray nodes on the curve
to reduce the nonlinearity error. All the other nodes are then laid
out from the gray nodes upward, and the log-distance between
any two vertically adjacent nodes remains 2r

ffiffiffiffiffiffi
Dt
p

. This setting
helps us construct trinomial branches from any node at time step
i to the three successor nodes at time step iþ 1 via the procedure
in Section 2.2.2. Start from node X for the firm’s initial asset value
at time 0. Its successor nodes will be selected from the nodes at
time step 1, the successor nodes of these 3 nodes will be selected
from the nodes at time step 2, and so on. Note that the firm
defaults once its asset value reaches the gray nodes on the exoge-
nous default boundary. The gray nodes have no need for successor
nodes.
4. Pricing with backward induction

The equity value (E), bond value (B), tax benefit (TB), and bank-
ruptcy cost (BC) can be viewed as contingent claims on the firm’s
asset value. They can be computed on the lattice by backward
induction. The levered firm value, or Eþ D, equals V þ TB� BC
(see Leland, 1994). The default events and such bond provisions
as seniority and early redemptions can all be handled during back-
ward induction. This section focuses on a generic case where the
firm issues two bonds: B1 matures at time T1 with face value F1

and B2 matures at time T2 with F2, where T1 < T2. Bond Bi pays
at a rate of Ci dollars per annum continuously, i ¼ 1;2. Thus the
coupon payout for Bi over a time step with duration Dt is CiDt.
Backward induction at time t is divided into four cases: (1)
t ¼ T2, (2) T1 < t < T2, (3) t ¼ T1, and (4) 0 6 t < T1. If the firm
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Fig. 4. Extensions to other assumptions on asset sales and exogenous default boundaries. In Fig. 4(a), the white nodes and the gray nodes at the first time step denote the
firm’s asset values before and after the asset sales, respectively. The asset value for each white node is listed next to the node. P1 and P2 denote the payouts financed by selling
the firm’s asset at nodes A and B, respectively. The probabilities of the branches from node a are pu; pm , and pd . Fig. 4(b) has a time-varying exogenous default boundary
marked by the curve. The firm defaults when its asset value reaches the gray nodes.
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issues more than two bonds, more cases need to be added. Let
Eðt;VÞ;B1ðt;VÞ, and B2ðt;VÞ denote the values of equity, bond B1,
and bond B2 at time t, respectively, given asset value V. PVðt;BiÞ
represents the discounted present value at time t of all future
repayments of bond Bi (see Black & Cox, 1976). Let Bi � Bj mean
Bj is more senior than Bi. Finally, a is the bankruptcy cost as a per-
centage of the asset value, and s, as before, is the tax rate.

If there is an exogenous default boundary, then the firm de-
faults the moment the firm’s asset value hits it. Default can also
be triggered endogenously. Under the no-asset-sales and propor-
tional-asset-sales assumptions, the firm defaults if the equity hold-
ers fail to raise enough equity capital to meet the firm’s bond
obligations, whereas under the proportional-asset-sales and to-
tal-asset-sales assumptions, the firm defaults when the firm’s asset
value is insufficient to cover the repayments. Clearly, the default
boundary is shaped by both the exogenous default boundary and
the endogenous one.

Backward induction is used to obtain the value of a contingent
claim at time t by its values at the next time step, at time t þ Dt.
The firm’s asset value at each time step should be adjusted if the
firm sells its asset to finance the bond payout at that time step. Re-
call that t� and tþ denote the times immediately before and imme-
diately after the payout, respectively. Let V� and Vþ denote the
firm’s asset values immediately before and immediately after the
payout, respectively. The value of any contingent claim on the asset
value Vþ at time tþ, denoted as f ðtþ;VþÞ, can be expressed as the dis-
counted expected value of that contingent claim at time tþ, where
applicable. Take node a at time t in Fig. 4(a) for example. We have

f ðtþ;Vu� P1Þ � e�rDt puf ððt þ DtÞ�;Vu2Þ þ pmf ððt þ DtÞ�;VudÞ
h

þpdf ððt þ DtÞ�;Vd2Þ
i
:

Case 1: t ¼ T2

At B2’s maturity date T2, default occurs when the firm’s asset
value V cannot meet B2’s face value F2 plus the after-tax coupon
over one time step: ð1� sÞC2Dt. Thus,
EðT2;VÞ ¼
V � F2 � ð1� sÞC2Dt; if V P F2 þ ð1� sÞC2Dt;

0; otherwise;

�

and

B2ðT2;VÞ ¼
F2 þ C2Dt; if V P F2 þ ð1� sÞC2Dt;

ð1� aÞV ; otherwise:

�

Recall that sC2Dt is the tax benefit from repaying the coupon. TB
and BC are equal to 0 and aV , respectively, if the firm defaults at
time T2; otherwise, TB and BC are equal to sC2Dt and 0,
respectively.

Case 2: T1 < t < T2

The value of a contingent claim at t� depends on its values at tþ.
Thus Eðt�;V�Þ can be calculated as follows:

Eðt�;V�Þ ¼ Eðtþ;VþÞ� S; if default does not occur at time t�;

0; if default occurs at time t�;

(

ð2Þ

where S denotes the amount of equities sold to finance the payout. S
and the evolution of the firm’s asset value depend on the assump-
tions on asset sales. Under the no-asset-sales assumption, the equi-
ty holders sell additional equities to finance the after-tax coupon; so
the firm’s asset value does not change. Under the proportional-as-
set-sales assumption, the firm is allowed to sell a predetermined
proportion D of the firm’s asset to finance the after-tax coupon. If
the said proportion of the firm’s asset value is insufficient to meet
the payout, the equity holders will try to finance the shortfall by
selling additional equities. Under the total-asset-sales assumption,
the firm is allowed to sell its asset to finance the payout to the ex-
tent the asset value allows it; therefore, the firm’s asset value jumps
downward by the amount of the payout. In summary,

No-asset-sales : S¼ð1�sÞC2Dt; Vþ ¼V�;

Propotional-asset-sales : S¼ð1�sÞC2Dt�DV�Dt; Vþ ¼V� �DV�Dt;

Total-asset-sales : S¼0; Vþ ¼V� �ð1�sÞC2Dt:
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Note that ð1� sÞC2Dt ¼ Sþ ðV� � VþÞ; in other words, the after-tax
coupon is financed by the sum of equities sold (S) and the firm’s as-
set value sold. Under the proportional-asset-sales assumption, a
negative S says the payout from selling the firm’s asset exceeds
the coupon payment, and the extra payout goes to the equity hold-
ers as cash dividends.

B2ðt�;V�Þ can be calculated by the following formulas:

B2ðt�;V�Þ ¼
B2ðtþ;VþÞþ C2Dt; if default does not occur at time t�;

ð1�aÞV�; if default occurs at time t�:

(

TB and BC are equal to 0 and aV�, respectively, if the firm defaults;
otherwise, TB and BC are both calculated by backward induction.

Case 3: t ¼ T1

The firm is required to repay B1’s face value and coupon at time
T1. The equity value Eðt�;V�Þ can be calculated by Eq. (2) as in case
2, but S and the evolution of the firm’s asset value are different:

No-asset-sales : S¼ ð1�sÞðC1þC2ÞDtþ F1; Vþ ¼ V�;

Propotional-asset-sales : S¼ ð1�sÞðC1þC2ÞDtþ F1�DV�Dt;

Vþ ¼ V� �DV�Dt;

Total-asset-sales : S¼ 0; Vþ ¼ V� � ð1�sÞðC1þC2ÞDt� F1:

Note that ð1� sÞðC1 þ C2ÞDt þ F1 ¼ Sþ ðV� � VþÞ; in other words,
the after-tax coupons and the face value of B1 are financed by the
sum of equities sold (S) and the firm’s asset value sold.

The relative seniorities of B1 and B2 determine the payouts to
their bond holders when default occurs. Thus we have

B2ðt�;V�Þ ¼

B2ðtþ;VþÞ þ C2Dt;

if default does not occur at time t�;

max min ð1� aÞV� � F1 þ C1Dtð Þ;ðð
PVðt�;B2ÞÞ; 0Þ;
if default occurs at time t�and B2 � B1;

min ð1� aÞV�;PVðt�;B2Þð Þ;
if default occurs at time t� and B1 � B2;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

and

B1ðt�;V�Þ ¼

F1 þ C1Dt;

if default does not occur at time t�;

min ð1� aÞV�; F1 þ C1Dtð Þ;
if default occurs at time t�and B2 � B1;

max min ð1� aÞV� � PVðt�;B2Þ;ðð
PVðt�;B1ÞÞ; 0Þ;
if default occurs at time t� and B1 � B2:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

TB and BC are equal to 0 and aV�, respectively, if the firm defaults;
otherwise, TB and BC are both calculated by backward induction.

Case 4: 0 6 t < T1

Eðt�;V�Þ can be calculated by Eq. (2) as in case 2, but S and the
evolution of the firm’s asset value are different:

No-asset-sales : S ¼ ð1� sÞðC1 þ C2ÞDt; Vþ ¼ V�;

Propotional-asset-sales : S ¼ ð1� sÞðC1 þ C2ÞDt � DV�Dt;

Vþ ¼ V� � DV�Dt;
Total-asset-sales : S ¼ 0; Vþ ¼ V� � ð1� sÞðC1 þ C2ÞDt:

Note that ð1� sÞðC1 þ C2ÞDt ¼ Sþ ðV� � VþÞ; in other words, the
after-tax coupons are financed by the sum of equities sold (S) and
the firm’s asset value sold.

B2ðt�;V�Þ and B1ðt�;V�Þ can be priced by the following
formulas:
B2ðt�;V�Þ ¼

B2ðtþ;VþÞ þ C2Dt;

if default does not occur at time t�;

max min ð1� aÞV� � PVðt�;B1Þ;ðð
PVðt�;B2ÞÞ;0Þ;
if default occurs at time t� and B2 � B1;

min ð1� aÞV�;PVðt�;B2Þð Þ;
if default occurs at time t� and B1 � B2;

8>>>>>>>>>>><
>>>>>>>>>>>:

and

B1ðt�;V�Þ ¼

B1ðtþ;VþÞ þ C1Dt;

if default does not occur at time t�;

min ð1� aÞV�;PVðt�;B1Þð Þ;
if default occurs at time t� and B2 � B1;

max min ð1� aÞV� � PVðt�;B2Þ;ðð
PVðt�;B1ÞÞ;0Þ;
if default occurs at time t� and B1 � B2:

8>>>>>>>>>>><
>>>>>>>>>>>:

TB and BC are equal to 0 and aV�, respectively, if the firm defaults;
otherwise, TB and BC are both calculated by backward induction.

Early redemption can be easily handled by backward induction.
For example, a putable bond’s holder will sell the bond back to the
issuer at time t if it is more beneficial to do so than keeping it. Sim-
ilar arguments can be applied to callable bonds. The case that the
coupon is paid discretely can be implemented without difficulty,
too.
5. Numerical results

This section examines how the prices of risky bonds are influ-
enced by bond provisions and changes in the firm’s liability struc-
ture. First, we confirm the robustness and generality of our lattice
by showing it can accommodate many popular structural models.
We then show how bond values change under various bond provi-
sions. We also show that our numerical method can be used to
analyze the optimal capital structures under realistic bond-provi-
sion settings. Then we examine how the repayment of one out-
standing bond affects the value of another bond under various
bond provisions. In summary, our lattice will be used to analyze
(1) the restriction on asset sales to finance the repayments, (2)
the positive net-worth covenant, (3) the embedded put option,
(4) the seniority, and (5) the combined effect of the above provi-
sions, none of which admits analytical formulas.

5.1. Comparison with Merton (1974), Black and Cox (1976), Geske
(1977), and Leland (1994)

Our lattice can accurately price risky bonds under many popular
structural models. Table 1 compares the bond values by our lattice
and the analytical formulas for 4 popular structural models: Mer-
ton (1974), Black and Cox (1976), Geske (1977), and Leland
(1994). In Merton (1974), the firm issues a zero-coupon bond with
a one-year maturity and a face value of $3000. The bond can be
priced by the Black and Scholes (1973) formula. Black and Cox
(1976) extend Merton’s model by assuming that the firm can de-
fault prior to the bond’s maturity date of one year if its asset value
hits this default boundary 3000� e�0:04ð1�tÞ. The bond can then be
priced by the closed-form formula for barrier options. Geske
(1977) assumes the firm issues two zero-coupon bonds: (1) a
shorter-term, senior bond and (2) a longer-term, subordinated
bond. Under the no-asset-sales assumption, the compound option
pricing formula can price both. The Geske (1977) column assumes
that bond B1 with a face value of $500 matures at year 0:5, bond B2

with a face value of $2500 matures at year 1, and B2 � B1. The de-



Table 1
Accuracy and generality of our lattice. The firm’s initial asset value is $5000, the risk-free interest rate r is 2%. The term r denotes the volatility of the firm’s asset value. The values
under ‘‘Lattice’’ and ‘‘Formula’’ denote the bond values generated by our lattice and by the relevant analytical formula, respectively. The length of one time step Dt for the
lattices are 0.001 (year). The values within the parentheses denote relative pricing errors. In the Merton (1974), Black and Cox (1976), and Geske (1977) columns, the bankruptcy
cost a and tax rate s are assumed to be 0. In the Geske (1977) column, the firm issues two zero-coupon bonds: B1 and B2, where B2 � B1. Only the values of B2 are shown. In the
Leland, 1994 column, the tax rate s and the bankruptcy cost a are assumed to be 0.35 and 0.5, respectively; in addition, the optimal coupon per year C ¼ $112:259 with the
maximum levered firm value $5766.65 is used when r ¼ 0:25 and C ¼ $159:403 with the maximum levered firm value $5557.91 is used when r ¼ 0:4.

r Merton (1974) Black and Cox (1976) Geske (1977) Leland (1994)

Lattice Formula Lattice Formula Lattice Formula Lattice Formula

0.25 2934.82 2934.82 2940.03 2940.03 2449.81 2449.79 3419.57 3419.38
(0.00003%) (0.00002%) (�0:00082%) (�0:00556%)

0.4 2875.60 2875.60 2935.53 2935.53 2425.37 2425.55 2941.41 2942.23
(0.00014%) (�0:00010%) (�0:00742%) (�0:02788%)
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fault event occurs when the firm fails to raise sufficient equity cap-
ital to meet the repayment of B1 at year 0.5 or when the firm’s asset
value fails to meet the repayment of B2 at year 1. The Leland (1994)
column assumes the firm issues a consol bond with an endoge-
nously defined optimal coupon payment that maximizes the lev-
ered firm value. The default is triggered, endogenously, if the
firm fails to raise sufficient equity capital to meet bond obligations.
Although our lattice is a numerical method for bonds with a finite
maturity, it can accurately price the consol bond by setting the fi-
nite maturity of the bond T to a large number (200 years in Table
1). (Brennan & Schwartz (1978) use a similar technique.) The
numerical closeness for the 4 models attests to the robustness
and generality of our lattice.

The numerical examples in Sections 5.2 and 5.3 will show that
our lattice can be easily extended to even more complicated liabil-
ity structures and bond provisions; furthermore, none can be effi-
ciently or accurately priced by other methods.

5.2. Assumptions on asset sales and exogenous default boundaries

Numerical results in Fig. 5(a) illustrate the levered firm values
generated by our lattice under various leverage ratios, asset-sales
assumptions, and default boundaries. Recall that a bond with an
exogenous default boundary is a protected bond whereas that
without one is an unprotected bond. The firm is assumed to issue
a one-year coupon bond with face value F. The x-axis denotes the
leverage ratio B=v , where B denotes the bond value and v denotes
the levered firm value. The y-axis denotes the levered firm value.
(a)

Fig. 5. Maximum levered firm value. The firm’s initial asset value is $5000, the risk-f
bankruptcy cost is a ¼ 0:5, and the tax rate is s ¼ 0:35. The firm issues a coupon bond w
ratio is B=v , where B denotes the bond value and v denotes the levered firm value. For th
value is checked against the exogenous default boundary once every quarter, and the c
levered firm values under various bond provisions. The length of one time step Dt for th
The levered value for the firm issuing the protected bond is lower
than the value for the firm issuing an otherwise identical unpro-
tected bond since the presence of the exogenous default boundary
0:9� F increases the likelihood of default and, as a result, the bank-
ruptcy cost.

The impact of the assumptions regarding asset sales on the lev-
ered firm value depends on the presence of the exogenous default
boundary and the leverage ratio as Fig. 5(a) shows. For the pro-
tected bonds, since the firm’s asset value under the no-asset-sales
assumption tends to be higher than its value under the total-asset-
sales assumption, the firm’s asset value under the former assump-
tion is less likely to hit the exogenous default boundary 0:9� F.
Therefore, the levered firm value under the former assumption is
larger than the value under the latter one for the protected bonds.
However, the case with the unprotected bonds is rather different.
For this case, there are two opposite forces that affect the levered
firm value: (1) The no-asset-sales assumption tends to increase
the firm’s asset value, which improves the firm’s financial status,
but (2) the equity holders under this assumption are obligated to
raise equity capital to meet the coupon payments, which might
motivate the equity holders to let the firm default. When the lever-
age ratio is low, (1) dominates (2), and the levered firm value under
the no-asset-sales assumption is higher than that under the total-
asset-sales one. But this relation is reversed when the leverage ra-
tio becomes high.

Fig. 5(b) magnifies part of Fig. 5(a) to pinpoint the maximum
levered firm values under various bond provisions. The maximum
levered firm values for the unprotected bonds are slightly higher
(b)

ree interest rate is r ¼ 2%, the volatility of the firm’s asset value is r ¼ 40%, the
ith one-year maturity, face value F, and annualized coupon rate 10%. The leverage

e protected bonds, the exogenous default boundary is set to 0:9� F. The firm’s asset
oupon is paid quarterly. Fig. 5(b) magnifies part of Fig. 5(a) to show the maximum

e lattices are 0.001 (year).
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than those for the protected bonds since default is less likely for
the former. Moreover, the maximum levered firm values under
the no-asset-sales assumption are higher than those under the
total-asset-sales assumption. Therefore, the highest maximum
levered firm value is achieved with the unprotected bond under
the no-asset-sales assumption.
Table 3
Effects of complicated liability structures and bond provisions on protected bonds.
The firm’s initial asset value is $5000, the risk-free interest rate is r ¼ 2%, the
volatility of the firm’s asset value is r ¼ 40%, the bankruptcy cost is a ¼ 0, and the tax
rate is s ¼ 0. The firm issues two zero-coupon bonds B1 and B2. Bond B1 matures at
year 3 with a face value of $2500. The face value of B2 is $500 and the maturities of B2
5.3. Handling complicated liability structures

A risky bond cannot be priced independently of other outstand-
ing bonds because the presence of these other bonds may change
the likelihood of default for the bond under consideration. Such
interdependency is, in general, complex and difficult to tackle via
analytical methods. But it poses no problems for our lattice. In fact,
once the lattice for the asset price is built, the equity and the bonds
become derivatives and they can be priced by backward induction
on the lattice, fully incorporating their relative seniorities and bond
provisions.

We will analyze the values of a bond under generic liability
structures with our lattice and compare them with analytical ap-
proaches wherever applicable. The firm issues two zero-coupon
bonds. Bond B1 matures at year 3 with a face value of $2500. The
face value of the other bond, B2, is $500. The results for B2 appear
in Table 2. Our lattice can easily handle more than two bonds.

We first price an unprotected B2 under the no-asset-sales
assumption. The bond repayments are financed by selling addi-
tional equities, and the default event is triggered endogenously if
the firm fails to raise sufficient equity capital to meet bond obliga-
tions. Table 2 lists the values of B2 calculated by known analytical
formulas and our lattice. We remark that the total-asset-sales
assumption is not considered here because no analytical formula
is known. Different seniorities for B2 are considered. Recall that
Bi � Bj mean Bj is more senior than Bi. The value of B2 when
B2 � B1 is lower than that when B1 � B2, as expected. Under
B2 � B1, shortening the maturity of B2 from 3.5 years to 2.5 years
(which is less than B1’s maturity of 3 years) significantly increases
B2’s value from 339.08 to 366.23. This is because repaying the sub-
ordinated bond B2 prior to the maturity of the more senior bond B1

reduces the credit risk of B2, at the expense of B1. Compare this
increase with the increase from 466.12 to 475.59 when B1 � B2

instead.
Not every scenario in Table 2 can be priced by analytical formu-

las. The Merton (1974) formula can only price the shorter-term
bond and only when it is more senior than the longer-term one.
To price the longer-term, subordinated bond, the compound option
approach of Geske (1977) can be used. In the degenerate case
where the maturities of the two bonds are identical, both senior
and subordinated bonds can be priced by the Black–Scholes for-
mula (see Lando, 2004). Clearly, our lattice generates prices for
Table 2
Pricing unprotected bonds under the no-asset-sales assumption. The firm’s initial
asset value is $5000, the risk-free interest rate is r ¼ 2%, the volatility of the firm’s
asset value is r ¼ 40%, the bankruptcy cost is a ¼ 0, and the tax rate is s ¼ 0. The firm
issues two zero-coupon bonds B1 and B2. B1 matures at year 3 with a face value of
$2500. The face value of B2 is $500 and the maturities are in the first column. The
analytical prices generated by the closed-form formulas are in the Formula columns.
M, G, and L denote the formulas of Merton (1974), Geske (1977), and Lando (2004),
respectively. The prices generated by our lattice are under Lattice. The length of one
time step Dt for the lattices are 0.001 (year).

Maturity of B2 Prices of B2

B1 � B2 B2 � B1

Formula Lattice Formula Lattice

2.5 475.59 (M) 475.59 x 366.23
3 470.80 (L) 470.80 342.27 (L) 342.27
3.5 x 466.12 339.06 (G) 339.08
B2 close to those by the relevant analytical formulas. No analytical
formulas exist to price (1) longer-term, senior bonds and (2) short-
er-term, subordinated bonds, even in the simplest two-bond case
(the ‘‘x’’ entries in Table 2). But neither case presents difficulties
for our lattice.

The impacts of the firms liability structures and various bond
provisions on a protected bond’s price are assessed in Table 3, in
which all cases cannot be calculated by known analytical formulas.
As in Table 2, the firm issues two zero-coupon bonds except that,
now, both bonds are protected by an exogenous default boundary
set to 80% of the sum of the face values of the outstanding bonds. In
the first column, the two maturities of B2;2:917 years (35 months)
and 3:083 years (37 months), tightly sandwich year 3, the maturity
of B1, to pinpoint the impacts of liability structures on the credit
spreads of B2. The credit spread of a bond B is defined as
� lnðBðBÞ=FðBÞÞ=T � r, where BðBÞ denotes the price of B; FðBÞ de-
notes the face value of B, and T denotes the time to maturity of B.

In the upper panel of Table 3, the firm is allowed to sell its asset
to finance bond repayments under the total-asset-sales assump-
tion. Thus the firm defaults only when its asset value hits the exog-
enous default boundary or when its asset is insufficient to cover
the bond repayments. Suppose B1 � B2. The credit spread of the
nonputable B2 jumps from about 0 bps to 42.26 bps when the
repayment date of B2 moves from being slightly earlier than the
repayment date of B1 to being slightly later than the repayment
date of B1. Obviously, repaying B1 earlier than B2 by selling the
firm’s asset significantly increases the risk of B2 even though B2

is more senior. However, the addition of the put provision to B2

provides some protection for B2 against this risk; as a result, its
credit spread with a maturity of 3.083 years is reduced from
42.26 bps to 0.19 bps. Suppose B2 � B1 instead. The credit spreads
of B2 are now much higher than those under B1 � B2, as expected,
because B2 has a lower priority than B1 given bankruptcy, which
significantly increases B2’s risk. But the addition of the put provi-
sion to the subordinated B2 now significantly reduces that risk
since B2 can be redeemed prior to the repayment of B1 in case
the issuer’s financial status deteriorates. On the other hand, the
possibility of selling asset to finance B1’s repayment prior to B2’s
increases the risk of B2. Therefore, the credit spread of B2 jumps up-
ward from 1549 bps to 1622 bps for the nonputable case and from
35 bps to 42 bps for the putable case when the maturity date of B2

moves from year 2.917 to year 3, the maturity date of the more se-
nior B1.
are listed in the first column. The put price at year t for B2 is 500� e�0:04ðT�tÞ , where T
is the maturity of B2. The firm’s asset value is checked against an exogenous default
boundary which is assumed to be 0:8� Ft at each time step, where Ft is the sum of the
face values of the outstanding bonds at time t. The length of one time step Dt for the
lattices are 0.001 (year).

Maturity of B2 The credit spreads (bps) of B2

B1 � B2 B2 � B1

Nonputable Putable Nonputable Putable

Total-asset-sales
2.917 0.00000 0.00000 1549.01731 35.26993
3 0.00189 0.00189 1622.31542 42.51885
3.083 42.26309 0.19148 1577.32038 37.65838

No-asset-sales
2.917 0.00000 0.00000 1618.31594 35.27188
3 0.00189 0.00189 1622.31542 42.53319
3.083 0.00000 0.00000 1575.47098 39.04945
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The behaviors of B2’s credit spreads under the no-asset-sales
assumption in the lower panel of Table 3 are different from those
in the upper panel. Under B1 � B2, repaying the senior B2 after
the maturity of B1 no longer significantly increases the risk of B2

whether B2 is putable or not. This is because disallowing asset sales
to finance the repayment of the subordinated B1 provides some
protection for the senior B2. Unlike the total-asset-sales assump-
tion above, the put provision of B2 is almost worthless here. Now
suppose B2 � B1. The credit spreads of B2 are much higher than
those under B1 � B2, as expected. Unlike the B1 � B2 case, the addi-
tion of the put provision to the subordinated B2 significantly re-
duces its credit spreads, since B2 can be redeemed early. Moving
the maturity of nonputable B2 from being slightly earlier than
the maturity of the more senior B1 to being slightly later decreases
the credit spread of B2 from 1618 to 1575.

6. Conclusions

This paper proposes a general numerical methodology for pric-
ing corporate bonds under complicated liability structures. The
resulting methodology can tackle realistic assumptions such as
complex default boundaries, discrete payments, asset sales
assumptions, and early redemption provisions for which closed-
form solutions are unavailable. Furthermore, the proposed method
can price a portfolio of bonds that account for their complex inter-
action. The numerical results confirm not only the above claims
but also the lattice’s ability to accurately price risky bonds with
nontrivial liability structures and bond provisions.
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