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Abstract A conflict-avoiding code (CAC) C of length n and weight k is a collection of
k-subsets of Zn such that �(x) ∩ �(y) = ∅ for any x, y ∈ C, x �= y, where �(x) = {a − b :
a, b ∈ x, a �= b}. Let CAC(n, k) denote the class of all CACs of length n and weight k.
A CAC with maximum size is called optimal. In this paper, we study the constructions of
optimal CACs for the case when n is odd and k = 3.

Keywords Conflict-avoiding code · Tight equi-difference conflict-avoiding code ·
Optimal code with weight 3
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1 Introduction

Protocol sequences for a multiple-access channel without feedback have been investigated
in [3,8,9,12,13,19]. In such model, the time axis is partitioned into intervals (slots) whose
duration corresponds to the transmission time for one packet. All users are supposed to have
slot synchronization and no other synchronization is assumed. If exactly one user is sending
a packet in a particular slot, then the packet is transmitted successfully. If more than one users

Communicated by V. D. Tonchev.

H.-L. Fu · Y.-H. Lo (B)
Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 30010, Taiwan
e-mail: yhlo0830@gmail.com

H.-L. Fu
e-mail: hlfu@math.nctu.edu.tw

K. W. Shum
Institute of Network Coding, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: wkshum@inc.cuhk.edu.hk

123



290 H.-L. Fu et al.

are sending packets in a particular slot simultaneously, then there is a conflict in this slot and
none of the packets has successful transmission.

Let xi = (xi,0, xi,1, . . . , xi,n−1) be a binary protocol sequence with length n over the
set {0, 1} and W is a set of this kind of binary protocol sequences. There is a one-to-one
correspondence between all M users (potential users) and W , and each user is provided by
an infinite binary sequence which periodically repeats the corresponding protocol sequence.
Suppose that one user receives the sequence xi and becomes active at time T after a duration
of being inactive. The user sends or does not send a data packet in slot T + j − 1 if xi, j = 1
or xi, j = 0, respectively. Packets are transmitted continuously by repeating xi until the user
becomes inactive. We assume that the user will stay in the inactive state for at least n time
slots before he becomes active again. The set W = {x1, x2, . . . , xM } of M binary sequences
is said to be an (M, k, ω, n, σ ) protocol sequence set if any sequence is of length n, Hamming
weight k, and has the property that at least σ packets are transmitted successfully in a frame
of n slots for each active user, if at most ω users out of M potential users are active. On
the assumption that the number of conflicts of any two distinct sequences is at most λ, the
weight k of the (M, k, ω, n, σ ) protocol sequence set satisfies k ≥ λ(ω − 1) + σ in order to
guarantee that at least σ packets survive for each user in a frame. Such an (M, k, ω, n, σ )

protocol sequence set is also called a conflict-avoiding code (CAC) of length n with weight
k. In this paper, we consider the case when λ = σ = 1, ω = 3, and k = 3.

Let Zn = {0, 1, . . . , n − 1} denote the ring of residues modulo n and P(n, k) denote the
set of all k-subsets of Zn . Each element x ∈ P(n, k) can be identified with a binary sequence
of length n and weight k representing the indices of the nonzero positions. Given a k-subset
x ∈ P(n, k), we define the difference set of x by �(x) = {a −b (mod n) : a, b ∈ x, a �= b}.
Note that |�(x)| ≤ k(k − 1); furthermore, i ∈ �(x) implies (n − i) ∈ �(x), i.e., �(x) is
symmetric with respect to n/2. On the assumption that λ = 1, a CAC of length n with weight
k is a subset C ⊂ P(n, k) satisfying the condition that �(x)∩�(y) = φ for any x, y ∈ C with
x �= y. Each element x ∈ C is called a codeword of length n with weight k. Without loss of
generality, we can assume that all codewords contain 0. For instance, C = {{0, 1, 2}, {0, 4, 8}}
is a CAC of length 11 and weight 3, and the two codewords are correspondent to the two binary
protocol sequences (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) and (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0), respec-
tively. For given n and k, let CAC(n, k) denote the class of all CACs of length n with weight
k. The maximum size of some code in CAC(n, k) will be denoted by M(n, k). A code
C ∈ CAC(n, k) is said to be optimal if |C| = M(n, k). The above example is optimal in
CAC(11,3), i.e., M(11, 3) = 2.

A codeword x ∈ P(n, k) is said to be equi-difference with generator i ∈ Zn \ {0}, if x is
of form {0, i, 2i, . . . , (k − 1)i}. Note here that |�(x)| ≤ 2(k − 1) if x is an equi-difference
codeword. A code C ∈ CAC(n, k) is called equi-difference if it entirely consists of equi-
difference codewords. Let CACe(n, k) denote the class of all the equi-difference codes in
CAC(n, k) and Me(n, k) be the maximum size among CACe(n, k). Furthermore, an optimal
code C ∈ CAC(n, k) is said to be tight if

⋃

x∈C
�(x) = Zn \ {0}.

In the case of general weight k, Shum et al. [16] showed that for fixed k, the number
M(n, k) increases approximately with slope (2k − 2)−1 as a function of length n. Moreover,
Shum and Wong [17] presented an asymptotic version of upper bound M(n, k) for all fixed
k, with length n approaching infinity. Some optimal constructions for k = 4, 5 can be found
in [11]. In the case of weight k = 3, Levenshtein and Tonchev [9] proposed a construction of
optimal CACs for each length n ≡ 2 (mod 4). Later, Jimbo et al. [5] and Mishima et al. [10]
extended the result to each length n ≡ 8 (mod 16) and n ≡ 0 (mod 16), respectively. Recently,
Fu et al. [2] completely settled the spectrum of the size of optimal CACs of even length and
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weight 3. For odd length, Levenshtein and Tonchev [9] showed some optimal CACs for
some particular prime length, and Levenshtein [8] extended the result to some particular odd
length. However, the number M(n, 3) for general odd integer n is still unknown except when
n is small or n = 2m ± 1 [20]. If only equi-difference codewords are considered, Momihara
[14] presented a necessary and sufficient conditions for the existence of tight equi-difference
CACs. In addition, it is worthy pointing out that an equi-difference code C ∈ CACe(n, 3) is
related to an n-ary code that can correct errors with limited magnitude, see [6,7].

In what follows, we consider the case where n is odd and k = 3. Given a code C ∈
CAC(n, 3) and a codeword x ∈ C. It is easily checked that 2 ≤ |�(x)| ≤ 6. Furthermore,
we have the following property

|�(x)| =

⎧
⎪⎨

⎪⎩

2 if x is equi-difference with generator n
3 ,

4 if x is equi-difference with generator i �= n
3 ,

6 otherwise.

(1)

For convenience, CAC(n,3) and M(n, 3) are simply written as CAC(n) and M(n), respec-
tively. Similarly, we use CACe(n) and Me(n) to denote CACe(n, 3) and Me(n, 3), respec-
tively. The maximal sizes of conflict-avoiding code of odd length n and weight 3 is the
sequence A135304 in [15].

Let n ≥ 3 be an odd integer and G(n) be a graph with vertex set V (G(n)) =
{1, 2, . . . , n−1

2 } and edge set E(G(n)), where (a, b) ∈ E(G) if b ≡ ±2a (mod n). Then the
graph G(n) is a union of disjoint cycles. Let O(n) be the number of odd cycles in G(n). A
loop in G(n) is considered as a cycle of length 1. For example, (7), (3, 6, 9), (1, 2, 4, 8, 5, 10)

are the three cycles in G(21), and O(21) = 2. The concept G(n) can be seen in [5,8,9,14].
For convenience, we let O(1) = 0.

G(n) is useful in finding the number Me(n). For each vertex i ∈ V (G(n)), it can be iden-
tified as the representation of the differences i and n − i . Therefore, an edge (a, b) represents
the equi-difference codeword {0, a, 2a} and a loop in G corresponds to the equi-difference
codeword {0, n/3, 2n/3}, which occurs only when 3|n. Moreover, if three vertices a, b, c
satisfying the equation a +b ≡ ±c (mod n), then the set {a, b, c} corresponds to a codeword
{0, a, a + b}. Recall that the restriction �(x) ∩ �(y) = φ for any two codewords x �= y.
In order to find as many codewords as possible, we shall optimize the number of disjoint
vertex subsets such that each subset, say S, is one of the following three cases: (1) |S| = 1
and the induced subgraph is a loop, (2) |S| = 2 and the induced subgraph is an edge, or (3)
S = {a, b, c} and a + b ≡ ±c (mod n). Note here that there is at most one loop in G(n), for
all odd n. Our strategy is first to find the maximum matching (besides loop) and then for the
unused differences we construct as many triples {a, b, c} satisfying a + b ≡ ±c (mod n) as
possible. Now we are going to find as many equi-difference codewords as possible, and it is
not hard to observe the following result.

Proposition 1 Given an odd integer n ≥ 3, there exists a tight equi-difference code C ∈
CACe(n) if and only if O(n) = 0 and 3 � n, or O(n) = 1 and 3|n.

2 Tight equi-difference codes

In 2007, Momihara [14] gave necessary and sufficient conditions for tight equi-difference
conflict-avoiding codes of weight 3. In this section, we rewrite the necessary and suffi-
cient conditions by using a different approach. We first introduce several number-theoretic
functions.
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For positive integer n, let �(n) be the collection of elements in Zn that are relatively prime
to n, and let the size of it be ϕ(n). For an odd integer n ≥ 3, let en be the smallest exponent
e ≥ 1 so that 2e ≡ 1 (mod n), and let cn be the smallest exponent c ≥ 1 so that 2c ≡ ±1
(mod n). The exponent en is called the multiplicative order of 2 mod n, and the exponent cn

the multiplicative suborder of 2 mod n. If en = ϕ(n), then 2 is said to be a primitive root
mod n. By convention, we define e1 = 0 and c1 = 0.

By Euler’s Theorem, which states that aϕ(n) ≡ 1 (mod n) whenever gcd(a, n) = 1, we
have en divides ϕ(n). We will show later that cn divides ϕ(n)/2 for all odd n ≥ 3. The integer
sequences (en) and (cn), with the index n running over all odd integers are, respectively, the
sequences A002326 and A003558 in [15].

The relation between cn and en is as follows. First of all, it is obvious that cn ≤ en . If cn

is strictly less than en , then we must have cn = en/2. Indeed, if cn < en/2, we have 22cn ≡ 1
(mod n), contradicting the minimality of en ; if en/2 < cn < en , then 22cn ≡ 22cn−en ≡ 1
(mod n), contradicting the minimality of en again. Hence, if en is odd, then cn = en is also
odd. If en is even, then cn is equal to either en or en/2. Furthermore, if en is even and n is
prime, then n|(2en/2 − 1)(2en/2 + 1), and this implies n|(2en/2 + 1) and thus cn = en/2 (See
e.g. [8, Corollary 6]).

In G(n), the standard cycle, denoted as 〈2〉n , is the cycle which contains 1. For instance,
(1, 2, 4, 8, 3, 6, 7, 5, 9) is the standard cycle in G(19). For any n, |〈2〉n | = cn .

Given a cycle C = (s1, s2, . . . , st ) in G(n) and an integer a, the modulo product of C by
a, written aC , is the cycle (a · s1, a · s2, . . . , a · st ) (mod n) in G(n) where each item takes
symmetry with respect to n/2. The normal product of C by an odd integer a, written a × C ,
is the cycle (a · s1, a · s2, . . . , a · st ) in G(an). Two cycles are said to be congruent, denoted
as ∼=, if they have the same length and one of them is a modulo or normal product of the
other one. It is easy to see that C ∼= a × C . Besides, it is not difficult to see that every cycle
in G(n) can be written as a〈2〉n for some integer 1 ≤ a < n.

Example 1 〈2〉31 = (1, 2, 4, 8, 15), 3〈2〉31 = (3, 6, 12, 7, 14), 5〈2〉31 = (5, 10, 11, 9, 13)

and the three cycles are congruent to each other. However, 〈2〉21 = (1, 2, 4, 8, 5, 10) �

(3, 6, 9) = 3〈2〉21.

Example 2 5 × 〈2〉21 = (5, 10, 20, 40, 25, 50) is a cycle in G(105). Actually, each cycle in
G(n) is congruent to exactly one cycle in G(an) by the normal product by a, ∀ odd a ∈ N.
Therefore, O(an) ≥ O(n) for all odd integers a and n.

Lemma 1 Let C = a〈2〉n be a cycle in G(n) where a is an integer in C. If gcd(a, n) = d,
then C ∼= 〈2〉 n

d
. In particular, we have |a〈2〉n | = |〈2〉 n

d
| = c n

d
.

Proof Let a = a′d and n = n′d , then C = a〈2〉n ∼= a′〈2〉n′ by the definition of normal
product. Let s = |a′〈2〉n′ |, then s is the minimum positive integer such that a′ · 2s ≡ ±a′
(mod n′), i.e., 2s ≡ ±1 (mod n′) since gcd(a′, n′) = 1. Hence,

|a′〈2〉n′ | = s = |〈2〉n′ | = cn′ ,

and thus C ∼= a′〈2〉n′ ∼= 〈2〉n′ . ��
From Lemma 1, we can deduce immediately the following.

Lemma 2 Let n ≥ 3 be an odd integer.

(i) The length of any cycle in G(n) divides that of the standard cycle.
(ii) For any divisor d of n, cd |ϕ(d)

2 holds.
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(iii) The number of cycles in G(n) including a loop is
∑

d|n,d �=1 ϕ(d)/(2cd).

Proof (i) Is obvious. (ii) For a proper divisor d of n, let

A = {a ∈ V (G(n)) : gcd(a, n) = n/d}.
Then the induced subgraph by A are partitioned into cycles of length cd , i.e., |A| is divisible
by cd . Note that the set A can be written as {a : gcd(a · d

n , d) = 1, 1 ≤ a ≤ n−1
2 }. By a

change of variable a′ = a · d
n , we see that the size of A is equal to the size of {a′ : gcd(a′, d) =

1, 1 ≤ a′ ≤ d−1
2 }. Hence |A| = ϕ(d)/2. This proves (ii). (iii) can be proved directly from

(ii). ��
There is a strong correlation between the size M(n) of the optimal CAC of length n and

weight 3 and the number O(n) of odd cycles in G(n). We provide a formula of O(n) in the
following theorem. For odd integer d , we define

δd =
{

0 if d = 1 or if d > 1 and cd is even;
ϕ(d)
2cd

if d > 1 and cd is odd.

Theorem 1 For odd n ≥ 3, we have

O(n) =
∑

d|n
δd ,

and δd can be expressed in terms of ed and ϕ(d) by

δd =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ(d)

2ed
if ed is odd;

ϕ(d)

ed
if ed ≡ 2 (mod 4) and cd = ed

2 ;
0 otherwise.

(2)

Proof Let A = {a ∈ V (G(n)) : gcd(a, n) = 1} and B = V (G(n)) \ A. Then, as in the
proof of Lemma 2, |A| = ϕ(n)

2 . Moreover, the induced subgraph by A in G(n) is a union of
ϕ(n)/(2cn) disjoint cycles of length cn . These cycles are all odd cycles if cn is odd, and are
all even cycles if cn is even. The number of odd cycles in the subgraph induced by A is thus
equal to δn .

Note here that cn is either en or en
2 . If en is odd, then cn = en and the number of odd

cycles in the induced subgraph by A is ϕ(n)
2en

. If en ≡ 2 (mod 4) and cn = en
2 , then cn is odd

and there are ϕ(n)
en

odd cycles induced by A. If en ≡ 2 (mod 4) and cn = en or 4|en , then cn

is always even and hence the lengths of the cycles in the subgraph induced by A are all even.
Next, let us focus on the cycles in the induced subgraph by B. Each cycle in the induced

subgraph by B is of the form d〈2〉n for some proper divisor d of n. By Lemma 1, d〈2〉n ∼= 〈2〉 n
d

.
Then d〈2〉n is counted in δ n

d
exactly once if it is an odd cycle. This concludes the proof. ��

We can compute O(n) from ed and cd , where d runs over all factors of n. However, there
is no effective method to determine the number en so far.

In what follows, we consider the case when n is an odd prime p. In number theory, the
law of quadratic reciprocity is a theorem about modular arithmetic which gives conditions
for the solvability of quadratic equations modulo prime numbers. Here we use the second
supplement to quadratic reciprocity and Euler’s Criterion, see [18], to obtain the following
theorem.
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Theorem 2 [18] Let p be an odd prime. Then

2
p−1

2 ≡
{

1 (mod p) if p ≡ 1 or 7 (mod 8); and
−1 (mod p) if p ≡ 3 or 5 (mod 8).

(3)

For odd prime p, Theorem 1 can be formulated as

Theorem 3 If p is an odd prime, then

O(p) =

⎧
⎪⎨

⎪⎩

p−1
2ep

if p ≡ 7 (mod 8), or p ≡ 1 (mod 8) and ep is odd;
p−1
ep

if p ≡ 3 (mod 8), or p ≡ 1 (mod 8) and ep ≡ 2 (mod 4);
0 if p ≡ 5 (mod 8), or p ≡ 1 (mod 8) and 4|ep.

(4)

Proof By definition, O(p) = δp for any odd prime p, and δp = 0 (respectively, δp = p−1
2cd

)
if cp is even (respectively, cp is odd). Recall that for prime p, cp is equal to either ep if ep

is odd, or ep/2 if ep is even. We divide the proof into the following four cases.

Case 1: p ≡ 1 (mod 8). cp is even if and only if ep/2 is even, i.e., 4|ep . In this case, we
have δp = 0.

Case 2: p ≡ 3 (mod 8). We have cp = ep/2, because if cp = ep , then for all integer a, 2a

cannot be congruent to −1 mod p, but this contradicts Theorem 2.
Moreover, cp = ep/2 must be odd in this case, because ep is a
divisor of p − 1, which is divisible by 2 but not by 4.

Case 3: p ≡ 5 (mod 8). We have p − 1 = 8t + 4 for some integer t in this case, and want
to show that ep is divisible by 4. If 2 is a primitive root mod p,
then ep = p − 1 is an integral multiple of 4. If 2 is not a prim-
itive root mod p, then ep is a proper divisor of 8t + 4. Suppose
on the contrary that ep is not divisible by 4. Then ep is a divisor
of 4t + 2 = (p − 1)/2, and we can write (p − 1)/2 = aep for
some integer a. This implies that 2(p−1)/2 ≡ (2ep )a ≡ 1 (mod p),
contradicting Theorem 2. Therefore, we get 4|ep , and thus δp = 0
by Theorem 1.

Case 4: p ≡ 7 (mod 8). By Theorem 2, we see that ep is a divisor of (p − 1)/2, which is
an odd integer. Therefore cp = ep is odd in this case. ��

We are ready to rewrite the result in [14].

Theorem 4 Let n = ∏m
i=1 pri

i be an odd integer, where p1 < p2 < . . . < pm are distinct
prime factors and ri ∈ N. There exists a tight code C ∈ CACe(n) if and only if one of the
following holds:

(a) p1 > 3 and each pi satisfies the third condition in Theorem 3; or

(b) p1 = 3, r1 = 1, and for i ≥ 2, pi satisfies the third condition in Theorem 3.

Proof By Proposition 1, there exists a tight code if and only if (i) O(n) = 0 and 3 � n or (ii)
O(n) = 1 and 3|n. In the following we claim that condition (i) and (ii) are equivalent to (a)
and (b), respectively.

By Lemma 1, the cycle 〈2〉pi is congruent to n
pi

〈2〉n for every prime factor pi . If O(n) = 0,
then the length of n

pi
〈2〉n is even. Hence O(pi ) = 0. If O(n) = 1 and 3|n, then the length of

n
pi

〈2〉n is even except when pi = 3 (since ( n
3 ) is a cycle in G(n)). Therefore, p1 must be 3
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and O(pi ) = 0 for all other prime factors. It remains to prove r1 = 1. Suppose r1 ≥ 2. Since
n
3 〈2〉n and n

9 〈2〉n are congruent to 〈2〉3 and 〈2〉9, respectively, this contradicts the assumption
O(n) = 1.

Conversely, O(pi ) = 0 implies that cpi is even. Consider the case when O(pi ) = 0 for
all 1 ≤ i ≤ m. Let k be a factor of n. Assume k is a multiple of some prime factor pt of n.
Since 2ek ≡ 1 (mod k) implies 2ek ≡ 1 (mod pt ), we have ept |ek . Suppose ck is odd. By
Lemma 1, k

pt
〈2〉k ∼= 〈2〉pt . This implies cpt is odd, which contradicts to O(pt ) = 0. Thus we

have ck is even for any proper factor k of n. In addition, each cycle in G(n) can be written as
the form a〈2〉n , where a is an integer in its cycle. Because a〈2〉n is congruent to 〈2〉 n

d
where

d = gcd(a, n), the length of a〈2〉n is even. Hence, O(n) = 0. Now, consider the case when
p1 = 3, r1 = 1, and O(pi ) = 0 for all i ≥ 2. Similar to above argument, the length of a〈2〉n

is even except when a = n
3 . Thus, O(n) = 1 ��

3 Optimal conflict-avoiding codes

In this section we consider optimal CAC which may include non-equi-difference codewords.
To this end, we extend the graph G(n) to a hypergraph H(n). Recall that P(n, k) is the set
of all k-subsets of Zn . For odd integer n, we define H(n) as the hypergraph with vertex set
V (H(n)) = {1, 2, . . . , (n − 1)/2}, and edge set

E(H(n)) := {�(x) ∩ V (H(n)) : x ∈ P(n, 3)}.
Since the size of �(x) is restricted to 2, 4 or 6, the hyperedges in H(n) has size 1, 2 or 3.
An equi-difference codeword {0, a, 2a} corresponds to hyperedge of size 1 or 2, which are
precisely the loop or edges in the graph G(n). For non-equi-difference codeword {0, a, b},
the corresponding hyperedge in H(n) has size 3. Note that the graph G(n) is a subgraph of
hypergraph H(n). In graph-theoretic terminology, a CAC of length n and weight 3 is pre-
cisely a collection of mutually disjoint hyperedges in H(n), namely a hypergraph matching.
A matching in H(n) containing the largest possible number of hyperedges is called optimal.
The number of hyperedges in an optimal matching in H(n) is called the matching number
of H(n), and is equal to M(n).

In order to find an optimal conflict-avoiding code, it is better off finding as many equi-
difference codewords as possible. This is due to the fact that an equi-difference codeword
costs the least differences in G(n). The following bound of M(n) is true for any odd integer
n ≥ 3.

Lemma 3 Let n ≥ 3 be an odd integer. Then

1

2

(
n − 1

2
− O(n)

)
+ ξn ≤ M(n) ≤ 1

2

(
n − 1

2
− O(n)

)
+ ξn +

⌊
O(n) − ξn

3

⌋
,

where ξn = 1 or 0 depending on if 3|n or not.

Proof In G(n), the size of maximum matching is 1
2

( n−1
2 − O(n)

) + ξn . Since G(n) is a
subgraph of H(n), then the lower bound is derived. This lower bound is the maximal number
of equi-difference codewords of length n.

For the upper bound, we let C be an optimal CAC of length n. Let x1, x2 and x3 be the
number of hyperedges of 1, 2, and 3 in the corresponding hypergraph matching in H(n)

respectively. The value of x1 is equal to 0 when n is not a multiple of 3.
Suppose that n is a multiple of 3. Let j = n/3. We want to show that there is an opti-

mal matching of H(n) which contains the hyperedge { j} of size 1. Let M be a maximal
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matching of H(n). If the vertex j is not covered by any hyperedge in M, then we can add
the hyperedge { j} to M and increase the number of hyperedges in the matching by one,
contradicting the assumption that M is optimal. If the vertex j is covered by some other
hyperedge in M already, we can remove this hyperedge from M and replace it by { j}. The
resulting collection of hyperedges is a matching with the same number of hyperedges as in
M, and is hence optimal. Hence, we assume without loss of generality that x1 = 1 if 3|n,
and x1 = 0 otherwise.

Since the hyperedges in a matching must be disjoint, we have x1 +2x2 +3x3 ≤ (n −1)/2.
As there are O(n) odd cycles, we get

x2 ≤
(

n − 1

2
− O(n)

)
/2. (5)

We consider two cases. Firstly, suppose that n is not divisible by 3. Then x1 = 0, and by
adding (5) to 2x2 + 3x3 ≤ (n − 1)/2, we get

3x2 + 3x3 ≤ 3

2
· n − 1

2
− O(n)

2
≤ 3

2

(
n − 1

2
− O(n)

)
+ O(n).

Using the fact that n−1
2 − O(n) is even, we get

|C| ≤ x2 + x3 ≤ 1

2

(
n − 1

2
− O(n)

)
+ �O(n)/3�.

The second case 3|n can be treated similarly, and is omitted. ��
Example 3 For length n = 31, the hyperedges corresponding to the following seven
codewords

{0, 2, 5}, {0, 4, 8}, {0, 6, 12}, {0, 7, 14}, {0, 9, 18}, {0, 10, 20}, {0, 15, 30}
are illustrated in Fig. 1. The codeword {0, 2, 5} is not equi-difference. It corresponds to the
hyperedge {2, 3, 5} of size 3. There are many other hyperedges of size 3 in H(31), but they are
not shown in Fig. 1. The remaining six codewords are equi-difference. This CAC is optimal,
because it attains the upper bound

1

2

(n − 1

2
− O(n)

)
+ ξn +

⌊ O(n) − ξn

3

⌋
= 1

2

(31 − 1

2
− 3

)
+

⌊3

3

⌋
= 7

in Lemma 3.

Let Zodd be the set of odd integers larger than or equal to 1. In order to state the second
result in this section, we identify two special subsets of Zodd .

A = {n ∈ Zodd : cn is odd and 2cn ≡ 1 mod n},
B = {n ∈ Zodd : cn is odd and 2cn ≡ −1 mod n}.

The set Zodd \(A∪ B) consists of all odd integers n with cn even. In particular, Theorem 3
expresses that a prime is in A if it satisfies the first condition in Theorem 3, in B if it satisfies
the second condition, and in Zodd \ (A ∪ B) if it satisfies the third condition.

Example 4 Running over all odd integers from 3 to 99, we have

{7, 23, 31, 47, 49, 71, 73, 79, 89} ⊂ A, and

{3, 9, 11, 19, 27, 33, 43, 57, 59, 67, 81, 83, 99} ⊂ B.
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Fig. 1 An optimal matching of hypergraph H(31)

Theorem 5 Let n ≥ 3 be an odd integer, factorized as

n = p1 p2 · · · pm1 · q1q2 · · · qm2 · r1r2 · · · rm3 ,

where pi , q j , and r� are primes (not necessary distinct) with pi ∈ A, q j ∈ B, and r� �∈ A∪ B.
Let n′ = p1 p2 · · · pm1 and n′′ = q1q2 · · · qm2 . Then

O(n) = O(n′n′′) = O(n′) + O(n′′), (6)

and

M(n) = 1

4
(n − n′n′′) + M(n′n′′). (7)

In order to prove Theorem 5, we need the following two lemmas. The first one can be
derived from the definition of A and B.

Lemma 4 Let n ≥ 3 be odd integers.

(i) 2b ≡ ±1 (mod n) if and only if b is a multiple of cn.
(ii) If 2x ≡ 1 (mod n) for some odd integer x, then n ∈ A.

(iii) If 2y ≡ −1 (mod n) for some odd integer y, then n ∈ B.

The next lemma shows that if a ∈ A and b ∈ B, then gcd(a, b) = 1.

Lemma 5 Let n, m ≥ 3 be odd integers.

(i) If all prime factors of n are in A, then n ∈ A.
(ii) If all prime factors of n are in B, then n ∈ B.

(iii) If m �∈ A ∪ B, then mn �∈ A ∪ B for all odd n ≥ 3.
(iv) If m ∈ A and n ∈ B, then mn �∈ A ∪ B.

Proof We first prove by induction that if a prime p is in A, then pa is also in A for all a ≥ 1.
This is clearly true for a = 1. Suppose that pa ∈ A. By definition we have 2cpa = 1 + kpa
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for some integer k. Raising both sides to the power p, we get

2pcpa = 1 +
p∑

i=1

(
p

i

)
ki pia .

The summation on the right-hand side is divisible by pa+1. Thus 2pcpa ≡ 1 (mod pa+1).
This implies that pa+1 ∈ A by Lemma 4(ii).

Next we show that if n, m are relatively prime and are both in A, then their product mn is
in A. Indeed, from 2cn ≡ 1 (mod n) and 2cm ≡ 1 (mod m), we can see that 2cncm is congruent
to 1 mod n and mod m. Since gcd(n, m) = 1, we get 2cncm ≡ 1 (mod mn). By Lemma 4(ii),
we conclude that mn is in A. This proves part (i)

Part (ii) of the lemma can be proved similarly.
For part (iii), we have 2x ≡ 1 (mod m) only if x is even. However, from 2cmn ≡ 1 (mod

mn), we get 2cmn ≡ 1 (mod m). Hence, cmn is even.
To prove part (iv) of the lemma, we note that 2cmn cannot be congruent to −1 (mod mn);

otherwise, it would imply that 2cm ≡ −1 (mod m), contradicting the assumption that m ∈ A.
Therefore, we have 2cmn ≡ 1 (mod mn), and thus 2cmn ≡ 1 (mod n). Since n ∈ B, this is
possible only if cmn is even. ��
Proof of Theorem 5 To prove (6), we recall that we can compute O(n) by summing δd over
all divisors d of n. If d is divisible by a prime r� for some �, then it follows from Lemma
5(iii) that δd = 0. If d is divisible by pi q j for some i and j , then from Lemma 5(iv) δd is
also equal to 0. Therefore,

O(n) =
∑

d|n
d∈A

δd +
∑

d|n
d∈B

δd

= O(p1 p2 · · · pm1) + O(q1q2 · · · qm2).

Each odd cycle in G(p1 · · · pm1 q1 · · · qm2) are congruent to an odd cycle in G(n). The
odd cycles in G(p1 · · · pm1 q1 · · · qm2) are in one-to-one correspondence to the odd cycles in
G(n). Any CAC of length p1 · · · pm1 q1 · · · qm2 can be “lifted” to a CAC of length n. This
proves (6).

Let m(n) be the largest number of hyperedges which lies across three distinct vertices.
Then we have m(n) = m(n′n′′). The largest number of codewords in a CAC(n) is

M(n) = 1

2

(
n − 1

2
− O(n)

)
+ m(n)

= 1

2

(
n − 1

2
− O(n′n′′)

)
+ m(n′n′′)

= 1

2

(
n − 1

2
− O(n′n′′)

)
+ M(n′n′′) − 1

2

(
n′n′′ − 1

2
− O(n′n′′)

)

= 1

4
(n − n′n′′) + M(n′n′′).

This completes the proof of Theorem 5. ��
For example, when n = 11 · 31 = 341, G(341) contains four odd cycles of length 5,

namely,

(11, 22, 44, 88, 165), (31, 62, 124, 93, 155),

(33, 66, 132, 77, 154), (55, 110, 121, 99, 143).
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We can find an optimal CAC of length 341 consisting of 83 equi-difference codewords and one
non-equi-difference codeword {0, 11, 66}. Thus, M(341) = 84. For n = 5 · 11 · 31 = 1705,
G(1705) also contains four odd cycles of length 5, namely,

5 × (11, 22, 44, 88, 165), 5 × (31, 62, 124, 93, 155),

5 × (33, 66, 132, 77, 154), 5 × (55, 110, 121, 99, 143).

We can find an optimal CAC of length 1705 containing the non-equi-difference codeword
{0, 55, 330}. We have M(1705) = (1705 − 341)/4 + 84 = 425.

We note that the right-hand side of (7) only depends on the prime factors which belongs
to A and B. Theorem 5 reveals some structure in the computation of M(n). The set of odd
integers, Zodd , can be regarded as a semi-group, with integer multiplication as the semi-group
operation. The subset of odd integers

E = {n ∈ Zodd : O(n) = 0}
is a semi-subgroup. By (6) in Theorem 5, E consists of all odd integers whose divisors are
all in Zodd \ (A ∪ B). The smallest elements in E are

E = {5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 85, 91, 97, . . .}.
For any integer a, we define aE as the set {ae : e ∈ E}. Using this notation, the integers
satisfying the condition of Theorem 4 in Sect. 2 (i.e., there exists a tight code in CACe(n))
are precisely the elements in E ∪ 3E .

The set of all odd integers can be partitioned as a disjoint union as

Zodd =
⋃

a

aE,

with the index a running over all integers in A ∪ B. If M(a) is obtained by some means, then
the value of M(n) is known for all n in aE . In the computation of M(n) for general odd n, it
is sufficient to consider odd integer whose prime factors are in A ∪ B.

4 Conflict-avoiding codes of prime power length

In this section, we pay our attention on the special case when n is a prime power. We first
introduce a class of particular primes. A prime p which satisfies 2p−1 ≡ 1 (mod p2) is called
a Wieferich prime (see for example Sect. 6.10 in [4]). There have been only two Wieferich
primes, namely 1093 and 3511, discovered so far. In addition, it is expected that the third
smallest Wieferich prime must be larger than 6.7 × 1015 if it exists [1].

Remark 1 For the two known Wieferich primes 1093 and 3511, it can be shown by computer
that O(1093) = 0 and O(3511) = 1 but O(35112) = 3512, see Appendix A.

Lemma 6 If p is a non-Wieferich odd prime, then for r ≥ 2, we have epr = pr−1 · ep and
cpr = pr−1 · cp.

Proof (1) We first show ep2 = p · ep . Since, by definition, 2ep2 ≡ 1 (mod p2), we have
2ep2 ≡ 1 (mod p). Therefore, ep2 is an integral multiple of ep . Since p is not a Wieferich
prime, we have 2p−1 �≡ 1 (mod p2), and this implies 2ep �≡ 1 (mod p2). Let h be an

123



300 H.-L. Fu et al.

integer between 1 and p − 1 defined by the relation 2ep ≡ ph + 1 (mod p2). By raising
both sides to the power t , we obtain

(2ep )t ≡ (ph + 1)t ≡ tph + 1 (mod p2).

The right-hand side is congruent to 1 mod p2 if and only if t is a multiple of p. We thus
conclude that ep2 = p · ep . Furthermore, 2ep2 �≡ 1 (mod p3) can be obtained from the
fact gcd(p, h) = 1. This argument can be extended to any pr , r ≥ 3. This completes
the proof of this part.

(2) By definition, cp equals ep or ep
2 depending on if ep is odd or even. The case when ep

is odd has just been proven in (1). The case when ep is even, it follows from (1) that
epr = pr−1ep is even. Since �(pr ) = {a : a ∈ Zpr , gcd(a, pr ) = 1} forms a cyclic

group under multiplication, 2
epr

2 ≡ 1 or −1 (mod pr ). Again, by epr = pr−1ep , we
have

cpr = epr

2
= pr−1ep

2
= pr−1cp.

This concludes the proof. ��
Lemma 2(ii) states that the vertex set {a ∈ V (G(n)) : gcd(a, n) = d} in G(n) can be

partitioned into cycles of length cn/d . Consider n = pr , where p is non-Wieferich prime and
r ∈ N. We say the vertices in the set

{a ∈ V (G(pr )) : gcd(a, pr ) = pt }
are on the t th level, and can be partitioned into cycles of length cpr−t . Note that the 0th level
is also called the base level. By Lemma 6, the cycle structure in G(pr ) can be completely
characterized.

Theorem 6 For p is a non-Wieferich odd prime and r ∈ N, each level in G(pr ) contains
O(p) odd cycles. That is, there are r · O(p) odd cycles in G(pr ).

Proof For 0 ≤ t ≤ r − 1,

|{a ∈ V (G(pr )) : gcd(a, pr ) = pt }| = pr−t−1(p − 1)

2
,

and each cycle in the t th level is of the same length cpr−t . Then, by Lemma 6, the t th level
contains

(
pr−t−1(p − 1)

2

)/
cpr−t = pr−t−1(p − 1)

2pr−t−1cp
= O(p)

cycles. This completes the proof. ��
Example 5 G(3) = (1), G(9) = (1, 2, 4) ∪ (3), G(27) = (1, 2, 4, 8, 11, 5, 10, 7, 13) ∪
(3, 6, 12) ∪ (9), and G(81)=(1, 2, 4, 8, 16, 32, 17, 34, 13, 26, 29, 23, 35, 11, 22, 37, 7, 14,

28, 25, 31, 19, 38, 5, 10, 20, 40)∪(3, 6, 12, 24, 33, 15, 30, 21, 39)∪(9, 18, 36)∪(27). Then
O(27) = 3 · O(3) and O(81) = 4 · O(3).

In G(81), by multiplying all the vertices in the standard cycle by 3, we have three copies
of the first level cycle: 3(1, 2, 4, 8, 16, 32, 17, 34, 13) ≡ 3(26, 29, 23, 35, 11, 22, 37, 7, 14)

≡ 3(28, 25, 31, 19, 38, 5, 10, 20, 40) ≡ (3, 6, 12, 24, 33, 15, 30, 21, 39). In the same way,
by multiplying the vertices in the standard cycle by 9, we will have nine copies of the second
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level cycle. This is because for any b on the first (or second) level, there are exactly 3 (or 9)
vertices v on the standard level so that 3v ≡ b (or 9v ≡ b) under modulo 81. The following
lemma presents a more precise description of this phenomenon.

Lemma 7 Let p be a non-Wieferich prime and r be a positive integer.

(i) In G(pr ), for any b ∈ V (G(pr )) on the tth level cycle, there are exactly pt−s vertices
x satisfying the congruent formula

xpt−s ≡ ±b (mod pr ), (8)

where r > t > s ≥ 0. Furthermore, these pt−s vertices are on the same cycle in the
sth level. Note that s = 0 refers to the base level in the statement.

(ii) If apt ≡ ±a′ pt (mod pr ) in G(pr ), then a and a′ lie on the same cycle where r > t ≥ 1.

Proof (i) Assume a is a solution, then apt−s ≡ ±b (mod pr ) implies apt−s = i · pr ±b.

Since the candidates of a are integers from 1 to pr −1
2 , apt−s ≤ pt−s

2 (pr − 1). Then

apt−s is either i · pr + b for 0 ≤ i ≤ pt−s−1
2 , or i · pr − b for 1 ≤ i ≤ pt−s−1

2 . Hence
there are at most pt−s vertices in G(pr ) satisfying the congruent formula.
Now, if b = b′ pt , where gcd(b′, p) = 1, then b′ ps is a solution to xpt−s ≡ ±b (mod
pr ). Let c̃ be the length of cycle C where b lies on, i.e., c̃ = cpr−t . For 0 ≤ j ≤ pt−s−1,
we have

(b′ ps)2 j c̃ · pt−s = b′ pt · 2 j c̃ = b · (2c̃) j ≡ ±b (mod pr ).

It is obvious that b′ ps · 2 j c̃, 0 ≤ j ≤ pt−s − 1, are on the same cycle in the sth level.
Moreover, since the length of sth level cycle is cpr−s = pt−s × c̃ by Lemma 6, these
pt−s vertices are all distinct.

(ii) Since a and a′ are solutions of xpt−s ≡ ±b (mod pr ) for some b, trivially they are on
the same cycle by (i).

To obtain an optimal CAC, we could first pack equi-difference codewords in cycles of even
length tightly. Then for odd cycles of length greater than or equal to 3, we try to find disjoint hy-
peredges E1, E2, . . . , Eμ of size 3, such that (i) all vertices in the union E1∪, E2∪, . . . ,∪Eμ

are contained in the odd cycles, and (ii) no two vertices in E1∪, E2∪, . . . ,∪Eμ are contained
in the same odd cycle. We say that hyperedges satisfying (i) and (ii) lie across distinct odd
cycles. Obviously such hyperedges exists only if there are at least three odd cycles in G(n).

Back to Example 5, let a, 3b, 9c be arbitrary vertices in the three non-loop cycles in G(81),
where a, b, c are relatively prime to 3. Since the sum of any two integers from a, 3b, 9c is not
congruent to the remaining one or its negative modulo 81, {a, 3b, 9c} will not be a hyperedge
in H(81). Then, M(81) = Me(81) = 19. This findings lead us to conclude the following
result. ��
Theorem 7 Let p be a non-Wieferich odd prime and r be a positive integer. If O(p) ≤ 2,
then

M(pr ) = Me(pr ) = 1

2

(
pr − 1

2
− r · O(p)

)
+ ξp,

where ξp = 1 or 0 depending on if p = 3 or not.

Proof Firstly, it is obvious that ξp = 1 only when p = 3, and ξ3r = ξ3 = 1. By Lemma 3
and Theorem 6, it suffices to show that there is no hyperedge lying across distinct odd cycles.
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In what follows, we show a further result that such a hyperedge exists only when its three
vertices lie on the same level in G(pr ).

We first consider the case when all the three vertices lie on distinct levels, say level x, y
and z where 0 ≤ x < y < z < r . Let apx , bpy, cpz be the three vertices where a, b, c are
relatively prime to p. Without loss of generality, assume apx +bpy ±cpz ≡ 0 (mod pr ). This
implies a + bpy−x ± cpz−x ≡ 0 (mod pr−x ) and then a ≡ 0 (mod py−x ), a contradiction
to gcd(a, p) = 1.

Now, consider the case when the three vertices lie on two different levels, say level x and y.
Let apx , bpx , cpy be the three vertices where a, b, c are relatively prime to p. Without loss of
generality, assume apx+bpx±cpy ≡ 0 (mod pr ). If x > y, then apx−y+bpx−y±c ≡ 0 (mod
pr−y) implies c ≡ 0 (mod pr−y), a contradiction to gcd(c, p) = 1. If x < y, observe that
apx and bpx lie on the different cycles on level x in G(pr ). This means a and b lie on different
base level cycles in G(pr−x ). By the hypothesis that apx +bpx ±cpy ≡ 0 (mod pr ), we have

a + b ± cpy−x ≡ 0(mod pr−x ) ⇒ a + b ≡ 0 (mod py−x )

⇒ apr−y + bpr−y ≡ 0 (mod pr−x ).

By Lemma 7, a and b should be on the same cycle in G(pr−x ), which contradicts to the
assumption we made. This concludes the proof. ��
Remark 2 Levenshtein and Tonchev [9] stated M(n) ∼ n

4 as odd n → ∞. Theorem 7 shows,
however, that n−1

4 − M(n) ≥ logp n or 1
2 logp n if O(p) = 2 or O(p) = 1, where n = pr

for some r .

Theorem 8 Let p > 3 be a non-Wieferich prime. Then, for r ≥ 1,

M(pr ) = 1

4

(
pr − r p + r − 1

)
+ r M(p).

Proof For O(p) ≤ 2, by Theorem 7, M(pr ) = 1
2

(
pr −1

2 − r · O(p)
)

and O(p) =
2

(
p−1

4 − M(p)
)

. On these two equations we immediately deduce the objective formula.

For O(p) ≥ 3, we assume that in H(p) the maximum number of mutually disjoint
hyperedges of size 3 lying across distinct odd cycles is m(p). That is, assume

M(p) = 1

2

( p − 1

2
− O(p)

)
+ m(p).

In the proof of Theorem 7, those hyperedges of size 3 can not lie across different levels in
H(pr ). We claim that there are exactly m(p) such mutually disjoint hyperedges on each level
in H(pr ). Assume that Ei = {ai , bi , ci }, i = 1, 2, . . . , m(p), are those hyperedges in H(p).
For each Ei , let t ×Ei denote the set {tai , tbi , tci }. We first consider the (r −1)-th level. Since
any cycle C in H(p) is congruent to pr−1 × C on the (r − 1)-th level in H(pr ), pr−1 × E1,
pr−1×E2, . . . , pr−1×Em(p) are mutually disjoint hyperedges of size 3 lying across different
cycles, and there is no more extra such hyperedges. Then, there is a bijective mapping between
cycles on any two levels. This implies that exactly m(p) mutually disjoint hyperedges lying
across different cycles can be found on each level. By Theorem 6, we hence have

M(pr ) = 1

2

( pr − 1

2
− r O(p)

)
+ rm(p).

By replacing m(p) by M(p) − 1
2 (

p−1
2 − O(p)), the equation in the theorem is derived. ��
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Fig. 2 An optimal matching of hypergraph H(312)

Remark 3 For p = 3, the only case when ξp = 1, we have the following formula by a similar
argument:

M(3r ) = 1

4
(3r − 2r + 3).

Example 6 Example 3 expresses M(31) = 7. For n = 31r , by Theorem 8, M(31r ) =
1
4 (31r − 2r − 1). Fig. 2 shows the case r = 2. The hyperedges of size 3 on the base and
1st level are {2, 3, 5} and {62, 93, 155}, respectively. Both of their corresponding codewords
are not of equi-difference. The remaining vertices can be partitioned into 237 pairs, each of
them corresponds to an equi-difference codeword. This CAC is optimal because it attains the
upper bound of Lemma 3, and the formula

M(312) = 1

4

(
961 − 4 − 1

)
= 239

holds.

5 An algorithm for constructing non-equi-difference CAC

In this section, we consider optimal CAC for general positive integer n by giving a system-
atic method for constructing non-equi-difference CAC. We first, in H(n), construct as many
mutually disjoint hyperedges lying across distinct odd cycles as possible. Then remove the
involved vertices. Finally, we find the maximum matching in the induced subgraph of G(n)

by the remaining vertices. We use an example to illustrate the idea of this procedure.

Example 7 In Fig. 3 there are seven cycles in G(99) and all of them are odd cycles. There
are two cycles of length 15, three cycles of length 5, one cycle of length 3 and one loop. The
hyperedges {1, 10, 11} and {6, 9, 15} lie across distinct odd cycles. These two hyperedges
correspond to the non-equi-difference codewords {0, 1, 11} and {0, 6, 15}.

We initialize C as the empty set. Firstly we put the non-equi-difference codewords
{0, 1, 11} and {0, 6, 15} into C. We then pack the odd cycles with edges of size two, and
put the corresponding equi-difference codewords into C. The resulting matching is shown
by the thick lines in Fig. 3. We have thus constructed a CAC with 24 codewords, which is
optimal by Lemma 3.
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Fig. 3 An optimal matching of hypergraph H(99)

In order to find such mutually disjoint hyperedges effectively, we construct an auxiliary hy-
pergraph H ′(n) with O(n)−ξn vertices, where ξn = 1 or 0 depending on if 3|n or otherwise.
Each vertex is associated with an odd cycle of length at least 3 in G(n). For each hyperedge
of size 3 lying across three distinct odd cycles, we put a hyperedge of size 3 covering the
three corresponding vertices in H ′(n). We then apply any hypergraph matching algorithm
on the auxiliary graph H ′(n). If a hypergraph matching consisting of � O(n)−ξn

3 � hyperedges
is found, then we have an optimal CAC attaining the upper bound in Lemma 3. However, if
the hyperedges in the resulting hypergraph matching is strictly less than � O(n)−ξn

3 �, then the
CAC constructed in this way may or may not be optimal. According to our experiences on
finding hyperedges in H(p), we conjecture that H ′(p) has a hypergraph matching of size⌊

O(p)
3

⌋
for any prime p with O(p) ≥ 3.
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Conjecture 1 For any non-Wieferich prime p, H ′(p) contains a hypergraph matching of size⌊
O(p)

3

⌋
. That is,

M(pr ) = 1

2

(
pr − 1

2
− r · O(p)

)
+ r

⌊
O(p)

3

⌋

By computer search, the above conjecture is verified for all odd primes less than 1000.
For odd length less than 100, a table of optimal CAC of weight 3 is given in Appendix

B. We observe for length 31, 33, 43, 57, 73, 89, 93 and 99, the optimal CAC contains non-
equi-difference codeword(s). For the rest of the cases, an optimal CAC can be constructed
entirely by equi-difference codewords.

In Appendix C, the values of M(n) for odd n, 100 ≤ n ≤ 520 are tabulated.
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Appendices

A Standard cycles in G( p) for Wieferich primes p = 1093, 3511

The following table shows the standard cycles in G(1093) and G(3511). In G(1093),
the other two cycles are 5〈2〉1093 and 7〈2〉1093, which are both of even length 182. This
implies that O(1093r ) = 0 for all r ≥ 1. In G(3511), 〈2〉3511 is the only one cycle
and of odd length 1755. In G(35112), however, the standard cycle 〈2〉35112 is of length
1755 and all other cycles are congruent to it. That is, there are 3,512 odd cycles in
G(35112). Moreover, it is easy to find triples from different cycles to produce more
codewords. {2140703 (∈ 〈2〉35112), 821830 (∈ 5 〈2〉35112), 2962533 (∈ 145〈2〉35112)} and
{3126190 (∈ 125〈2〉35112), 4067727 (∈ 2841〈2〉35112), 5133204 (∈ 12821〈2〉35112)}, for
instance (Table 1).

Table 1 The standard cycles in G(1093) and G(3511)

n 〈2〉n Length O(n)

1093 (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 69, 138, 276, 541, 11, 22, 44, 88, 176,
352, 389, 315, 463, 167, 334, 425, 243, 486, 121, 242, 484, 125, 250, 500,
93, 186, 372, 349, 395, 303, 487, 119, 238, 476, 141, 282, 529, 35, 70, 140,
280, 533, 27, 54, 108, 216, 432, 229, 458, 177, 354, 385, 323, 447, 199, 398,
297, 499, 95, 190, 380, 333, 427, 239, 478, 137, 274, 545, 3, 6, 12, 24, 48,
96, 192, 384, 325, 443, 207, 414, 265, 530, 33, 66, 132, 264, 528, 37, 74,
148, 296, 501, 91, 182, 364, 365, 363, 367, 359, 375, 343, 407, 279, 535,
23, 46, 92, 184, 368, 357, 379, 335, 423, 247, 494, 105, 210, 420, 253, 506,
81, 162, 324, 445, 203, 406, 281, 531, 31, 62, 124, 248, 496, 101, 202, 404,
285, 523, 47, 94, 188, 376, 341, 411, 271, 542, 9, 18, 36, 72, 144, 288, 517,
59, 118, 236, 472, 149, 298, 497, 99, 198, 396, 301, 491, 111, 222, 444, 205,
410, 273, 546)

182 0
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Table 1 continued

n 〈2〉n Length O(n)

3511 (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1463, 585, 1170, 1171, 1169,
1173, 1165, 1181, 1149, 1213, 1085, 1341, 829, 1658, 195, 390, 780, 1560,
391, 782, 1564, 383, 766, 1532, 447, 894, 1723, 65, 130, 260, 520, 1040,
1431, 649, 1298, 915, 1681, 149, 298, 596, 1192, 1127, 1257, 997, 1517,
477, 954, 1603, 305, 610, 1220, 1071, 1369, 773, 1546, 419, 838, 1676, 159,
318, 636, 1272, 967, 1577, 357, 714, 1428, 655, 1310, 891, 1729, 53, 106,
212, 424, 848, 1696, 119, 238, 476, 952, 1607, 297, 594, 1188, 1135, 1241,
1029, 1453, 605, 1210, 1091, 1329, 853, 1706, 99, 198, 396, 792, 1584, 343,
686, 1372, 767, 1534, 443, 886, 1739, 33, 66, 132, 264, 528, 1056, 1399,
713, 1426, 659, 1318, 875, 1750, 11, 22, 44, 88, 176, 352, 704, 1408, 695,
1390, 731, 1462, 587, 1174, 1163, 1185, 1141, 1229, 1053, 1405, 701, 1402,
707, 1414, 683, 1366, 779, 1558, 395, 790, 1580, 351, 702, 1404, 703, 1406,
699, 1398, 715, 1430, 651, 1302, 907, 1697, 117, 234, 468, 936, 1639, 233,
466, 932, 1647, 217, 434, 868, 1736, . . .

1755 1

.

.

.

. . ., 795, 1590, 331, 662, 1324, 863, 1726, 59, 118, 236, 472, 944, 1623, 265,
530, 1060, 1391, 729, 1458, 595, 1190, 1131, 1249, 1013, 1485, 541, 1082,
1347, 817, 1634, 243, 486, 972, 1567, 377, 754, 1508, 495, 990, 1531, 449,
898, 1715, 81, 162, 324, 648, 1296, 919, 1673, 165, 330, 660, 1320, 871,
1742, 27, 54, 108, 216, 432, 864, 1728, 55, 110, 220, 440, 880, 1751, 9, 18,
36, 72, 144, 288, 576, 1152, 1207, 1097, 1317, 877, 1754, 3, 6, 12, 24, 48,
96, 192, 384, 768, 1536, 439, 878, 1755)

B Optimal CAC of odd length ≤ 100 and weight 3

Table 2 Codewords of optimal CAC(n) for odd n, 5 ≤ n ≤ 100

n M(n) Generators of equi-difference codewords Non-equi-difference
codewords

5,7 1 1

9 2 1,3

11 2 1,4

13 3 1,3,4

15 4 1,3,4,5

17 4 1,3,4,7

19 4 1,3,4,7

21 5 1,3,4,5,7

23 5 1,3,4,5,7

25 6 1,4,5,6,9,11

27 6 1,3,4,9,10,11

29 7 1,4,5,6,7,9,13

31 7 4,6,7,9,10,15 {0,2,5}

33 8 4,6,7,9,10,11,16 {0,2,5}
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Table 2 continued

n M(n) Generators of equi-difference codewords Non-equi-difference
codewords

35 8 1,4,5,6,7,9,11,16

37 9 1,3,4,7,9,10,11,12,16

39 10 1,3,4,9,10,12,13,14,16,17

41 10 1,3,4,7,10,11,12,13,16,18

43 10 2,5,8,9,11,12,13,14,20 {0,1,7}

45 11 1,3,4,5,9,11,12,14,15,16,19

47 11 1,4,6,7,10,16,17,18,19,21,22

49 11 1,4,5,6,7,11,15,16,18,20,23

51 13 1,3,4,5,9,12,13,14,15,16,17,20,22

53 13 1,4,6,7,9,10,11,13,15,16,17,24,25

55 13 1,4,5,6,9,11,14,16,19,20,21,24,26

57 14 4,6,7,10,11,13,15,16,17,18,19,24,28 {0,2,5}

59 14 1,4,5,6,7,13,16,18,20,21,22,24,25,28

61 15 1,3,4,5,9,12,13,14,15,16,19,20,22,25,27

63 15 1,3,4,5,7,9,11,12,13,15,16,17,19,20,21

65 16 1,3,4,5,7,11,12,13,15,16,17,18,19,20,21,28

67 16 1,3,4,9,10,11,12,14,16,19,23,25,26,27,30,31

69 17 1,3,4,5,9,11,12,13,14,15,16,17,20,21,23,25,31

71 17 1,3,4,5,7,9,12,13,16,17,19,20,21,22,23,28,30

73 17 4,6,9,10,11,14,16,17,19,23,24,26,29,30,33,36 {0,2,5}

75 19 1,3,4,5,11,12,13,14,15,16,18,19,20,25,26,27,29,31,33,34

77 18 1,4,6,7,9,10,11,13,15,16,17,19,23,24,25,28,36,37

79 19 1,3,4,9,10,12,13,14,15,16,19,22,23,27,29,31,34,36,37

81 19 1,3,4,7,9,10,12,13,16,17,22,27,28,29,30,31,33,35,38

83 20 1,4,6,7,10,11,13,16,18,19,24,28,29,30,31,33,34,37,39,40

85 21 1,3,4,5,7,9,12,15,16,17,19,20,21,22,23,25,26,27,28,36,37

87 22 1,3,4,5,7,12,13,15,16,18,20,21,22,23,25,27,28,29,34,35,38,39

89 21 4,6,7,10,11,13,16,17,18,21,23,24,25,28,30,31,35,37,40,44 {0,2,5}

91 22 1,3,4,7,9,10,12,13,16,17,21,22,23,25,27,28,29,30,36,38,40,43

93 23 1,4,5,7,12,13,16,17,18,19,20,21,22,23,25,27,28,29,30,31,41,45 {0,6,15}

95 23 1,4,5,6,9,11,14,15,16,19,20,21,24,26,29,31,34,35,36,39,41,46

97 24 1,4,5,6,9,13,14,16,17,19,20,21,22,23,

24,29,30,33,35,36,41,43,45,47

99 24 2,7,8,12,13,17,18,19,20,21,22,23, {0,1,11}

25,27,28,29,30,31,32,33,47,48 {0,6,15}

C The size of optimal CAC for odd n, 100 ≤ n ≤ 520

In this appendix we tabulate the value M(n), for odd n between 100 and 520. The entries
marked by ∗ indicate that non-equi-difference codewords are required to construct opti-
mal CAC. Otherwise, we can find an equi-difference CAC which is optimal. Except n =

123



308 H.-L. Fu et al.

189, 243, 405, 343, 441, which are marked by † in the following table, the number of code-
words matches the upper bound in Lemma 3, and is thus optimal. For n = 243, 343, which
are powers of 3 and 7 respectively, the value of M(n) is given by Theorem 7. For n =
189, 405, 441, the optimality follows from arguments similar to the proof of Theorem 7
(Tables 3 and 4).

Table 3 List of M(n) for odd n, 101 ≤ n ≤ 300

n 101 103 105 107 109 111 113 115 117 119
M(n) 25 25 26 26 27 28 28 28 29 29

n 121 123 125 127 129 131 133 135 137 139

M(n) 29 31 31 30∗ 31∗ 32 32 33 34 34

n 141 143 145 147 149 151 153 155 157 159

M(n) 35 35 36 36 37 36∗ 38 38∗ 39 40

n 161 163 165 167 169 171 173 175 177 179

M(n) 39∗ 40 41∗ 41 42 41∗ 43 43 44∗ 44

n 181 183 185 187 189 191 193 195 197 199

M(n) 45 46 46 46 47† 47 48 49 49 49

n 201 203 205 207 209 211 213 215 217 219

M(n) 50∗ 50 51 51 51∗ 52 53 53∗ 52∗ 54∗
n 221 223 225 227 229 231 233 235 237 239

M(n) 55 55∗ 56 56 57 57∗ 57∗ 58 59 59

n 241 243 245 247 249 251 253 255 257 259

M(n) 60 60† 60 61 62∗ 60∗ 62 64 64 64

n 261 263 265 267 269 271 273 275 277 279

M(n) 65 65 66 65∗ 67 67 68 68 69 69∗
n 281 283 285 287 289 291 293 295 297 299

M(n) 69∗ 70∗ 71∗ 71 72 73 73 73 73∗ 74

Table 4 List of M(n) for odd n, 301 ≤ n ≤ 520

n 301 303 305 307 309 311 313 315 317 319
M(n) 74∗ 76 76 76∗ 77 77 78 78 79 79

n 321 323 325 327 329 331 333 335 337 339

M(n) 80∗ 80 81 82 81∗ 80∗ 83 83 82∗ 85

n 341 343 345 347 349 351 353 355 357 359

M(n) 84∗ 85† 86 86 87 87 88 88 89 89

n 361 363 365 367 369 371 373 375 377 379

M(n) 89 88∗ 89∗ 91 92 92 93 94 94 94

n 381 383 385 387 389 391 393 395 397 399

M(n) 94∗ 95 95 94∗ 97 97 98∗ 98 99 99∗
n 401 403 405 407 409 411 413 415 417 419

M(n) 100 100∗ 101† 101 102 103 102 103 104∗ 104

n 421 423 425 427 429 431 433 435 437 439

123



Optimal conflict-avoiding codes 309

Table 4 continued

M(n) 105 105 106 106 107∗ 106∗ 108 109 108 109∗
n 441 443 445 447 449 451 453 455 457 459

M(n) 110† 110 110∗ 112 112 112 112∗ 113 114 114

n 461 463 465 467 469 471 473 475 477 479

M(n) 115 115 116∗ 116 116 118 116∗ 118 119 119

n 481 483 485 487 489 491 493 495 497 499

M(n) 120 120∗ 121 121 122∗ 122 123 123∗ 123∗ 124

n 501 503 505 507 509 511 513 515 517 519

M(n) 125 125 126 127 127 122∗ 123∗ 128 128 130
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