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The connectivity of a graph is an important issue in graph theory, and is also one of the most
important factors in evaluating the reliability and fault tolerance of a network. It is known
that the augmented cube AQ n is maximally connected, i.e. ð2n� 1Þ-connected, for n P 4. By
the classic Menger’s Theorem, every pair of vertices in AQ n is connected by 2n� 1 vertex-dis-
joint paths for n P 4. A routing with parallel paths can speed up transfers of large amounts
of data and increase fault tolerance. Motivated by research on networks with faults, we
obtained the result that for any faulty vertex set F � VðAQ nÞ and jFj 6 2n� 7 for n P 4,
each pair of non-faulty vertices, denoted by u and v, in AQ n � F is connected by
minfdegf ðuÞ;degf ðvÞg vertex-disjoint fault-free paths, where degf ðuÞ and degf ðvÞ are the
degree of u and v in AQn � F, respectively. Moreover, we demonstrate that for any faulty
vertex set F � VðAQnÞ and jFj 6 4n� 9 for n P 4, there exists a large connected component
with at least 2n � jFj � 1 vertices in AQ n � F, which improves on the results of Ma et al.
(2008) who show this for n P 6.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Interconnection networks have been widely studied recently. The architecture of an interconnection network is usually
denoted as an undirected graph G. For the graph definition and notation we follow [2]. G ¼ ðV ; EÞ is a graph if V is a finite set
and E is a subset of fða; bÞjða; bÞ ða – bÞ is an unordered pair of Vg. We say that V is the vertex set and E is the edge set. The
interconnection network topology is usually represented by a graph G ¼ ðV ; EÞ, where vertices represent processors and
edges represent links between processors. The neighborhood of vertex v, denoted by NðvÞ, is fxjðv; xÞ 2 Eg. The degree of a
vertex v, denoted by degðvÞ, is the number of vertices in NðvÞ. A graph G is k-regular if degðvÞ ¼ k for every vertex v 2 V .
For the purpose of connecting hundreds or thousands of processing elements, many interconnection network topologies
have been proposed in the literature. Graph theory can be used to analyze network reliability, so we use the terminology
graphs and networks synonymously.

The reliability and fault tolerance of a network with respect to processor failures is directly related to the connectivity of the
corresponding graph. Connectivity is one of the important factors for evaluating the fault tolerance of a network [3,4,14]. The
connectivity of G, written jðGÞ, is defined as the minimum size of a vertex cut if G is not a complete graph, and
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jðGÞ ¼ jVðGÞj � 1 otherwise. Traditional connectivity only considers how many faulty vertices there can be before the net-
work fails. It is known that jðGÞ 6 dðGÞ, where dðGÞ is the minimum degree of G. For the most part, even if the number of
faulty vertices is higher than that specified by network connectivity standards, the network remains connected or at least
a large part of it remains connected. Many measures of fault tolerance of networks are related to the maximal size of the
connected components of networks with faulty vertices, so it is essential to estimate the maximally connected component
of the network with the faulty vertices [1]. Yang et al. [15–17] have proposed a way to determine the maximally connected
component of the n-dimensional hypercube.

A distributed system is useful because it offers the advantage of improved connectivity. Menger’s Theorem [10] shows
that if a network G is k-connected, every pair of vertices in G is connected by k vertex-disjoint (parallel) paths. Efficient rout-
ing can be achieved using vertex-disjoint paths, providing parallel routing and high fault tolerance, increasing the efficiency
of data transmission, and decreasing transmission time. Saad and Schultz [12] studied the n vertex-disjoint parallel paths of
an n-dimensional hypercube Q n. Day and Tripathi [7] discussed the n� 1 vertex-disjoint parallel paths of an n-dimensional
star graph Sn for any two vertices of Sn.

Many useful topologies have been proposed to balance performance and cost parameters. Among them, the binary hyper-
cube Q n [5,12] is one of the most popular topologies, and has been studied for parallel networks. Augmented cubes are deriv-
atives of the hypercubes with good geometric features that retain some favorable properties of the hypercubes, such as
vertex symmetry, maximum connectivity, best possible wide diameter, routing, and broadcasting procedures with linear
time complexity. The augmented cube of dimension n, denoted by AQn, is a Cayley graph, ð2n� 1Þ-regular, ð2n� 1Þ-con-
nected, and has diameter dn=2e [6]. In this paper, we demonstrate a tight result that for any faulty vertex set F � VðAQ nÞ
and jFj 6 2n� 7 for n P 4, each pair of non-faulty vertices u and v in AQn � F is connected by minfdegf ðuÞ;degf ðvÞg ver-
tex-disjoint fault-free paths, where degf ðuÞ and degf ðvÞ are the degree of u and v in AQn � F, respectively. In addition, we
consider the maximally connected component of the augmented cube with faulty vertices. In 2008, Ma et al. showed that
for n P 6, for any faulty vertex set F � VðAQnÞ and jFj 6 4n� 9, the maximally connected component of AQ n � F has at least
2n � jFj � 1 vertices. We improve this result by demonstrating it for n P 4.

In the next section, we give the definition of the augmented cube AQn for n P 1. Section 3 deals with the maximally con-
nected component of AQ n � F with jFj 6 4n� 9 for n P 4. Section 4 studies the vertex-disjoint fault-free paths in AQ n � F
with jFj 6 2n� 7 for n P 4.
2. The augmented cube AQ n

The definition of the n-dimensional augmented cube is stated as the following. Let n P 1 be a positive integer. The n-
dimensional augmented cube [6,8], denoted by AQ n, is a vertex transitive and ð2n� 1Þ-regular graph with 2n vertices. Each
vertex is labeled by an n-bit binary string and VðAQnÞ ¼ funun�1 . . . u1jui 2 f0;1gg. AQ1 is the complete graph K2 with vertex
set f0;1g and edge set fð0;1Þg. As for n P 2; AQn consists of (1) two copies of ðn� 1Þ-dimensional augmented cubes, de-
noted by AQ 0

n�1 and AQ1
n�1; and (2) 2n edges (two perfect matchings of AQn) between AQ0

n�1 and AQ 1
n�1. AQn can be written

as AQ 0
n�1}AQ1

n�1 for n P 2. VðAQ0
n�1Þ ¼ f0un�1un�2 . . . u1 j ui 2 f0;1gg and VðAQ 1

n�1Þ ¼ f1vn�1vn�2 . . . v1 j v i 2 f0;1gg. Vertex
u ¼ 0un�1un�2 . . . u1 of AQ0

n�1 is joined to vertex v ¼ 1vn�1vn�2 . . . v1 of AQ1
n�1 if and only if either.

(i) ui ¼ v i for 1 6 i 6 n� 1; in this case, ðu;vÞ is called a hypercube edge and we set v ¼ uh, or
(ii) ui ¼ �v i for 1 6 i 6 n� 1; in this case, ðu;vÞ is called a complement edge and we set v ¼ uc .

The augmented cubes AQ 1; AQ 2, and AQ3 are illustrated in Fig. 1. Let the hypercube edge set of AQn be Eh
n and the com-

plement edge set of AQn be Ec
n. Thus, Eh

n ¼ fðu;uhÞj u 2 VðAQ 0
n�1Þg and Ec

n ¼ fðu;ucÞj u 2 VðAQ 0
n�1Þg. Obviously, each of Eh

n and
Ec

n is a perfect matching between the vertices of AQ0
n�1 and AQ1

n�1. Then, both jEh
nj and jEc

nj are equal to 2n�1.
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Fig. 1. The augmented cubes AQ 1; AQ 2, and AQ3.
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3. Maximally connected component

Before proving our main results, we show some properties of the augmented cubes in the following two lemmas.

Lemma 1. Assume n is an integer with n P 3. Let AQn ¼ AQ0
n�1}AQ1

n�1 be an n-dimensional augmented cube, and u;v be any
two vertices in AQ0

n�1. Then, the vertices u and v have totally two distinct neighborhoods in AQ1
n�1 if u ¼ 0an�1 . . . a1 and

v ¼ 0an�1 . . . a1 with ai 2 f0;1g for 1 6 i 6 n� 1. Otherwise, the vertices u and v have totally four distinct neighborhoods in
AQ1

n�1. That is,
jðNðuÞ [ NðvÞÞ \ VðAQ1
n�1Þj ¼

2 if u ¼ 0 an�1 . . . a1 and v ¼ 0an�1 . . . a1;

4 otherwise:

�

Proof. We first suppose that u ¼ 0an�1 . . . a1 and v ¼ 0an�1 . . . a1 with ai 2 f0;1g for 1 6 i 6 n� 1. Then, vertices u and v have
two distinct neighborhoods 1an�1 . . . a1 and 1an�1 . . . a1 in AQ1

n�1. Otherwise, suppose that u ¼ 0an�1 . . . a1 and v ¼ 0bn�1 . . . b1,
where an�1 . . . a1 – bn�1 . . . b1. Then, vertices u and v have four distinct neighborhoods 1an�1 . . . a1; 1an�1 . . . a1; 1bn�1 . . . b1,
and 1bn�1 . . . b1 in AQ1

n�1. As a result, this lemma follows. h

By the structure of the augmented cubes, every pair of vertices in the augmented cube has at most four common neigh-
borhoods, as has been proved in [9] as Lemma 2.

Lemma 2. For n P 3, let AQn be an n-dimensional augmented cube, any two vertices u and v of AQn have at most four common
neighborhoods. That is, jNðuÞ \ NðvÞj 6 4.

Choudum and Sunitha [6] have shown that the augmented cube AQ n is maximally connected for n P 4, as the following
lemma.

Lemma 3. jðAQ1Þ ¼ 1; jðAQ2Þ ¼ 3; jðAQ3Þ ¼ 4, and jðAQnÞ ¼ 2n� 1, where n P 4.
For ease of the proof of Lemma 5 and Theorem 1, we need the following lemma.

Lemma 4. Assume that n is an integer with n P 2. Let AQn ¼ AQ0
n�1}AQ1

n�1 be an n-dimensional augmented cube, F � VðAQnÞ
be a set of vertices of AQn, and F1 ¼ F \ VðAQ1

n�1Þ with jF1j 6 1. Then, AQn � F is still a connected graph which contains 2n � jFj
vertices.
Proof. According to Lemma 3, AQ 1
n�1 � F1 is a connected component with 2n�1 � jF1j vertices. For each vertex v 2 VðAQ0

n�1Þ,
at least one of its two neighborhoods, which is located in VðAQ1

n�1Þ, is fault-free since jF1j 6 1. Therefore, AQn � F is con-
nected, and its cardinality of the fault-free vertex set is 2n � jFj. This lemma is completed. h

The following lemma is the base case for Theorem 1. We note that for n ¼ 4 in the context of the following lemma,
4n� 9 ¼ 7 and 2n � jFj � 1 ¼ 8.

Lemma 5. For a 4-dimensional augmented cube AQ4, let F � VðAQ4Þ be a faulty vertex set with jFj ¼ 7. Then, AQ4 � F has a
connected component containing at least eight vertices.
Proof. Let F0 ¼ F \ VðAQ0
3Þ and F1 ¼ F \ VðAQ 1

3Þ, thus F ¼ F0 [ F1. Without loss of generality, we may assume that jF0jP jF1j.
Thus, jF0jP 4; jF1j 6 3, and AQ1

3 � F1 is connected by Lemma 3. In the following, we divide the proof according to the car-
dinality of F0.

Case 1: jF0jP 6.

Since jF0jP 6; jF1j 6 1. By Lemma 4, AQ4 � F is a connected component containing 9 vertices, and this case follows.

Case 2: 4 6 jF0j 6 5.

Let C be the connected component with minimal cardinality in AQ0
3 � F0. First, suppose C consists of only one vertex, say

vertex u. Then, NAQ0
3
ðuÞ � F and jF0j ¼ 5. Then, AQ0

3 � ðF0 [ fugÞ is a connected component with 2 vertices, and thus AQ4 � F
has a connected component containing at least 8 vertices.

Second, suppose C consists of two vertices, then either F0 ¼ f0000;0011;0101;0110g or F0 ¼ f0001; 0010;0100;0111g.
Thus, AQ0

3 � F0 is composed of two connected components with two vertices respectively. The vertex set of AQ0
3 � F0 is either

f0001;0010;0100;0111g or f0000;0011;0101;0110g. In addition, AQ1
3 � F1 is connected. Each of the two connected

components in AQ0
3 � F0 has four distinct neighborhoods in AQ1

3, and is connected to AQ1
3 � F1. Therefore, AQ4 � F is a

connected component containing 9 vertices.
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Now, suppose C consists of three or four vertices, it is easy to see that AQ0
3 � F0 is connected. Let u;v be two vertices in C

such that u ¼ 0a3a2a1 and v – 0a3a2a1. Hence, by Lemma 1, u or v has at least one fault-free neighborhood in AQ1
3. Therefore,

AQ4 � F is a connected component containing 9 vertices, and this lemma follows. h

We now show the maximally connected component of the augmented cube with faulty vertices.

Theorem 1. Let AQn be an n-dimensional augmented cube with n P 4, and F � VðAQnÞ be a faulty vertex set with jFj ¼ 4n� 9.
Then, AQn � F has a large connected component containing at least 2n � jFj � 1 vertices.
Proof. We prove this theorem by induction on n. For n ¼ 4, it is already proved by Lemma 5 that AQ4 � F has a connected
component containing at least eight vertices. By the induction hypothesis, we may assume that the result is true for AQ n�1

with jFj ¼ 4� ðn� 1Þ � 9 ¼ 4n� 13. Now we consider AQ n with jFj ¼ 4n� 9 and show that AQn � F has a connected compo-
nent containing at least 2n � jFj � 1 vertices.

Let F0 ¼ F \ VðAQ0
n�1Þ and F1 ¼ F \ VðAQ1

n�1Þ. Without loss of generality, we may assume that jF0jP jF1j. Thus
jF0jP 2n� 4; jF1j 6 2n� 5, and AQ1

n�1 � F1 is connected according to Lemma 3. In the following, we divide the proof into
three cases according to the cardinality of F0.

Case 1: jF0jP 4n� 10.

Since jF0jP 4n� 10; jF1j 6 1. According to Lemma 4, AQn � F is a connected component containing 2n � jFj vertices, and
this case follows.

Case 2: 4n� 11 P jF0jP 4n� 12. Let AQ0
n�1 � F0 be composed of connected components C1; C2; . . . ; Cx, and let

jVðC1Þj 6 jVðC2Þj 6 . . . 6 jVðCxÞj with x P 1. Now, we shall show that (1) jVðCiÞjP 2 for 2 6 i 6 x; and (2) For each
jVðCiÞjP 2 where 1 6 i 6 x;Ci is connected to AQ1

n�1 � F1. With (1) and (2) holds, AQ n � F contains a connected component
containing at least 2n � jFj � 1 vertices, and this case follows.

Proof of (1): Suppose (1) is incorrect, then jVðC1Þj ¼ jVðC2Þj ¼ 1, we denote that VðC1Þ ¼ fug; VðC2Þ ¼ fvg, and
ðu;vÞ R EðAQnÞ. Because any two vertices have at most four common neighborhoods by Lemma 2, jF0jP jNAQ0

n�1
ðuÞ[

NAQ0
n�1
ðvÞjP ð2ðn� 1Þ � 1Þ � 2� 4 ¼ 4n� 10, which contradicts to our assumption that 4n� 11 P jF0jP 4n� 12.

Proof of (2): First, suppose jVðCiÞj ¼ 2. Let ðu;vÞ be the edge of Ci. By Lemma 1, jðNðuÞ [ NðvÞÞ \ VðAQ1
n�1Þj is either 2 or 4.

Suppose jðNðuÞ [ NðvÞÞ \ VðAQ1
n�1Þj ¼ 2;u and v will have at most two common neighborhoods in AQ0

n�1 according to Lemma
2. Thus, jF0jP jðNAQ0

n�1
ðuÞ [ NAQ0

n�1
ðvÞÞ � fu;vgjP ð2ðn� 1Þ � 2Þ � 2� 2 ¼ 4n� 10, which is a contradiction to our assump-

tion that 4n� 11 P jF0jP 4n� 12. Suppose jðNðuÞ [ NðvÞÞ \ VðAQ1
n�1Þj ¼ 4. Because jF1j � 3, there is at least one fault-free

edge, i.e., two vertices of the edge are fault-free, between Ci and AQ1
n�1 � F1. Therefore, Ci is connected to AQ1

n�1 � F1.

Now, suppose jVðCiÞjP 3. Each Ci in AQ0
n�1 exists two vertices u and v such that u ¼ 0an�1 . . . a1 and v – 0an�1 . . . a1. Note

that jF1j 6 3. Hence, according to Lemma 1, u or v has at least one fault-free neighborhood in AQ1
n�1. As a result, Ci is

connected to AQ1
n�1 � F1.

Case 3: jF0j 6 4n� 13. By the induction hypothesis, AQ0
n�1 � F0 has a connected component containing at least 2n�1 � jF0j � 1

vertices with jF0j ¼ 4n� 13. Then, it is obviously that if jF0j < 4n� 13;AQ 0
n�1 � F0 also has a connected component contain-

ing at least 2n�1 � jF0j � 1 vertices. Moreover, AQ 1
n�1 � F1 is a connected component with 2n�1 � jF1j vertices. Suppose n ¼ 4,

jFj ¼ 4n� 9 ¼ 7 and jF0j 6 4n� 13 ¼ 3, which contradicts to our assumption that jF0jP jF1j. Without loss of generality, we

may assume n P 5. Now, AQ 0
n�1 � F0 is connected to AQ1

n�1 � F1 since ð2n�1 � jF0j � 1Þ þ ð2n�1 � jF1jÞ > jEh
nj ¼ jE

c
nj ¼ 2n�1,

where n � 5. Therefore, AQn � F has a connected component containing at least ð2n�1 � jF0j � 1Þ þ ð2n�1 � jF1jÞ
¼ 2n � jFj � 1 vertices and the proof is complete. h
Corrollary 1. For an n-dimensional augmented cube AQ n with n P 4, let F � VðAQ nÞ be any vertex set with jFj 6 4n� 9. Then,
AQn � F has a connected component containing at least 2n � jFj � 1 vertices.

4. Vertex-disjoint paths

Menger’s Theorem [10] is a classic result in connectivity and states that if a network G is k-connected, every pair of vertices
in G is connected by k vertex-disjoint paths. A k-regular graph G is strongly Menger-connected if for any copy G� F of G with at
most k� 2 vertices removed, each pair u and v of G� F is connected by minfdegf ðuÞ;degf ðvÞg vertex-disjoint fault-free paths
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Fig. 2. An example that jFj ¼ 2n� 6.
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in G� F, where degf ðuÞ and degf ðvÞ are the degree of u and v in G� F, respectively [11,13]. It has been proved that star graphs
are strongly Menger-connected [11].

However, augmented cubes are not strongly Menger-connected according to their structures. We can see this in Fig. 2. For
an n-dimensional augmented cube AQn with n P 4;AQ n is ð2n� 1Þ-regular. Let ðu; xÞ be an edge of AQ n such that
jNðuÞ \ NðxÞj ¼ 4; F be a faulty vertex set such that F ¼ NðxÞ � ðNðuÞ [ fugÞ, and v be a vertex of AQ n such that
v 2 VðAQnÞ � ðNðuÞ [ NðxÞÞ. Note that jFj ¼ 2n� 6. As a result, the vertices u and v are not connected by
minfdegf ðuÞ;degf ðvÞg ¼ 2n� 1 vertex-disjoint fault-free paths in AQ n � F.

Now, we give the definition of maximally local connectivity. Given a graph G and a vertex set F � VðGÞ; ðG; FÞ is said to be
maximally local connected if and only if for each pair of vertices, denoted by u and v, of G� F; u and v are connected by
minfdegf ðuÞ;degf ðvÞg vertex-disjoint fault-free paths in G� F, where degf ðuÞ and degf ðvÞ are the degree of u and v in
G� F, respectively. For the vertex-disjoint fault-free paths of AQ n under a set of faulty vertices with jFj 6 2n� 7, a tight result
is stated and proved in Theorem 2. For the proof of Theorem 2, the following lemma is needed.

Lemma 6. For an n-dimensional augmented cube AQn with n P 4, let F ¼ F 0 [ fðu;vÞg where F 0 � VðAQnÞ is any vertex set with
jF 0j 6 4n� 10 and ðu;vÞ is any edge in AQn. Then, AQn � F has a connected component containing at least 2n � jFj � 1 vertices.
Proof. By Corollary 1, AQ n � ðF 0 [ fugÞ has a connected component containing at least 2n � jFj � 1 vertices. It is clear that this
connected component is also a connected component of AQn � F that containing at least 2n � jFj � 1 vertices, so this lemma
is proved. h
Theorem 2. For an n-dimensional augmented cube AQ n with n P 4, let F � VðAQnÞ be a set of faulty vertices with jFj 6 2n� 7.
Then, each pair of vertices u and v in AQ n � F is connected by minfdegf ðuÞ;degf ðvÞg vertex-disjoint fault-free paths in AQn � F.
Proof. We shall prove this theorem by contradiction. Let u; v be two distinct vertices in AQn � F and let
m ¼minfdegf ðuÞ;degf ðvÞg. Suppose that there do not exist m vertex-disjoint fault-free paths connecting u and v in
AQ n � F. Firstly, if ðu;vÞ R EðAQ nÞ, by Menger’s Theorem, vertices u and v are disconnected in ðAQn � FÞ � F 0 for some faulty
vertex set F 0 � VðAQ n � FÞ and jF 0j ¼ m� 1. Now, if ðu;vÞ 2 EðAQnÞ, by Menger’s Theorem, vertices u and v are disconnected
in ðAQn � FÞ � F 0 for some faulty vertex set F 0 ¼ Vf [ fðu;vÞgwhere Vf � VðAQn � FÞ and jVf j ¼ m� 2. Thus, the total number
of faulty elements in AQ n is jFj þ jF 0j 6 ð2n� 7Þ þ ðm� 1Þ 6 ð2n� 7Þ þ ð2n� 1� 1Þ ¼ 4n� 9. By Corollary 1 and Lemma 6,
ðAQn � FÞ � F 0 has a large connected component containing at least 2n � ð4n� 9Þ � 1 vertices. That is, if ðAQn � FÞ � F 0 is dis-
connected, it consists of two connected components and one of which is an isolated vertex. Note that u and v are discon-
nected in ðAQn � FÞ � F 0, thus F 0 consists of all the neighborhoods of vertex u or v of AQn � F. Hence, jF 0jP m, which is a
contradiction to our assumption that jF 0j ¼ m� 1. Consequently, this theorem is proved. h
Corrollary 2. For an n-dimensional augmented cube AQn with n P 4, let F � VðAQ nÞ be any vertex set with jFj 6 2n� 7. Then,
ðAQn; FÞ is maximally local connected.
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