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Abstract: A combined incompressible and vanishing capillarity limit in the barotropic
compressible Navier–Stokes equations for smooth solutions is proved. The equations are
considered on the two-dimensional torus with well prepared initial data. The momentum
equation contains a rotational term originating from a Coriolis force, a general Korteweg-
type tensor modeling capillary effects, and a density-dependent viscosity. The limiting
model is the viscous quasi-geostrophic equation for the “rotated” velocity potential. The
proof of the singular limit is based on the modulated energy method with a careful choice
of the correction terms.

1. Introduction

The aim of this paper is to prove a combined incompressible and vanishing capillar-
ity limit for a two-dimensional Navier–Stokes–Korteweg system, leading to the viscous
quasi-geostrophic equation. We consider the (dimensionless) mass and momentum equa-
tions for the particle density ρ(x, t) and the mean velocity u(x, t) = (u1(x, t), u2(x, t))
of a fluid in the two-dimensional torus T

2:

∂tρ + div(ρu) = 0 in T
2, t > 0, (1)

∂t (ρu) + div(ρu ⊗ u) + ρu⊥ + ∇ p(ρ) = div(K + S), (2)

with initial conditions

ρ(·, 0) = ρ0, u(·, 0) = u0 in T
2.

Here,ρu⊥ describes the Coriolis force, u⊥ = (−u2, u1), the function p(ρ) = ργ /γ with
γ > 1 denotes the pressure of an ideal gas obeying Boyle’s law, K is the Korteweg-type
tension tensor and S is the viscous stress tensor.

More precisely, the free surface tension tensor is given by

div K = κ0ρ∇(σ ′(ρ)�σ(ρ)),
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where κ0 > 0, which can be written in conservative form as

div K = κ0 div

((
�S(ρ)− 1

2
S′′(ρ)|∇ρ|2

)
I − ∇σ(ρ)⊗ ∇σ(ρ)

)
, (3)

where S′(ρ) = ρσ ′(ρ)2, σ(ρ) is a (nonlinear) function, and I denotes the unit matrix
in R

2×2. For a general introduction and the physical background of Navier–Stokes–
Korteweg systems, we refer to [8,13,23]. In standard Korteweg models, κ(ρ) = σ ′(ρ)2
defines the capillarity coefficient [13, Formula (1.29)]. In the shallow-water equation, of-
ten σ(ρ) = ρ is used such that div K = ρ∇�ρ (see, e.g., [5,31]). Bresch and Desjardins
[6] employed general functions σ(ρ) and suitable viscosities allowing for additional en-
ergy estimates (also see [24]). If σ(ρ) = √

ρ, the third-order term can be interpreted as
a quantum correction, and system (1) and (2) (without the rotational term) corresponds
to the so-called quantum Navier–Stokes model, derived in [9] and analyzed in [23].

The viscous stress tensor is defined by

div S = 2 div(μ(ρ)D(u)),

where D(u) = 1
2 (∇u + ∇u�) and μ(ρ) denotes the density-dependent viscosity. Often,

the viscosity in the Navier–Stokes model is assumed to be constant for the mathematical
analysis [15]. Density-dependent viscosities of the form μ(ρ) = ρ were chosen in [5]
and were derived, in the context of the quantum Navier–Stokes model, in [9]. The choice
μ(ρ) = σ(ρ) allows one to exploit a certain entropy structure of the system [6].

In the special case σ(ρ) = √
ρ and without rotational term, the existence of global

(in time) weak solutions to (4) and (5) was shown in [23]. We discuss the existence of
local smooth solutions in the Appendix.

Without capillary effects, system (1) and (2) reduces to the viscous shallow-water
or viscous Saint-Venant equations, whose inviscid version was introduced in [33]. The
viscous model was formally derived from the three-dimensional Navier–Stokes equa-
tions with a free moving boundary condition [18]. This derivation was generalized later
to varying river topologies [31]. The existence of global weak or strong solutions to
the Korteweg-type shallow-water equations was proved in [6,8,19,20,22] under various
assumptions on the nonlinear functions. In [8], the authors obtained several existence
results of weak solutions under various assumptions concerning the density dependency
of the coefficients. The notion of weak solution involves test functions depending on
the density; this allows one to circumvent the vacuum problem. Duan et al. [12] showed
the existence of local classical solutions to the shallow-water model without capillary
effects. For more details and references on the shallow-water system, we refer to the
review [4].

The combined incompressible and vanishing capillarity limit studied in this work is
based on the scaling t �→ εt , u �→ εu, μ(ρ) �→ εμ(ρ) and on the choice κ0 = ε2α

(0 < α, ε < 1), which gives

∂tρε + div(ρεuε) = 0 in T
2, t > 0, (4)

∂t (ρεuε) + div(ρεuε ⊗ uε) +
1

ε
ρεu

⊥
ε +

1

ε2γ
∇(ργε )− 2ε2(α−1)ρε∇(σ ′(ρε)�σ(ρε))

= 2 div(μ(ρε)D(uε)), (5)

with the initial conditions

ρε(·, 0) = ρ0
ε , uε(·, 0) = u0

ε in T
2. (6)
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The condition α < 1 is needed to control the capillary energy; see the energy identity
in Lemma 1 below.

When letting ε → 0, it holds ρε → 1 and ρεuε → ∇⊥φ = (−∂φ/∂x2, ∂φ/∂x1)

in appropriate function spaces, where φ solves the viscous quasi-geostrophic equation
[32, Chap. 6] (see Sect. 2 for details)

∂t (�φ − φ) + (∇⊥φ · ∇)(�φ) = μ(1)�2φ in T
2, t > 0, (7)

φ(·, 0) = φ0 in T
2. (8)

The objective of this paper is to make this limit rigorous. Our proof requires the (local)
existence of a smooth solution to (7) and (8), which is shown in the Appendix. For a
proof of global weak solutions in the whole space R

2, we refer to [16, Theorem 1.1].
Several derivations of inviscid quasi-geostrophic equations have been published; see,

e.g., [10,14,34]. The reader is also referred to the monograph [30] for a more complete
discussion of this model. The viscous equation was derived rigorously for weak solutions
from the shallow-water system in [5]. The proof is essentially based on the presence of
the additional viscous part div(ρ∇u) and a friction term in the momentum equation.
The novelty of the present paper is that these expressions are not needed and that more
general expressions can be considered. In particular, we allow for viscous terms of the
type div(μ(ρ)D(u)), and no friction is prescribed.

In the literature, singular limits in PDEs arising in fluid mechanics have been studied
extensively. The first works on the incompressible limit were obtained by Klainerman
and Majda [25] and Ukai [35]. The low Mach number limit of viscous compressible
flows was proved by Desjardins and Grenier [11] and by Levermore et al. [26], allowing
for dispersive corrections to the stress tensor (third-order terms in the velocity and
temperature). Only few works are concerned with compressible rotating fluids. Bresch
et al. [7] proved the combined low Mach and low Rossby limit in the compressible
Navier–Stokes equations for well-prepared initial data. The same limit for ill-prepared
data was shown by Feireisl et al. [16]. Finally, let us mention the work [17] in which
the Mach and Rossby numbers are proportional to certain powers of a small parameter
and, depending on the powers, its limit leads to the two-dimensional incompressible
Navier–Stokes system or to a linear fourth-order equation for the limiting function φ.

In the following, we describe our main result. In order to simplify the presentation,
we assume that the nonlinearities are given by power-law functions:

σ(ρ) = ρs, μ(ρ) = ρm for ρ ≥ 0,

where s > 0 and m > 0. The exponents s and m cannot be chosen freely; we need to
suppose that

0 < s ≤ 1, m = s +
1

2
≤ γ + 1

2
. (9)

This assumption includes the quantum Navier–Stokes model s = 1/2, m = 1 and the
shallow-water model with s = 1, m = 3/2. Furthermore, we assume that the initial data
are sufficiently regular (ensuring the local-in-time existence of smooth solutions)

ρ0
ε ∈ Hk(T2), u0

ε ∈ Hk−1(T2), φ0 ∈ Hk+1(T2), where k > 2,

and that they are well prepared:

Gε(φ
0
ε ) → φ0, ε−1(ρ0

ε − 1) → φ0,

√
ρ0
ε u0
ε → ∇⊥φ0, εα−1∇

√
ρ0
ε → 0 (10)
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in L2(T2) as ε → 0, where ρ0
ε = 1 + εφ0

ε (this defines φ0
ε ),

Gε(φε) =
√

2

ε
sign(φε)

√
h(1 + εφε), ρε = 1 + εφε, (11)

and the internal energy h(ρ) is defined by h′′(ρ) = p′(ρ)/ρ = ργ−2 and h(1) = h′(1) =
0 (see (13) for an explicit expression). Note that the convergence ε−1(ρ0

ε − 1) → φ0 in
L2(T2) implies that Gε(φ

0
ε ) → φ0 in L1(T2) if ρ0

ε is bounded in L∞(T2) (see (17)).

Theorem 1. Let 0 < α < 1 and γ > 1. We suppose that (9) holds and that the initial
data satisfy (10). Furthermore, let (ρε, uε) be the classical solution to (4)–(6) and let φ
be the classical solution to (7) and (8), both on the time interval (0, T ). Then, as ε → 0,

ρε → 1 in L∞(0, T ; Lγ (T2)),

ρεuε → ∇⊥φ in L∞(0, T ; L2γ /(γ+1)(T2)).

Furthermore, if s < 1
2 and γ ≥ 2(1 − s) or if s = 1 and γ ≥ 2,

ρε → 1 in L∞(0, T ; L p(T2)),

ρεuε → ∇⊥φ in L∞(0, T ; Lq(T2)),

for all 1 ≤ p < ∞ and 1 ≤ q < 2.

The proof is based on the modulated energy method, first introduced by Brenier in a
kinetic context [2] and later extended to various models, e.g. [1,3,28]. The idea of the
method is to estimate, through its time derivative, a suitable modification of the energy
by introducing in the energy the solution of the limit equation. We suggest the following
form of the modulated energy:

Hε(t) =
∫

T2

(
ρε

2
|uε − ∇⊥φ|2 +

1

2
|Gε(φε)− φ|2 + 2ε2(α−1)|∇σ(ρε)|2

)
dx

+ 2
∫ t

0

∫
T2
μ(ρε)|D(uε)− D(∇⊥φ)|2dx, (12)

These terms express the differences of the kinetic, internal, and Korteweg energies as
well as the viscosity. Differentiating the modulated energy with respect to time and
employing the evolution equations, elaborated computations lead to the inequality

Hε(t) ≤ C
∫ t

0
Hε(s)ds + o(1), t > 0,

where o(1) denotes terms vanishing in the limit ε → 0, uniformly in time. The Gronwall
lemma then implies the result.

The paper is organized as follows. In Sect. 2, we derive the energy identities for the
shallow-water system and the quasi-geostrophic equation and give a formal derivation
of the latter model from the former one. Theorem 1 is proved in Sect. 3. In the Appendix,
we discuss the existence of local smooth solutions to (4) and (5) and give an existence
proof for local smooth solutions to (7) and (8).
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2. Auxiliary Results

In this section, we derive the energy estimates for (4) and (5) and derive formally the
quasi-geostrophic equation (7). Based on the definition h′′(ρ) = p′(ρ)/ρ, h(1) =
h′(1) = 0, we can give an explicit formula for this function:

h(ρ) = 1

γ (γ − 1)

(
ργ − 1 − γ (ρ − 1)

)
, ρ ≥ 0. (13)

The energy identity for (4) and (5) is given as follows.

Lemma 1. Let (ρε, uε) be a smooth solution to (4) and (6) on (0, T ). Then the energy
identity

d Eε
dt

+ Dε = 0, t ∈ (0, T ),

holds, where the energy Eε and energy dissipation Dε are defined by, respectively,

Eε =
∫

T2

(
1

ε2 h(ρε) +
1

2
ρε|uε|2 + 2ε2(α−1)|∇σ(ρε)|2

)
dx,

Dε = 2
∫

T2
μ(ρε)|D(uε)|2dx .

Proof. Multiply (4) by ε−2h′(ρε)− 1
2 |uε|2 −2ε2(α−1)σ ′(ρε)�σ(ρε), integrate over T

2,
and then integrate by parts:

0 =
∫ 2

T

( 1

ε2 ∂t h(ρε)− 1

ε2 h′′(ρε)∇ρε · (ρεuε)− 1

2
|uε|2∂tρε + ρεuε · ∇uε · uε

+ 4ε2(α−1)∇σ(ρε) · ∇∂tσ(ρε)− 2ε2(α−1) div(ρεuε)σ
′(ρε)�σ(ρε)

)
dx .

Multiplying (5) by uε and integrating over T
2 gives, since u⊥

ε · uε = 0,

0 =
∫

T2

(
∂t (ρuε) · uε − ρε(uε ⊗ uε) : ∇uε +

1

ε2 ρ
γ−1
ε ∇ρε · uε

+ 2ε2(α−1)σ ′(ρε)�σ(ρε) div(ρεuε)− 2μ(ρε)D(uε) : ∇uε
)

dx,

where “:” means summation over both matrix indices. Observing that h satisfies h′′(ρε) =
ρ
γ−2
ε and using the identity D(uε) : ∇uε = |D(uε)|2, the sum of the above two equations

becomes

d

dt

∫
T2

(
1

ε2 h(ρε) +
1

2
ρε|uε|2 + 2ε2(α−1)|∇σ(ρε)|2

)
dx

+ 2
∫

T2
μ(ρε)|D(uε)|2dx = 0,

which proves the lemma.

A consequence of the energy identity is the following estimate.
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Lemma 2. Let (ρε, uε) be a smooth solution to (4) and (6) on (0, T ). Then there exists
C > 0 such that for all 0 < ε < 1,

‖ρε − 1‖L∞(0,T ;Lγ (T2)) ≤ Cεmin{1,2/γ } if γ > 1, (14)

‖ρε − 1‖L∞(0,T ;L2(T2)) ≤ Cε if γ ≥ 2. (15)

Proof. If γ = 2, h(ρ) = 1
2 (ρ− 1)2, and the result follows immediately from Lemma 1.

Let γ > 2. We claim that h(ρ) ≥ |ρ−1|γ /(γ (γ −1)) for ρ ≥ 0. Then the result follows
again from the energy identity. Indeed, the function f (ρ) = ργ −1−γ (ρ−1)−|ρ−1|γ
is convex in ( 1

2 ,∞) and concave in (0, 1
2 ). Since the values f (0) = γ − 2 and f ( 1

2 ) =
γ /2 − 1 are positive, f ≥ 0 on [0, 1

2 ]. Furthermore, f (1) = f ′(1) = 0 which implies,
together with the convexity, that f ≥ 0 in [ 1

2 ,∞), proving the claim. Finally, let γ < 2.
By [29, p. 591], h(ρ) ≥ cR |ρ − 1|2 for ρ ≤ R and h(ρ) ≥ cR |ρ − 1|γ for ρ > R, for
some cR > 0 and R > 0. Hence, using Hölder’s inequality and γ < 2,

‖ρε − 1‖γ
Lγ (T2)

≤ C

(∫
{ρε≤R}

|ρε − 1|2dx

)γ /2
+

∫
{ρε>R}

|ρε − 1|γ dx

≤ C

(∫
{ρε≤R}

h(ρε)dx

)γ /2
+ C

∫
{ρε>R}

h(ρε)dx

≤ C(εγ + ε2) ≤ Cεγ ,

where here and in the following C > 0 denotes a generic constant not depending on ε.
Estimate (15) for γ ≥ 2 follows from

‖ρε − 1‖2
L2(T2)

=
∫

T2
(ρε − 1)2dx ≤ C

∫
T2

h(ρε)dx ≤ Cε2,

which finishes the proof.

We perform the formal limit ε → 0 in (4) and (5). For this, we observe that (4) can
be written in terms of φε = (ρε − 1)/ε as follows:

∂tφε + div(φεuε) +
1

ε
div uε = 0.

We apply the operator div⊥ (defined by div⊥(v1, v2) = −∂v1/∂x2 +∂v2/∂x1) to (5) and
observe that div⊥(ρεu⊥

ε )/ε = div uε/ε + div(φεuε) = −∂tφε, by the above equation.
Then we find that

∂t div⊥(ρεuε) + div⊥ div(ρεuε ⊗ uε)− ∂tφε

= 2ε2(α−1) div⊥ (
ρε∇(σ ′(ρε)�σ(ρε))

)
+ 2 div⊥ div(μ(ρε)D(uε)). (16)

By the energy estimate, ρε → 1 (in L∞(0, T ; Lγ (T2))). Assuming that φε → φ and
uε → ∇⊥φ in suitable function spaces and employing the relations

div⊥ div(∇⊥φ ⊗ ∇⊥φ) = (∇⊥φ · ∇)(�φ), 2 div⊥ div(D(∇⊥φ)) = �2φ,
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the formal limit in (16) yields the limit equation (7). The initial condition reads as
φ(·, 0) = φ0, where φ0 = limε→0 φε(·, 0) in T

2. The energy and the energy dissipation
of (7) equal

E0 = 1

2

∫
T2
(|∇φ|2 + φ2)dx, D0 = 2μ(1)

∫
T2

|D(∇⊥φ)|2dx .

Multiplying the limiting equation by φ and using the properties
∫

T2
(∇⊥φ · ∇)(�φ)φdx = 0,

∫
T2
(�φ)2dx = 2

∫
T2

|D(∇⊥φ)|2dx,

we find the energy identity of the viscous quasi-geostrophic equation:

d E0

dt
+ D0 = 0, t > 0.

3. Proof of Theorem 1

First, we prove the following lemma.

Lemma 3. Let T > 0, γ > 1, and 0 < α < 1. Then

lim
ε→0

Hε(t) = 0 uniformly in (0, T ),

where Hε is defined in (12).

Proof. Using the definitions of the energy and energy dissipation as well as the relation
1
2 Gε(φε)

2 = ε−2h(ρε), we write

Hε(t) = (Eε + E)(t) +
∫ t

0
(Dε + D)(s)ds +

1

2

∫
T2
(ρε − 1)|∇⊥φ|2dx

−
∫

T2
(Gε(φε)− φε)φdx −

∫
T2
ρεuε · ∇⊥φdx −

∫
T2
φεφdx

+ 2
∫ t

0

∫
T2
(μ(ρε)− μ(1))|D(∇⊥φ)|2dxds

− 4
∫ t

0

∫
T2
μ(ρε)D(uε) : D(∇⊥φ)dxds

= I1 + · · · + I8.

The aim is to estimate d Hε/dt . To this end, we treat the integrals I j or their deriva-
tives term by term. By the energy estimates, d

dt (I1 + I2) = 0. The integral I3 cancels
with a contribution originating from I5; see below. The estimate of I4, . . . , I8 (or their
derivatives) is performed in several steps.

The key point is the estimate of the modulated potential energy I4. We show by
elementary estimations that I4 = o(1) as ε → 0. The estimate of the modulated kinetic
energy I5 is new although parts of the estimates resemble those in [28]. In the estimations
of I6, I7, and I8, some terms cancel with those coming from I5. These estimates are also
new and ingenious but not difficult.



732 A. Jüngel, C.-K. Lin, K.-C. Wu

Step 1: estimate of I4. L’Hôpital’s rule shows that for γ > 1,

lim
z→0

h(1 + z)

z2 = 1

2
, lim

z→0

1

z

(
h(1 + z)

z2 − 1

2

)
= γ − 2

6
.

Therefore, there exists a nonnegative function f , defined on [0,∞), such that h(1+ z) =
1
2 z2 f (z) for z ≥ 0, and a function g, defined on [0,∞), such that f (z)− 1 = zg(z) for

z ≥ 0. Furthermore, the inequalities f (z) ≥ f (0) = 1 and |g(z)| ≤ C(1+z(γ−3)+) hold,
where z+ = max{0, z}. Finally, we claim that f (z) = 2h(1+z)/z2 ≥ 2(1+z)γ−2/(γ (γ−
1)) for z ≥ 0 and γ ≥ 4. Indeed, the functionw(z) = h(1+z)−z2(1+z)γ−2/(γ (γ −1))
is convex in [0,∞) and w(0) = w′(0) = 0, which implies that w(z) ≥ 0 in [0,∞),
proving the claim. With these preparations, we can estimate the difference Gε(φε)− φε
appearing in I4:

|Gε(φε)− φε| =
∣∣∣∣∣sign(φε)

(√
2

ε

√
h(1 + εφε)− |φε|

)∣∣∣∣∣ = |φε|
∣∣∣√ f (εφε)− 1

∣∣∣
= |φε| | f (εφε)− 1|√

f (εφε) + 1
= |φε| |εφε| |g(εφε)|√

f (εφε) + 1
.

In view of the bounds for f and g as well as the relation εφε = ρε − 1, we infer that

|Gε(φε)− φε| ≤ C

ε
|ρε − 1|2 1 + ρ(γ−3)+

ε√
f (εφε) + 1

. (17)

This bound allows us to estimate I4. Indeed, if 1 < γ < 4, by (14),

I4(t) ≤ C

ε
‖φ‖L∞(0,T ;L∞(T2))‖ρε − 1‖2

L∞(0,T ;L1(T2))
≤ Cε2 min{1,2/γ }−1 = o(1)

uniformly in (0, T ). Here and in the following, the constant C > 0 depends on φ and
its derivatives but not on ε. If γ ≥ 4, we have, using the upper bound of f (z) for γ ≥ 4,
(17), and 1 + εφε = ρε,

|Gε(φε)− φε| ≤ C

ε
|ρε − 1|2 1 + ργ−3

ε

Cρ(γ−2)/2
ε + 1

≤ C

ε
|ρε − 1|2(1 + ρ(γ−3)−(γ−2)/2

ε

)
.

We employ estimates (14) and (15) and Hölder’s inequality to conclude that

I4(t) ≤ C‖φ‖L∞(0,T ;L∞(T2))ε
−1‖ρε − 1‖L∞(0,T ;L2(T2))‖ρε − 1‖L∞(0,T ;Lγ (T2))

× (
1 + ‖ρε‖(γ−4)/2

L∞(0,T ;Lγ (T2))

)
≤ Cε2/γ ‖φ‖L∞(0,T ;L∞(T2)) = o(1).
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Step 2: estimate of d I5/dt. Inserting the momentum Eq. (5) and integrating by parts, it
follows that

d I5

dt
= −

∫
T2
∂t (ρεuε) · ∇⊥φdx −

∫
T2
ρεuε · ∇⊥∂tφdx

= −
∫

T2
ρε(uε ⊗ uε) : ∇∇⊥φdx +

1

ε

∫
T2
ρεu

⊥
ε · ∇⊥φdx

+
1

ε2γ

∫
T2

∇ργε · ∇⊥φdxd − 2ε2(α−1)
∫

T2
ρε∇

(
σ ′(ρε)�σ(ρε)

) · ∇⊥φdx

+ 2
∫

T2
μ(ρε)D(uε) : ∇∇⊥φdx −

∫
T2
ρεuε · ∇⊥∂tφdx

= J1 + · · · + J6.

We treat the integrals J1, . . . , J6 term by term. The integral J2 can be written as

J2 = 1

ε

∫
T2
ρεuε · ∇φdx .

The third integral vanishes since div ∇⊥ = 0:

J3 = − 1

ε2γ

∫
T2
ργε div(∇⊥φ)dx = 0.

Using the identity (3) and div ∇⊥ = 0, we compute

J4 = ε2(α−1)
∫

T2

((
�S(ρε)− 1

2
S′′(ρε)|∇ρε|2

)
div(∇⊥φ)

− (∇σ(ρε)⊗ ∇σ(ρε)) : ∇∇⊥φ
)

dx

≤ C Hε.

Integration by parts and using div ∇⊥ = 0 again yields

J5 = −
∫

T2
μ(ρε)uε · (∇⊥�φ + ∇ div(∇⊥φ))dx

−
∫

T2
μ′(ρε)(∇ρε ⊗ uε + uε ⊗ ∇ρε) : ∇∇⊥φdx

= −
∫

T2
μ(ρε)uε · ∇⊥�φdx

− 2
∫

T2

μ′(ρε)√
ρεσ ′(ρε)

(∇σ(ρε)⊗ (
√
ρεuε) + (

√
ρεuε)⊗ ∇σ(ρε)

) : ∇∇⊥φdx .

The assumptions on μ and σ (see 9) yield μ′(ρε)/(
√
ρεσ

′(ρε)) = ρ
m−s−1/2
ε . Hence,

applying the Cauchy–Schwarz inequality, the last integral is bounded from above by

C‖∇σ(ρε)‖L2(T2)‖
√
ρεuε‖L2(T2) ≤ Cε2(1−α) = o(1).
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We conclude that

J5 ≤ −
∫

T2
μ(ρε)uε · ∇⊥�φdx + o(1).

The integral J6 remains unchanged. Finally, we estimate J1. To this end, we add and
substract the expression ∇⊥φ such that J1 = K1 + · · · + K4, where

K1 = −
∫

T2
ρε(uε − ∇⊥φ)⊗ (uε − ∇⊥φ) : ∇∇⊥φdx,

K2 = −
∫

T2
ρε∇⊥φ ⊗ uε : ∇∇⊥φdx,

K3 = −
∫

T2
ρεuε ⊗ ∇⊥φ : ∇∇⊥φdx,

K4 =
∫

T2
ρε∇⊥φ ⊗ ∇⊥φ : ∇∇⊥φdx .

The first integral can be bounded by the modulated energy:

K1 ≤ C
∫

T2
ρε|uε − ∇⊥φ|2dx ≤ C Hε.

A reformulation yields

K2 = −
∫

T2
ρεuε · (

(∇⊥φ · ∇)∇⊥φ
)
dx .

We employ the continuity Eq. (4) to find

K3 = −1

2

∫
T2
ρεuε · ∇|∇⊥φ|2dxd = 1

2

∫
T2

div(ρεuε)|∇⊥φ|2dx

= −1

2

∫
T2
∂t (ρε − 1)|∇⊥φ|2dx

= −1

2

d

dt

∫
T2
(ρε − 1)|∇⊥φ|2dx +

1

2

∫
T2
(ρε − 1)∂t |∇⊥φ|2dx

= −d I3

dt
+ o(1).

Finally, using again div ∇⊥ = 0,

K4 = −
∫

T2
ρε

(
(∇⊥φ · ∇)∇⊥φ

) · ∇⊥φdx

= −
∫

T2
(ρε − 1)

(
(∇⊥φ · ∇)∇⊥φ

) · ∇⊥φdx −
∫

T2

(
(∇⊥φ · ∇)∇⊥φ

) · ∇⊥φdx

= −
∫

T2
(ρε − 1)

(
(∇⊥φ · ∇)∇⊥φ

) · ∇⊥φdx − 1

2

∫
T2

∇⊥φ · ∇(|∇⊥φ|2)dx

= −
∫

T2
(ρε − 1)

(
(∇⊥φ · ∇)∇⊥φ

) · ∇⊥φdx +
1

2

∫
T2

div(∇⊥φ)|∇⊥φ|2dx

= o(1).
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In the last step, we have employed estimate (14) for ρε − 1. Summarizing the estimates
for K1, . . . , K4, we have shown that

J1 ≤ C Hε − d I3

dt
−

∫
T2

(
(∇⊥φ · ∇)∇⊥φ

) · (ρεuε)dx + o(1).

Then, summarizing the estimates for J1, . . . , J6, we obtain

d I5

dt
≤ C Hε − d I3

dt
+

1

ε

∫
T2
ρεuε · ∇φdx

−
∫

T2

(
(∂t + ∇⊥φ · ∇)∇⊥φ + μ(1)∇⊥�φ

) · (ρεuε)dx

−
∫

T2

(
μ(ρε)− μ(1)ρε

)
uε · ∇⊥�φdx + o(1).

The last integral can be estimated by employing the assumptions on μ and Hölder’s
inequality:

∫
T2

μ(ρε)− μ(1)ρε√
ρε

√
ρεuε · ∇⊥�φdx ≤ C‖ρm−1/2

ε − ρ1/2
ε ‖L2(T2)‖

√
ρεuε‖L2(T2).

We claim that the first factor on the right-hand side is of order o(1). To prove this
statement, we consider first 1

2 < m < 1:

‖ρm−1/2
ε − ρ1/2

ε ‖2
L2(T2)

≤
∫

T2
ρ2m−1
ε |ρε − 1|2(1−m)dx

≤ ‖ρε‖2m−1
Lγ (T2)

‖ρε − 1‖2(1−m)
L p(T2)

,

where p = 2γ (1 − m)/(γ − 2m + 1). The inequality p ≤ γ is equivalent to γ ≥ 1.
Note that the Hölder inequality can be applied since we supposed that 2m − 1 ≤ γ ; see
(9). Second, let 1 < m ≤ 2 (the case m = 1 being trivial). We compute

‖ρm−1/2
ε − ρ1/2

ε ‖2
L2(T2)

≤
∫

T2
ρε|ρε − 1|2(m−1)dx ≤ ‖ρε‖Lγ (T2)‖ρε − 1‖2(m−1)

Lq (T2)
,

where q = 2γ (m − 1)/(γ − 1), and q ≤ γ if and only if m ≤ (γ + 1)/2. Finally, if
2 ≤ m ≤ (γ + 1)/2, we find that

‖ρm−1/2
ε − ρ1/2

ε ‖2
L2(T2)

≤ C
∫

T2
ρε(1 + ρm−2

ε )2|ρε − 1|2dx

≤ C(1 + ‖ρε‖2m−3
Lγ (T2)

)‖ρε − 1‖2
Lr (T2)

,

with r = 2γ /(γ − 2m + 3) satisfying r ≤ γ if and only if m ≤ (γ + 1)/2. We conclude
that

∫
T2

μ(ρε)− μ(1)ρε√
ρε

√
ρεuε · ∇⊥�φdx ≤ C‖ρε − 1‖β

Lγ (T2)
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for some β > 0, and together with (14), this shows that the integral is of order o(1).
Therefore,

d I5

dt
≤ C Hε − d I3

dt
+

1

ε

∫
T2
ρεuε · ∇φdx

−
∫

T2

(
(∂t + ∇⊥φ · ∇)∇⊥φ + μ(1)∇⊥�φ

) · (ρεuε)dx + o(1). (18)

Step 3: estimate of d I6/dt. Employing (4) and (7), we can write

d I6

dt
= −

∫
T2
∂tφεφdx −

∫
T2
φε∂tφdx

= 1

ε

∫
T2

div(ρεuε)φdx −
∫

T2

(
(∂t + ∇⊥φ · ∇)(�φ)− μ(1)�2φ

)
φεdx

= −1

ε

∫
T2
ρεuε · ∇φdx

+
∫

T2

(
(∂t + ∇⊥φ · ∇)(∇⊥φ)− μ(1)∇⊥�φ

) · ∇⊥φεdx . (19)

We observe that the first integral on the right-hand side cancels with the corresponding
integral in (18). To deal with the second integral, we employ again the momentum Eq.
(5). We write

1

γ
∇ργε = (γ − 1)∇h(ρε) + ∇(ρε − 1) = (γ − 1)∇h(ρε) + ε∇φε.

Then, because of (u⊥
ε )

⊥ = −uε, (5) is equivalent to

∇⊥φε = ρεuε − εF⊥
ε ,

where

Fε = ∂t (ρεuε) + div(ρεuε ⊗ uε) +
γ − 1

ε2 ∇h(ρε)− 2 div(μ(ρε)D(uε))

− ε2(α−1)
(
∇�S(ρε)− 1

2
∇(S′′(ρε)|ρε|2)− div

(∇σ(ρε)⊗ ∇σ(ρε)
))
.

Replacing ∇⊥φε in the second integral in (19) by the above expression gives∫
T2

(
(∂t + ∇⊥φ · ∇)(∇⊥φ)− μ(1)∇⊥�φ

) · ∇⊥φεdx

=
∫

T2

(
(∂t + ∇⊥φ · ∇)(∇⊥φ)− μ(1)∇⊥�φ

) · (ρεuε − εF⊥
ε )dx .

We claim that the integral containing F⊥
ε is bounded in an appropriate space. Indeed,

let ψ be a smooth (vector-valued) test function. The first term of Fε is written in weak
form as follows:∫ T

0

∫
T2
∂t (ρεuε) · ψdxds = −

∫ T

0

∫
T2
ρεuε · ∂tψdxds +

∫
T2
(ρεuε)(t) · ψ(t)dx

−
∫

T2
ρ0
ε u0
ε · ψ(0)dx .
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These integrals are bounded if ρεuε is bounded in L∞(0, T ; L1(T2)). This is the case,
since mass conservation and the energy estimate show that

∫
T2

|ρεuε|dx ≤ 1

2

∫
T2
ρεdx +

1

2

∫
T2
ρε|uε|2dx

is uniformly bounded in (0, T ). An integration by parts gives

∫ T

0

∫
T2

div(ρεuε ⊗ uε) · ψdxds = −
∫ T

0

∫
T2
ρεuε ⊗ uε : ∇ψdxds,

and this integral is uniformly bounded, by the energy estimate. Furthermore, again
integrating by parts,

∫ T

0

∫
T2

(
γ − 1

ε2 ∇h(ρε)− 2 div(μ(ρε)D(uε))

)
· ψdxds

= −
∫ T

0

∫
T2

(
γ − 1

ε2 h(ρε)I − 2μ(ρε)D(uε)

)
: ∇ψdxds,

which is uniformly bounded since we can estimate

∫ T

0

∫
T2

|μ(ρε)D(uε)|dxds ≤ 1

2

∫ T

0

∫
T2
μ(ρε)dxds +

1

2

∫ T

0

∫
T2
μ(ρε)|D(uε)|2dxds

and μ(ρε) ≤ C(1 + ργε ). Also the remaining terms are bounded since

ε2(α−1)
∫ T

0

∫
T2

(
∇�(S(ρε)− S(1))− 1

2
∇(S′′(ρε)|∇ρε|2)

− div(∇σ(ρε)⊗ ∇σ(ρε))
)

· ψdxds

= −ε2(α−1)
∫ T

0

∫
T2

(
(S(ρε)− S(1))� divψ +

1

2
S′′(ρε)|∇ρε|2 divψ

− (∇σ(ρε)⊗ ∇σ(ρε)) : ∇ψ)
dxds.

Using the Hölder continuity of S(z) = (s/2)z2s , z ≥ 0, the first summand can be
estimated by C |ρε−1|min{1,2s}. We infer that the corresponding integral is of order o(1).
We formulate the second summand as

1

2
ε2(α−1)(2s − 1)

∫ t

0

∫
T2

|∇σ(ρε)|2 divψdxds.

In view of the energy estimate, this integral as well as the third summand are uniformly
bounded. This shows that∫

T2

(
(∂t + ∇⊥φ · ∇)(∇⊥φ)− μ(1)∇⊥�φ

) · ∇⊥φεdx

=
∫

T2

(
(∂t + ∇⊥φ · ∇)(∇⊥φ)− μ(1)∇⊥�φ

) · (ρεuε)dx + o(1),
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and consequently, (19) becomes

d I6

dt
= −1

ε

∫
T2
ρεuε · ∇φdx

+
∫

T2

(
(∂t + ∇⊥φ · ∇)(∇⊥φ)− μ(1)∇⊥�φ

) · (ρεuε)dx + o(1).

Step 4: estimate of d I7/dt. The functionμ satisfies |μ(z)−μ(1)| = |zm −1| ≤ |z −1|m
if m ≤ 1 and |μ(z) − μ(1)| ≤ C(1 + zm−1)|z − 1| if m > 1, for z ≥ 0. Therefore, if
m ≤ 1, taking into account (14),

d I7

dt
≤ 2‖ρε − 1‖m

L∞(0,T ;Lγ (T2))
‖D(∇⊥φ)‖2

L∞(0,T ;L2γ /(γ−m)(T2))

≤ Cεm min{1,2/γ }.

Moreover, if 1 < m ≤ (γ + 1)/2, using Hölder’s inequality,

d I7

dt
≤ C

(
1 + ‖ρε‖L∞(0,T ;L(m−1)γ /(γ−1)(T2))

)‖ρε − 1‖L∞(0,T ;Lγ (T2))

≤ Cεmin{1,2/γ }.

The norm of ρε is uniformly bounded since (m − 1)γ /(γ − 1) ≤ γ is equivalent to
m ≤ γ .

Step 5: estimate of d I8/dt. Integration by parts yields

d I8

dt
=

∫
T2
μ′(ρε)∇ρε ⊗ uε : ∇∇⊥φdx + 2

∫
T2
μ(ρε)uε · ∇⊥�φdx

=
∫

T2
µ

μ′(ρε)√
ρεσ ′(ρε)

∇σ(ρε)⊗ (
√
ρεuε) : ∇∇⊥φdx

+ 2
∫

T2
(μ(ρε)− μ(1)ρε)uε · ∇⊥�φdx + 2μ(1)

∫
T2
ρεuε · ∇⊥�φdx .

By definition of μ and σ (see 9), it follows that

d I8

dt
≤ C‖∇σ(ρε)‖L2(T2)‖

√
ρεuε‖L2(T2) + C‖ρm−1/2

ε − ρ1/2
ε ‖L2(T2)‖

√
ρεuε‖L2(T2)

+ 2μ(1)
∫

T2
ρεuε · ∇⊥�φdx .

Because of the energy estimate, the first summand is of order o(1). The second summand
has been estimated in Step 2, and it has been found that it is also of order o(1). This
shows that

d I8

dt
≤ 2μ(1)

∫
T2
ρεuε · ∇⊥�ψdx + o(1).

Step 6: conclusion. Adding the estimates for d I4/dt, . . . , d I8/dt , most of the integrals
cancel, and we end up with

d Hε
dt

≤ C Hε +
d I4

dt
+ o(1).
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Integrating over (0, t) gives

Hε(t) ≤ Hε(0) + C
∫ t

0
Hε(s)ds + I4(t)− I4(0) + o(1).

By Step 1, I4(t) = o(1). Furthermore, I4(0) = o(1) by assumption. It holds that
Hε(0) = o(1) since

‖
√
ρ0
ε (u

0
ε − ∇⊥φ0)‖L2(T2) ≤ ‖

√
ρ0
ε u0
ε − ∇⊥φ0‖L2(T2) + ‖(1 −

√
ρ0
ε )∇⊥φ0‖L2(T2)

≤ ‖
√
ρ0
ε u0
ε − ∇⊥φ0‖L2(T2)

+ ‖1 − ρ0
ε ‖L2(T2)‖∇⊥φ0‖L∞(T2)

= o(1)

and since the initial data are well prepared. Then the Gronwall lemma implies that
Hε(t) = o(1) finishing the proof.

We are now in the position to prove Theorem 1 which is a consequence of Lemma 3.
We observe that by (14), ρε → 1 in L∞(0, T ; Lγ (T2)) and, using the Hölder inequality
and 2γ /(γ + 1) < γ ,

‖ρεuε − ∇⊥φ‖L∞(0,T ;L2γ /(γ+1)(T2))

≤ ‖√ρε‖L∞(0,T ;L2γ (T2))‖
√
ρε(uε − ∇⊥φ)‖L∞(0,T ;L2(T2))

+‖ρε − 1‖L∞(0,T ;L2γ /(γ+1)(T2))‖∇⊥φ‖L∞(0,T ;L∞(T2))

≤ C‖√ρε(uε − ∇⊥φ)‖L∞(0,T ;L2(T2))

+C‖ρε − 1‖L∞(0,T ;Lγ (T2)). (20)

We conclude that ρεuε → ∇⊥φ in L∞(0, T ; L2γ /(γ+1)(T2)).
Next, let γ ≥ 2(1 − s) and 0 < s < 1/2. Because of assumption (9), i.e. γ ≥ 2s,

we have 2γ /(γ + 2(1 − s)) ≤ γ , and hence,

ρε → 1 in L∞(0, T ; L2γ /(γ+2(1−s))(T2))

as ε → 0. Furthermore, since α < 1, ∇σ(ρε) → 0 in L∞(0, T ; L2(T2)) as ε → 0 and
thus, by Hölder’s inequality,

‖∇(ρε − 1)‖L∞(0,T ;L2γ /(γ+2(1−s))(T2))

= ‖σ ′(ρε)−1∇σ(ρε)‖L∞(0,T ;L2γ /(γ+2(1−s))(T2))

≤ ‖ρε‖1−s
L∞(0,T ;Lγ (T2))

‖∇σ(ρε)‖L∞(0,T ;L2(T2)) → 0. (21)

We infer that ρε → 1 in L∞(0, T ; W 1,2γ /(γ+2(1−s))(T2)). Because of the continu-
ous embedding W 1,2γ /(γ+2(1−s))(T2) ↪→ Lγ /(1−s)(T2), this implies that ρε → 1 in
L∞(0, T ; Lγ /(1−s)(T2)). Since 2γ /(γ + 2(1 − s)2) ≤ γ /(1 − s), this gives ρε → 1
in L∞(0, T ; L2γ /(γ+2(1−s)2)(T2)). Applying the same procedure as in (21) again, we
obtain

‖∇(ρε − 1)‖
L∞(0,T ;L2γ /(γ+2(1−s)2)(T2))

≤ ‖ρε‖1−s
L∞(0,T ;Lγ /(1−s)(T2))

‖∇σ(ρε)‖L∞(0,T ;L2(T2)) → 0.
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Hence, ρε → 1 strongly in L∞(0, T ; W 1,2γ /(γ+2(1−s)2)(T2)) and in L∞(0, T ; Lγ /(1−s)2

(T2)). Repeating this argument, we conclude that ρε → 1 in L∞(0, T ; L p(T2)) for all
p < ∞.

For the momentum, we obtain for p ≥ 1

‖ρεuε − ∇⊥φ‖L∞(0,T ;L2p/(p+1)(T2))

≤ ‖√ρε‖L∞(0,T ;L2p(T2))‖
√
ρε(uε − ∇⊥φ)‖L∞(0,T ;L2(T2))

+‖ρε − 1‖L∞(0,T ;L2p/(p+1)(T2))‖∇⊥φ‖L∞(0,T ;L∞(T2))

≤ C‖√ρε(uε − ∇⊥φ)‖L∞(0,T ;L2(T2))

+C‖ρε − 1‖L∞(0,T ;L p(T2)).

This shows that ρεuε → ∇⊥φ in L∞(0, T ; Lq(T2)) for all q < 2.
Finally, let γ ≥ 2 and s = 1. Then ρε → 1 in L∞(0, T ; H1(T2)) and, by the contin-

uous embedding H1(T2) ↪→ L p(T2) for all p < ∞, also ρε → 1 in L∞(0, T ; L p(T2))

for all p < ∞. The theorem is proved.
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A. Local Existence of Smooth Solutions

The local existence of smooth solutions to the Navier–Stokes–Korteweg system (4) and
(5) can be shown similarly as in [27]. We only sketch the proof since it is highly technical
and does not involve new ideas. First, we rewrite (4) and (5), setting ρ = ρε, u = uε,
and ε = 1. Taking the divergence of (5) and replacing div ∂t (ρu) by (4), which has been
differentiated with respect to time, we obtain

∂2
t tρ − 1

γ
�ργ + 2ρσ ′(ρ)2�2ρ = − div div(ρu ⊗ u)− div(ρu⊥)

+ 2 div div(μ(ρ)D(u)) + F[ρ],
where F[ρ] = 2 div(ρ∇(σ ′(ρ)�σ(ρ)))−2ρσ ′(ρ)2�2ρ involves only three derivatives.
This formulation allows one to treat the momentum equation as a nonlinear fourth-order
wave equation for which existence and regularity results can be applied. In order to
derive some regularity for the velocity, Li and Marcati [27] assumed that curl u = 0.
Then u is reconstructed from the problem

div v = − 1

ρ
(∂tρ + ∇ρ · u), curl v = 0,

∫
T2
v(t)dx = ū(t).

Theorem 2.1 in [27] gives the existence of a unique solution u ∈ Hs+1(T2) to this
problem, provided that the right-hand side satisfies −(∂tρ + ∇ρ · u)/ρ ∈ Hs(T2).
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Actually, Li and Marcati replace the right-hand side by −(∂tρ + ∇ρ · u)/ψ , where ψ
solves the mass equation

∂tψ + ψ div v + u · ∇ρ = 0, t > 0, ψ(0) = ρ0.

The reason is that this equation can be solved explicitly, yielding strictly positive solu-
tions ψ . The existence proof is based on an iteration scheme: Given (ρp, ψp, u p, vp),
solve

div vp+1 = f p(t), curl vp+1 = 0,
∫
T2 vp+1(t)dx = ū(t),

∂tψp+1 + ψp+1 div vp + u p · ∇ρp = 0, t > 0, ψ(0) = ρ0,

∂2
t tρp+1 − 1

γ
�ρ

γ
p+1 + ψpσ

′(ψp)
2�2ρp+1 = gp(t), t > 0,

ρp+1(0) = ρ0, ∂tρp+1(0) = −ρ0 div u0 − ∇ρ0 · u0,

∂t u p+1 + u⊥
p+1 = h p(t),

where f p(t), gp(t), and h p(t) contain the remaining terms (see [27, Sect. 3] for de-
tails). The existence of solutions to these linear problems follows from ODE theory and
the theory of wave equations. The main effort is now to derive uniform estimates in
Sobolev spaces Hk(T2). This is done by multiplying the above equations by suitable
test functions and assuming that T > 0 is sufficiently small. By compactness, there
exists a subsequence of (ρp, ψp, u p, vp) which converges in a suitable Sobolev space
to (ρ, ψ, u, v) as p → ∞. This limit allows us also to show that ρ = ψ ≥ 0 and u = v.
This shows the existence of local smooth solutions under the assumption of irrotational
flow curl u = 0.

Next, we prove the existence of local smooth solutions to the quasi-geostrophic Eq. (7).
We set μ := μ(1) > 0.

Theorem 2 (Local existence for the quasi-geostrophic equation). Let φ0 ∈ C∞(T2).
Then there exists T > 0 and a smooth solution φ to (7) and (8) for 0 ≤ t ≤ T .

Proof. The idea of the proof is to apply the theory of linear semigroups. Let p > 2
and let Ap : W 2,p(T2) → R, Ap(u) = −μ�u + u. Then Ap is a sectorial operator
satisfying �(λ) = 1 for all λ ∈ σ(Ap), where σ(Ap) denotes the spectrum of Ap.

Consequently, Ap possesses the fractional powers Aβp for β ≥ 0, defined on the domain

Xβ,p = D(Aβp). This space, endowed with its graph norm, satisfies Xβ,p ↪→ W k,q(T2)

if k − 2/q < 2β− 2/p, q ≥ p [21, Theorem 1.6.1]. Let max{1 − 1/p, 1/2 + 1/(2p)} <
β < 1 and set X := Xβ,p. The operator Ap generates an analytical semigroup e−t Ap

(t ≥ 0) [21, Theorem 1.3.4], and the following estimates hold for all t > 0 [21, Theorem
1.4.3]:

‖Ape−t Ap u‖L p(T2) ≤ Ct−βe−δt‖u‖L p(T2),

‖(e−t Ap − I )v‖L p(T2) ≤ Ctβ‖Apv‖L p(T2) ≤ Ctβ‖v‖X

for 0 < δ < 1, u ∈ L p(T2), and v ∈ X .
Next, we reformulate (7). Set u = φ −�φ. Then (7) can be written as a system of

two second-order equations:

−�φ + φ = u in T
2, t > 0, (22)

∂t u − μ�u + u = (∇⊥φ · ∇)(φ − u) + μ(u − φ) + u. (23)
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We employ a fixed-point argument. Let T > 0 and R > 0. We introduce the spaces
Y = C0([0, T ]; X) and BR = {u ∈ Y : ‖u − u0‖Y ≤ R}, where u0 = −�φ0 + φ0 ∈
C∞(T2). Given u ∈ Y ⊂ C0([0, T ]; L p(T2)), let φ ∈ L∞(0, T ; W 2,p(T2)) be the
unique solution to (22) satisfying the elliptic estimate ‖φ‖W 2,p(T2) ≤ C‖u‖L p(T2). Then
define

J (u) = e−t Ap u0 +
∫ t

0
e(t−s)Ap F(φ(s), u(s))ds, where

F(φ, u) = (∇⊥φ · ∇)(φ − u) + μ(u − φ) + u.

Using the continuous embedding W 2,p(T2) ↪→ W 1,2p(T2) and the elliptic estimate for
φ, we infer the estimate

‖F(φ, u)‖L∞(0,T ;L p(T2)) ≤ C‖u‖L∞(0,T ;W 1,2p(T2))

(
1 + ‖u‖L∞(0,T ;W 1,2p(T2))

)
≤ C‖u‖L∞(0,T ;X)

(
1 + ‖u‖L∞(0,T ;X)

)
= C‖u‖Y (1 + ‖u‖Y ).

The last inequality follows from the embedding X ↪→ W 1,2p(T2) which holds for
β > 1/2 + 1/(2p).

We show that J maps BR into BR and that J : BR → BR is a contraction for
sufficiently small T > 0. Let T > 0 be such that‖(e−t Ap −I )u0‖L p(T2) ≤ CT β‖u0‖X ≤
R/2. Then, for u ∈ BR ,

‖J (u)− u0‖Y ≤ sup
0<t<T

‖(e−t Ap − I )u0‖L p(T2)

+ sup
0<t<T

∫ t

0
‖Ape−t Ap F(φ(s), u(s))‖X ds

≤ R

2
+ sup

0<t<T

∫ t

0
(t − s)−βe−δ(t−s)‖F(φ(s), u(s))‖X ds

≤ R

2
+

CT 1−β

1 − β
‖u‖Y (1 + ‖u‖Y ) ≤ R,

if T > 0 is sufficiently small, using that u ∈ BR . Thus J (u) ∈ BR . In a similar way, we
show that, for given u, v ∈ BR ,

‖J (u)− J (v)‖Y ≤ CT 1−β

1 − β
(‖u‖Y + ‖v‖Y )‖u − v‖Y .

Again, choosing T > 0 small enough, J becomes a contraction, and the fixed-point
theorem of Banach provides the existence and uniqueness of a mild solution on [0, T ].

It remains to prove that the mild solution is smooth. Since β > 1 − 1/p, we have
X ↪→ W 2,p/2(T2) and hence u ∈ L∞(0, T ; W 2,p/2(T2)) ⊂ L∞(0, T ; W 1,p(Td)).
Furthermore, ∇φ ∈ L∞(0, T ; W 1,p(T2)) ⊂ L∞(0, T ; L∞(T2)) (here, we use p >

2). This shows that ∂t u + Ap(u) ∈ L∞(0, T ; L p(T2)). Parabolic theory implies that
u ∈ Lq(0, T ; W 2,p(T2)) for all q < ∞. This improves the regularity of φ to φ ∈
Lq(0, T ; W 4,p(T2)). Hence, ∂t u + Ap(u) ∈ Lq(0, T ; L∞(T2)), and a bootstrap proce-
dure finishes the proof.
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