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Many research on the WK-recursive network has been published during the past several
years due to its favorite properties. In this paper, we consider the fault-tolerant hamiltonian
connectivity of the WK-recursive network. We use Kðd; tÞ to denote the WK-recursive net-
work of level t, each of which basic modules is a d-vertex complete graph, where d > 1 and
t P 1. The fault-tolerant hamiltonian connectivityHj

f ðGÞ is defined to be the maximum integer
k such that G is k fault-tolerant hamiltonian connected if G is hamiltonian connected and is
undefined otherwise. In this paper, we prove thatHj

f ðKðd; tÞÞ ¼ d� 4 if d P 4.
� 2014 Elsevier Inc. All rights reserved.
1. Introduction

As is customary in structure studies of parallel architectures, we restrict our attention to a set of identical processors, and
we view the architectures of the underlying interconnection networks as graphs. The vertices of a graph represent the pro-
cessors of an architecture, and the edges of the graph represent the communication links between processors. There are
many mutually conflicting requirements in designing the topology of interconnection networks. It is almost impossible to
design a network which is optimum from all aspects. One has to design a suitable network depending on the requirements
of its properties. The hamiltonian property is one of the major requirements in designing the topology of a network. Fault-
tolerance is also desirable in massive parallel systems.

In this paper, a network is represented as a loopless undirected graph. For graph definitions and notations we follow [1].
G ¼ ðV ; EÞ is a graph if V is a finite set and E is a subset of {ðu;vÞjðu;vÞ is an unordered pair of V}. We say that V is the vertex set
and E is the edge set. Two vertices u and v are adjacent if ðu;vÞ 2 E. Let S be a subset of V. The subgraph of G induced by S is the
graph G½S�with VðG½S�Þ ¼ S and EðG½S�Þ ¼ fðu;vÞjðu;vÞ 2 E; and fu;vg � Sg. The complement G of a graph G with the same ver-
tex set VðGÞ defined by ðu;vÞ 2 EðGÞ if and only if ðu;vÞ R EðGÞ. We use �e to denote jEðGÞj. The degree of a vertex u of
G;degGðuÞ, is the number of edges incident with u. A graph G is k-regular if degGðxÞ ¼ k for any vertex x in G. A path,
hv0;v1;v2; . . . ;vki, is an ordered list of distinct vertices such that v i and v iþ1 are adjacent for 1 6 i 6 k� 1. A path is a
hamiltonian path if its vertices are distinct and span V.

In [5], the performance of the hamiltonian property in faulty networks is discussed. In [10], Huang et al. define a param-
eter on fault-tolerant hamiltonicity. A hamiltonian graph G is k fault-tolerant hamiltonian if G� F remains hamiltonian for
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every F � VðGÞ [ EðGÞwith jFj 6 k. The fault-tolerant hamiltonicityHf ðGÞ is defined to be the maximum integer k such that G is
k fault-tolerant hamiltonian if G is hamiltonian and is undefined otherwise. Clearly,Hf ðGÞ 6 dðGÞ � 2 ifHf ðGÞ is defined. They
also introduce the concept of fault-tolerant hamiltonian connectivity. A graph G is hamiltonian connected if there exists a
hamiltonian path joining any two vertices of G. All hamiltonian connected graphs except the complete graphs K1 and K2

are hamiltonian. A graph G is k fault-tolerant hamiltonian connected if G� F remains hamiltonian connected for every
F � VðGÞ [ EðGÞ with jFj 6 k. The fault-tolerant hamiltonian connectivity Hj

f ðGÞ is defined to be the maximum integer k such
that G is k fault-tolerant hamiltonian connected if G is hamiltonian connected and is undefined otherwise. There are a lot of
study on fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity [6–11,14]. It can be checked that
Hj

f ðGÞ 6 dðGÞ � 3 only if Hj
f ðGÞ is defined and jVðGÞjP 4.

In this paper, we consider the fault-tolerant hamiltonian connectivity of the WK-recursive network. The WK-recursive
network is proposed by [15]. We use Kðd; tÞ to denote the WK-recursive network of level t, each of which basic modules
is a d-vertex complete graph, where d > 1 and t P 1. It offers a high degree scalability, which conforms very well to a mod-
ular design and implementation of distributed systems involving a large number of computing elements. A transputer imple-
mentation of a 15-vertex WK-recursive network has been realized at the Hybrid Computing Center, Naples, Italy. In this
implementation, each vertex is implemented with the IMS T414 Transputer [12]. Recently, the WK-recursive network has
received much attention due to its many favorable properties. In particular, it is proved that Kðd; tÞ is hamiltonian connected
[2] and Hf ðKðd; tÞÞ ¼ d� 3 [4]. In this paper, we prove that Hj

f ðKðd; tÞÞ ¼ d� 4.
In the following section, we give the definition of WK-recursive network. In Section 3, we give some preliminaries for the

discussion on the fault-tolerant hamiltonian connectivity of the WK-recursive network. In Section 4, we prove that
Hj

f ðKðd; tÞÞ ¼ d� 4.

2. WK-recursive networks

The WK-recursive network can be constructed hierarchically by grouping basic modules. A complete graph of any size d
can serve as the basic modules. We use Kðd; tÞ to denote a WK-recursive network of level t, each of whose basic modules is a
d-vertex complete graph, where d > 1 and t P 1. The structures of Kð5;1Þ;Kð5;2Þ, and Kð5;3Þ are shown in Fig. 1. Kðd; tÞ is
defined in terms of a graph as follows:

Each vertex of Kðd; tÞ is labeled as a t-digit radix d number. Vertex at�1at�2 . . . a1a0 is adjacent to (1) at�1at�2 . . . a1b, where

b – a0 and (2) at�1at�2 . . . ajþ1aj�1ðajÞj�1 if aj – aj�1 and aj�1 ¼ aj�2 ¼ . . . ¼ a0, where ðajÞj�1 denotes j� 1 consecutive ajs. An
open edge is incident with at�1at�2 . . . a0 if at�1 ¼ at�2 ¼ � � � ¼ a0. The open edge is reserved for further expansion. Hence,
its other end vertex is unspecified. The open vertex set Ov of Kðd; tÞ is the set fat�1at�2 . . . a0jai ¼ aiþ1 for 0 6 i 6 t � 2g. In other
words, Ov contains those vertices with open edges.

Obviously, Kðd;1Þ is a d-vertex complete graph augmented with d open edges. For t P 1;Kðd; t þ 1Þ consists d copies of
Kðd; tÞ, say K1ðd; tÞ;K2ðd; tÞ; . . . ;Kdðd; tÞ. Thus, we consider Kiðd; tÞ as the ith component of Kðd; t þ 1Þ. Let I ¼ fw1; . . . ;wqg
be any q subset of f1;2; . . . ; dg, we define graph KIðd; tÞ is the subgraph of Kðd; t þ 1Þ induced by

Sq
i¼1VðKwi

ðd; tÞÞ. For
t P 2, the open vertices of Kiðd; tÞ can be labeled as oi;0 and oi;j for 1 6 i – j 6 d where oi;0 is the only open vertex of
Kðd; t þ 1Þ in Kiðd; tÞ and oi;j is the vertex in Kiðd; tÞ joining with the vertex oj;i in Kjðd; tÞ with an open edge. Note that
ðoi;j; oj;iÞ is the only edge joining Kiðd; tÞ to Kjðd; tÞ.

Now, we define the extended WK-recursive network eK iðd; tÞ as VðeK iðd; tÞÞ ¼ VðKðd; tÞÞ [ fxg and EðeK iðd; tÞÞ ¼ EðKðd; tÞÞ[
fðoa;0; xÞja 2 f1;2; . . . ; dg � figg. For example, eK 2ð5;1Þ and eK 3ð5;2Þ are illustrated in Fig. 2. Obviously, eK iðd; tÞ is isomorphic
to eK jðd; tÞ for 1 6 i – j 6 d.

3. Preliminaries

The following theorem is proved by Ore [13].

Theorem 1 [13]. Assume that G is an n-vertex graph with n P 4. Then G is hamiltonian if �e 6 n� 3, and is hamiltonian
connected if �e 6 n� 4.

Corollary 1. Assume that n P 4. Then Kn is ðn� 3Þ fault-tolerant hamiltonian and ðn� 4Þ fault-tolerant hamiltonian connected.
Proof. Let F be any subset of VðKnÞ [ EðKnÞ. We use Fv to denote F \ VðKnÞ. Then Kn � F is isomorphic to Kn�jFv j � F 0 where F 0

is a subset of edges in the subgraph of Kn induced by f1;2; . . . ; ng � Fv . Obviously, jF 0j 6 jFj � jFv j 6 n� 3� jFv j. Since n� jFv j
is the number of vertices of Kn�jFv j � F 0, the lemma follows from Theorem 1. h

Let F � VðKðd; t þ 1ÞÞ [ EðKðd; t þ 1ÞÞwith jFj 6 d� 4. For 1 6 q 6 d, we use Fq to denote F \ ðVðKqðd; tÞÞ [ EðKqðd; tÞÞÞ. Note
that it is possible F � [d

q¼1Fq – ;. For example, it is possible ðo1;2; o2;1Þ 2 F but ðo1;2; o2;1Þ R [d
q¼1Fq.

Now, we construct another graph HðFÞ from the complete graph Kd with vertex set f1;2; . . . ; dg by considering vertex i
corresponds to the i-component of Kðd; t þ 1Þ for every i. Let F 0 ¼ fða; bÞjoa;b 2 F; ob;a 2 F, or ðoa;b; ob;aÞ 2 Fg. We set
HðFÞ ¼ Kd � F 0. Since jFj 6 d� 4, by Corollary 1, HðFÞ is hamiltonian connected. This result will help us to find a hamiltonian
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Fig. 1. The graphs (a) Kð5;1Þ, (b) Kð5;2Þ, and (c) Kð5;3Þ.
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Fig. 2. The graphs (a) eK 2ð5;1Þ and (b) eK 3ð5;2Þ.
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path between any two vertices in Kðd; t þ 1Þ � F. However, there are several problems need to be conquered. Let us consider
the following example.

Assume that u is a vertex in Kiðd; tÞ and v is a vertex in Kjðd; tÞ with 1 6 i – j 6 d. Let hi ¼ w1;w2; . . . ;wd ¼ ji be a hamil-
tonian path of HðFÞ. Let Pi be a hamiltonian path of Kiðd; tÞ � Fi joining u to oi;w2 , let Pq be a hamiltonian path of Kwq ðd; tÞ � Fwq



Fig. 3. Finding a hamiltonian path of Kðd; t þ 1Þ � F between u and v with a hamiltonian path of HðFÞ between i and j.
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joining owq ;wq�1 to owq ;wqþ1 for 2 6 q 6 d� 1, and let Pj be a hamiltonian path of Kjðd; tÞ � Fj joining oj;wd�1
to v. Obviously,

hPi; P2; . . . ; Pji forms a hamiltonian path of Kðd; t þ 1Þ � F joining u to v. See Fig. 3 for illustration.
Yet, we need to guarantee the existence of required paths in each component. Later, we will prove Kðd; tÞ is ðd� 4Þ fault-

tolerant hamiltonian connected by induction. In the induction step, we assume Kðd; tÞ is ðd� 4Þ fault-tolerant hamiltonian
connected and prove that Kðd; t þ 1Þ is ðd� 4Þ fault-tolerant hamiltonian connected. With the assumption, the required ham-
iltonian path Pq exists for 2 6 q 6 d� 1. However, we cannot find Pi if u ¼ oi;w2 . Similarly, we cannot find Pj if oj;wd�1

¼ v . To
solve the problem, we can find another hamiltonian path hi ¼ z1; z2; . . . ; zd ¼ ji of HðFÞ to meet the boundary conditions that
u – oi;z2 and v – oj;zd�1

. As a conclusion, we have the following lemma.

Lemma 1. Assume that Kðd; tÞ is ðd� 4Þ fault-tolerant hamiltonian connected. Let F � VðKðd; t þ 1ÞÞ [ EðKðd; t þ 1ÞÞ with
jFj 6 d� 4. Let u be a vertex in Kiðd; tÞ and let v be a vertex in Kjðd; tÞwith 1 6 i – j 6 d. Suppose that hi ¼ w1;w2; . . . ;wd ¼ ji be a
hamiltonian path of HðFÞ that satisfies the boundary conditions: u – oi;w2

and v – oj;wd�1
. Then there exists a hamiltonian path of

Kðd; t þ 1Þ � F joining u and v.
From the above discussion, we have three problems to prove that Kðd; t þ 1Þ � F is hamiltonian connected; i.e., there ex-

ists a hamiltonian path of Kðd; t þ 1Þ � F between any two vertices u and v. First, assume that u is a vertex in Kiðd; tÞ and v is a
vertex in Kjðd; tÞ with 1 6 i – j 6 d. We need to find a hamiltonian path in HðFÞ that meets the boundary conditions. Second,
find a hamiltonian path of Kðd; t þ 1Þ � F joining u and v if we cannot find a hamiltonian path in HðFÞ that meets the bound-
ary conditions. Finally, find a hamiltonian path of Kðd; t þ 1Þ � F joining u and v if both u and v are in Kiðd; tÞ for some i.

Now, we face the first problem. Let P1 ¼ hu1;u2; . . . ;uni and P2 ¼ hv1;v2; . . . ;vni be any two hamiltonian paths of G. We
say that P1 and P2 are orthogonal if u1 ¼ v1;un ¼ vn, and uq – vq for q ¼ 2 and q ¼ n� 1. We say a set of hamiltonian paths
fP1; P2; . . . ; Psg of G are mutually orthogonal if any two distinct paths in the set are orthogonal. Suppose there are three mutu-
ally orthogonal hamiltonian paths between any two vertices of HðFÞ. By pigeon-hole principle, we can easily find a hamil-
tonian path with the desired boundary conditions. For this reason, we would like to know all the cases that there are at
most two orthogonal hamiltonian paths in HðFÞ. As mentioned above, HðFÞ is isomorphic to a graph G with n vertices and
�e 6 n� 4.

However, we need some background. Let G and H be two graphs. We use Gþ H to denote the disjoint union of G and H.
We use G _ H to denote the graph obtained from Gþ H by joining each vertex of G to each vertex of H. For 1 6 m < n=2, let
Cm;n be the graph ðKm þ Kn�2mÞ _ Km. See Fig. 4 for illustration.

The following theorem is proved in [3].

Theorem 2. Assume that G is an n-vertex graph with n P 4 and �e 6 n� 4. Let s and t be any two vertices of G. Then there are at
least two orthogonal hamiltonian paths of G between s and t. Moreover, there are at least three mutually orthogonal hamiltonian
paths of G between s and t except the following cases:



Fig. 4. Illustration of Cm;n .
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C1: G is isomorphic to K4 where s and t are any two vertices of G.
C2: G is isomorphic to K5 � ð1;2Þ where s and t are any two vertices except fs; tg ¼ f1;2g.
C3: The subgraph H induced by VðGÞ � fs; tg is a complete graph with n P 6 where s is adjacent VðGÞ � fsg and t is adjacent to s

and exactly two vertices in H.
C4: The subgraph induced by VðGÞ � fs; tg is isomorphic to C2;5 where s is adjacent VðGÞ � fsg and t is adjacent to VðGÞ � ftg.
C5: The subgraph induced by VðGÞ � fs; tg is isomorphic to C1;n�2 with n P 6 where s is adjacent VðGÞ � fsg and t is adjacent to

VðGÞ � ftg.

To solve the remaining problems, we need some path patterns.

Lemma 2. Let d P 4; t P 1, and I ¼ fw1; . . . ;wng be any n subset of f1;2; . . . ; dg. Let u be a vertex in Kw1 ðd; tÞ and v be a vertex in
Kwn ðd; tÞ such that u – ow1 ;w2 and v – own ;wn�1 . Let F be any subset of VðKðd; t þ 1ÞÞ [ EðKðd; t þ 1ÞÞ such that (1) there exists an
edge between Kwq ðd; tÞ � Fq and Kwqþ1 ðd; tÞ � Fqþ1 for 1 6 q 6 n� 1 (2) Kwq ðd; tÞ � Fq is hamiltonian connected for 1 6 q 6 n.
Then there is a hamiltonian path P of KIðd; tÞ � F joining u to v.
Proof. Since there exists an edge between Kwq ðd; tÞ � Fq and Kwqþ1 ðd; tÞ � Fqþ1 for 1 6 q 6 n� 1, the edge ðowq ;wqþ1 ; owqþ1 ;wq Þ
and the vertices owq ;wqþ1 ; owqþ1 ;wq are not in F for 1 6 q 6 n� 1. Since Kwq ðd; tÞ � Fq is hamiltonian connected for 1 6 q 6 n,
there exists a hamiltonian path P1 of Kw1 ðd; tÞ � F1 joining u to ow1 ;w2 , there exists a hamiltonian path Pq of Kwq ðd; tÞ � Fq join-
ing owq ;wq�1 to owq ;wqþ1 for 2 6 q 6 n� 1, there exists a hamiltonian path Pn of Kwn ðd; tÞ � Fn joining own ;wn�1 to v. Therefore
P ¼ hu; P1; P2; . . . ; Pn;vi is a hamiltonian path of KIðd; tÞ � F joining u to v. h
Lemma 3. Let d P 4 and t P 1. Assume that u and v are two vertices of Kðd; tÞ. Let r and s be any two open vertices such that
jfu;vg \ fr; sgj ¼ 0. Then there exist two disjoint paths R and S such that (1) R joins u to one of the vertex in fr; sg, say r, (2) S joins
v to s, and (3) R [ S spans Kðd; tÞ.
Proof. We prove this lemma by induction on t. The lemma is obviously true for t ¼ 1 because Kðd;1Þ is isomorphic to the
complete graph Kd with Ov ¼ VðKðd;1ÞÞ. Thus, we assume that this lemma holds for Kðd;nÞ for every 1 6 n 6 t. We claim
the statement holds for Kðd; t þ 1Þ.

Let u 2 VðKiðd; tÞÞ;v 2 VðKjðd; tÞÞ; r 2 VðKkðd; tÞÞ, and s 2 VðKlðd; tÞÞ. Since there is only one open vertex in each
component, we have k – l. Now, we consider the following cases.

Case 1: i – j.
Subcase 1.1: jfi; jg \ fk; lgj ¼ 0. Thus, there exists an index in fk; lg, say k, such that u – oi;k. Let I1 ¼ fi; kg and

I2 ¼ fw1;w2; . . . ;wd�2g ¼ f1;2; . . . ; dg � I1 such that w1 ¼ j;wd�2 ¼ l, and v – oj;w2
. By Lemma 2, there exists a hamiltonian

path R of KI1 ðd; tÞ joining u to r; there exists a hamiltonian path S of KI2 ðd; tÞ joining v to s. Obviously, R and S are the required
paths.

Subcase 1.2: jfi; jg \ fk; lgj ¼ 1. Without loss of generality, we assume that i ¼ k. Let R be a hamiltonian path of Kiðd; tÞ
joining u to r. Let I ¼ fw1;w2; . . . ;wd�1g ¼ f1;2; . . . ; dg � fig such that w1 ¼ j and wd�1 ¼ l. By Lemma 2, there exists a
hamiltonian path S of KIðd; tÞ joining v to s. Obviously, R and S are the required paths.

Subcase 1.3: jfi; jg \ fk; lgj ¼ 2. Without loss of generality, we assume that i ¼ k and j ¼ l. By assumption,
jfu;vg \ fr; sgj ¼ 0. Let I ¼ fw2; . . . ;wd�1g ¼ f1;2; . . . ; dg � fi; jg. By induction, we can find two disjoint paths Sj1 and Sj2

such that (1) Sj1 joins v to oj;w2
, (2) Sj2 joins oj;wd�1

to s, and (3) Sj1 [ Sj2 spans Kjðd; tÞ. Let R be a hamiltonian path of Kiðd; tÞ
joining u and r. By Lemma 2, there exists a hamiltonian path S0 of KIðd; tÞ joining ow2 ;j to owd�1 ;j. Obviously, R and

S ¼ hv ; Sj1; S
0; S�1

j2 ; si are the required paths.
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Case 2: i ¼ j.
Subcase 2.1: i R fk; lg. Let I ¼ fw1;w2; . . . ;wd�2g ¼ f1;2; . . . ; dg � fi; kg such that wd�2 ¼ l. By induction, we can find two

disjoint paths Si1 and Si2 of Kiðd; tÞ such that (1) Si1 joins u to oi;k, (2) Si2 joins v to oi;w1
, and (3) Si1 [ Si2 spans Kiðd; tÞ. Let R0 be a

hamiltonian path of Kkðd; tÞ joining ok;i and r. By Lemma 2, there exists a hamiltonian path S0 of KIðd; tÞ joining ow1 ;i to s.
Obviously, R ¼ hu; Si1;R

0; ri and S ¼ hv; Si2; S
0; si are the required paths.

Subcase 2.2: i 2 fk; lg. Without loss of generality, we assume that i ¼ k. Let I ¼ fw1;w2; . . . ;wd�1g ¼ f1;2; . . . ; dg � fig
such that wd�1 ¼ l. By induction, we can find two disjoint paths Si1 and Si2 of Kiðd; tÞ such that (1) Si1 joins u to r, (2) Si2 joins v
to oi;w1

, and (3) Si1 [ Si2 spans Kiðd; tÞ. By Lemma 2, there exists a hamiltonian path S0 of KIðd; tÞ joining ow1 ;i to s. Obviously,
R ¼ Si1 and S ¼ hv ; Si2; S

0; si are the required paths. h
4. Fault-tolerant hamiltonian connectivity

Lemma 4. Both Kðd; tÞ and eK iðd; tÞ are ðd� 4Þ fault-tolerant hamiltonian connected for d P 4; t P 1, and 1 6 i 6 d.

Proof. Since eK iðd; tÞ is isomorphic to eK jðd; tÞ for 1 6 i – j 6 d, we consider eK 1ðd; tÞ in the following.
Suppose t ¼ 1. Note that Kðd;1Þ is isomorphic to Kd and eK 1ðd;1Þ is isomorphic to Kdþ1 � e where e is any edge in Kdþ1. By

Corollary 1, Kd and Kdþ1 � e are ðd� 4Þ fault-tolerant hamiltonian connected.
Assume that this lemma holds for Kðd; qÞ and eK 1ðd; qÞ for every 1 6 q 6 t. We will claim that Kðd; t þ 1Þ and eK 1ðd; t þ 1Þ

are also ðd� 4Þ fault-tolerant hamiltonian connected.
First, we show that Kðd; tÞ is ðd� 4Þ fault-tolerant hamiltonian connected. Since Kðd; tÞ is hamiltonian connected, Kð4; tÞ is

0 fault-tolerant hamiltonian connected. Thus, we assume that d P 5. Let u be a vertex in Kiðd; tÞ;v be a vertex in Kjðd; tÞwith
u – v and F be the faulty set with jFj 6 d� 4. We need to find a hamiltonian path of Kðd; t þ 1Þ � F joining u to v.

Case A1: i – j. Assume that there exists a hamiltonian path hi ¼ w1;w2; . . . ;wd ¼ ji of HðFÞ joining i and j that meet the
boundary conditions: u – oi;w2

and oj;wd�1
– v . By Lemma 1, there exists a hamiltonian path of Kðd; t þ 1Þ � F joining u and v.

By Theorem 2, such hamiltonian path in HðFÞ that meets the boundary conditions except the cases C2, C3, C4, and C5 of
Theorem 2. We will show that this lemma holds for HðFÞ is isomorphic to K5 � ð1;2Þ, the subgraph N of HðFÞ induced by
VðHðFÞÞ � fi; jg is a complete graph; isomorphic to C2;5; isomorphic to C1;n�2. Since the proof of this part is tedious, we leave
this part in Appendix A.

Case A2: i ¼ j. Without loss of generality, we assume that i ¼ j ¼ 1. Let A ¼ K1ðd; tÞ [ fðo1;r ; or;1Þj2 6 r 6 dg;
B ¼ for;1j2 6 r 6 dg, and C ¼ Kðd; t þ 1Þ � A� B. We set FA ¼ F \ A; FB ¼ F \ B, and FC ¼ F \ C.

Suppose that jFAj > 0 or jFBj > 0. We consider the graph eK 1
1ðd; tÞ. Let F 0 ¼ FA [ fðo1;r ; xÞjor;1 2 F or ðo1;r ; or;1Þ 2 F for

2 6 r 6 dg. Obviously, jF 0j 6 d� 4. By induction on eK 1
1ðd; tÞ, there exists a hamiltonian path P1 of eK 1

1ðd; tÞ � F 0 joining u to v.
Thus, path P1 can be written as hu; P11; o1;a; x; o1;b; P12;vi. Since jFAj > 0 or jFBj > 0; jFC j 6 d� 5. Therefore, HðFÞ � f1g is
hamiltonian connected. There exists a hamiltonian path ha ¼ w1; . . . ;wd�1 ¼ bi of HðFÞ � f1g joining vertex a to vertex b. By
Lemma 2, there is a hamiltonian path Q of KIðd; t þ 1Þ � F joining oa;1 to ob;1 where I ¼ fw1; . . . ;wd�1g. Hence, hamiltonian
path hu; P11; o1;a; oa;1;Q ; ob;1; o1;b; P12;vi be the required path.

Suppose that jFAj ¼ 0 and jFBj ¼ 0. Hence, jFC j 6 d� 4. Therefore, HðFÞ � f1g is hamiltonian. Let hw1; . . . ;wd�1;w1i be the
hamiltonian cycle in HðFÞ � f1g with jfo1;w1 ; o1;wd�1

g \ fu;vgj ¼ 0. By Lemma 3, there exist two disjoint paths R and S such
that (1) R joins u to one of the vertex in fo1;w1 ; o1;wd�1

g, say o1;w1 , (2) S joins v to o1;wd�1
, and (3) R [ S spans K1ðd; tÞ. By Lemma

2, there is a hamiltonian path P of KIðd; tÞ � F joining ow1 ;1 to owd�1 ;1 where I ¼ fw1; . . . ;wd�1g. Hence, hamiltonian path
hu;R; o1;w1 ; P; o1;wd�1

; S;vi be the required path.
Second, we show that eK 1ðd; tÞ is ðd� 4Þ fault-tolerant hamiltonian connected for d P 4 and t P 2. Let u and v be any two

distinct vertices in eK 1ðd; tÞ and F be the faulty set with jFj 6 d� 4. We want to show that there exists a hamiltonian path of
eK 1ðd; tÞ � F joining u to v.

We construct graph eH1ðFÞ by setting VðeH1ðFÞÞ ¼ VðHðFÞÞ [ f0g and EðeH1ðFÞÞ ¼ EðHðFÞÞ [ fðr; 0Þjor;0 R F where 2 6 r 6 dg.
Obviously, eH1ðFÞ is hamiltonian connected.

Case B1: u 2 Kiðd; tÞ and v 2 Kjðd; tÞ with i – j. Assume that there exists a hamiltonian path hi ¼ w1;w2; . . . ;wdþ1 ¼ ji of
eH1ðFÞ joining i and j that meet the boundary conditions: u – oi;w2

and oj;wd
– v . By Lemma 1, there exists a hamiltonian path

of Kðd; t þ 1Þ � F joining u and v. By Theorem 2, such hamiltonian path in eH1ðFÞ that meets the boundary conditions except

the cases C2, C3, C4, and C5 of Theorem 2. We will show that this lemma holds for eH1ðFÞ is isomorphic to K5 � e where e is

any edge in K5, the subgraph N of eH1ðFÞ induced by VðeH1ðFÞÞ � fi; jg is a complete graph; isomorphic to C2;5; isomorphic to
C1;n�2. Since the proof of this part is tedious, we leave this part in Appendix B.

Case B2: u 2 Kiðd; tÞ and v is the vertex x. Since jFj 6 d� 4; jF \ Kðd; t þ 1Þj 6 d� 4 and there exists at least one vertex or;x

with for;x; ðor;x; xÞg \ F ¼ ;. With above proof, Kðd; t þ 1Þ � F is hamiltonian connected. There exists a hamiltonian path P1 of
Kðd; t þ 1Þ � F joining u to or;x. Hence, hamiltonian path hu; P1; or;x; x ¼ vi be the required path.

Case B3: u;v 2 Kiðd; tÞ. Let A ¼ Kiðd; tÞ [ fðoi;r ; or;iÞj1 6 r – i 6 dg;B ¼ for;ij1 6 r – i 6 dg, and C ¼ Kðd; t þ 1Þ � fðoi;x; xÞg�
A� B. We set FA ¼ F \ A; FB ¼ F \ B, and FC ¼ F \ C.
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Suppose that jFAj > 0 or jFBj > 0. Consider the graph eK i
iðd; tÞ. Let F 0 ¼ FA [ fðoi;r ; xÞjor;i 2 F or ðoi;r ; or;iÞ 2 F for 1 6 r – i 6 dg.

Obviously, jF 0j 6 d� 4. By induction on eK i
iðd; tÞ, there exists a hamiltonian path Pi of eK i

iðd; tÞ � F 0 joining u to v. Path Pi can be
written as hu; Pi1; oi;a; x; oi;b; Pi2;vi. Since jFAj > 0 or jFBj > 0; jFC j 6 d� 4. Therefore, eH1ðFÞ � fig is hamiltonian connected.
There exists a hamiltonian path ha ¼ w1; . . . ; b ¼ wdi of eH1ðFÞ � fig joining vertex a to vertex b. By Lemma 2, there is a
hamiltonian path Q of KIðd; t þ 1Þ � F joining oa;i to ob;i where I ¼ fw1; . . . ;wdg. Hence, hamiltonian path
hu; Pi1; oi;a; oa;i;Q ; ob;i; oi;b; Pi2;vi be the required path.

Suppose that jFAj ¼ 0 and jFBj ¼ 0. Hence, jFC j 6 d� 3. Therefore, we know that eH1ðFÞ � fig is hamiltonian. Let

hw1; . . . ;wd;w1i be the hamiltonian cycle in eH1ðFÞ � fig with jfoi;w1
; oi;wd

g \ fu;vgj ¼ 0. By Lemma 3, there exist two disjoint
paths R and S such that (1) R joins u to one of the vertex in foi;w1

; oi;wd
g, say oi;w1

, (2) S joins v to oi;wd
, and (3) R [ S spans

Kiðd; tÞ. By Lemma 2, there is a hamiltonian path P of KIðd; tÞ � F joining ow1 ;i to owd ;i where I ¼ fw1; . . . ;wdg. Hence,
hamiltonian path hu;R; oi;w1

; P; oi;wd
; S;vi be the required path. h
Theorem 3. Hj
f ðKðd; tÞÞ ¼ d� 4 for d P 4 and t P 1.
Proof. Since dðKðd; tÞÞ ¼ d� 1;Hj
f ðKðd; tÞÞ 6 d� 4. By Lemma 4, Kðd; tÞ is ðd� 4Þ fault-tolerant hamiltonian connected.

Therefore, Hj
f ðKðd; tÞÞ ¼ d� 4 for d P 4 and t P 1. h
Appendix A. Remaining part of Case A1 in Lemma 4

Subcase A1.1: HðFÞ is isomorphic to the complete graph K5 � ð1;2Þ and fi; jg– f1;2g. Obviously, d ¼ 5 and jFj ¼ 1. Thus,
exactly one of o1;2; o2;1, or ðo1;2; o2;1Þ is fault. By the symmetric property of HðFÞ, we may assume that ði; jÞ ¼ ð1;3Þ or
ði; jÞ ¼ ð5;3Þ.

(i) ði; jÞ ¼ ð1;3Þ. Obviously, hi;5;4;2; ji and hi;4;2;5; ji form two orthogonal hamiltonian paths of HðFÞ. By Lemma 1, we
can construct a hamiltonian path between u and v of Kðd; t þ 1Þ � F unless (1) (u ¼ oi;4 and v ¼ oj;2) or (2) (u ¼ oi;5

and v ¼ oj;5).
Suppose that u ¼ oi;4 and v ¼ oj;2. Obviously, hi;5;2;4; ji is a hamiltonian path in HðFÞ satisfying the boundary condi-
tions: u – oi;5 and v – oj;4. Suppose that u ¼ oi;5 and v ¼ oj;5. Since exactly one of o1;2; o2;1, or ðo1;2; o2;1Þ is fault,
Kjðd; tÞ � foj;5g is hamiltonian connected. Let Pj be the hamiltonian path of Kjðd; tÞ � foj;5g joining oj;4 to oj;2. By
induction, Kqðd; tÞ � F is hamiltonian connected for q 2 fi;5;4;2g. Let Pi be the hamiltonian path of Kiðd; tÞ � F joining
u to oi;4; let P5 be the hamiltonian path of K5ðd; tÞ joining o5;2 to o5;j; let P4 be the hamiltonian path of K4ðd; tÞ joining o4;i

to o4;j; let P2 be the hamiltonian path of K2ðd; tÞ joining o2;j to o2;5. Therefore, path hu; Pi; P4; Pj; P2; P5;vi is the required
path.

(ii) ði; jÞ ¼ ð5;3Þ. Obviously, hi;1;4;2; ji and hi;2;4;1; ji form two orthogonal hamiltonian paths of HðFÞ. By Lemma 1, we
can construct a hamiltonian path between u and v of Kðd; t þ 1Þ � F unless (1) (u ¼ oi;1 and v ¼ oj;1) or (2) (u ¼ oi;2

and v ¼ oj;2).
The case (1) is similar to (2). We consider (1) only. Let u ¼ oi;1 and v ¼ oj;1. Since exactly one of o1;2, o2;1, or ðo1;2; o2;1Þ is
fault, Kjðd; tÞ � foj;1g is hamiltonian connected. Let Pj be the hamiltonian path of Kjðd; tÞ � foj;1g joining oj;i to oj;2. By
induction, Kqðd; tÞ � F is hamiltonian connected for q 2 fi;1;2;4g. Let Pi be the hamiltonian path of Kiðd; tÞ joining u
to oi;j; let P1 be the hamiltonian path of K1ðd; tÞ joining o1;4 to o1;j; let P4 be the hamiltonian path of K4ðd; tÞ joining
o4;2 to o4;1; let P2 be the hamiltonian path of K2ðd; tÞ joining o2;j to o2;4. Therefore, path hu; Pi; Pj; P2; P4; P1;vi is the
required path.

Subcase A1.2: The subgraph N of HðFÞ induced by VðHðFÞÞ � fi; jg is a complete graph; vertex i is adjacent to j and all the
vertices in N; j is adjacent to i and exactly two vertices 1 and 2 in N. We label the remaining vertices in N as 3; . . . ; d� 2. See
Fig. 5(a) for illustration. It is easy to see that hi;2;3; . . . ; d� 2;1; ji and hi;3; . . . ; d� 2;1;2; ji form two orthogonal hamiltonian
paths of HðFÞ between i and j. By Lemma 1, we can construct a hamiltonian path of Kðd; t þ 1Þ � F joining u to v unless (1)
(u ¼ oi;2 and v ¼ oj;2) or (2) (u ¼ oi;3 and v ¼ oj;1).

Suppose that u ¼ oi;2 and v ¼ oj;2. Obviously, hi;3;2;4; . . . ; d� 2;1; ji is a hamiltonian path in HðFÞ satisfying the boundary
conditions: u – oi;3 and v – oj;1. Suppose that u ¼ oi;3 and v ¼ oj;1. Thus, the hamiltonian path hi;1; d� 2; . . . ;3;2; ji in HðFÞ
satisfying the boundary conditions: u – oi;1 and v – oj;2. By Lemma 1, we can construct a hamiltonian path of
Kðd; t þ 1Þ � F joining u to v

Subcase A1.3: The subgraph N of HðFÞ induced by VðHðFÞÞ � fi; jg is isomorphic to C2;5; vertex i is adjacent to j and all the
vertices in N; j is adjacent to i and all the vertices in N. We label the vertices in N as 1;2; . . . ;5. See Fig. 5(b) for illustration.
Thus, d ¼ 6 and jFj ¼ 3. Obviously, jFij ¼ jFjj ¼ 0. Moreover, hi;1;2;3;4;5; ji and hi;5;4;3;2;1; ji form two orthogonal hamil-
tonian paths of HðFÞ between i and j. By Lemma 1, we can construct a hamiltonian path of Kðd; t þ 1Þ joining u to v unless (1)
(u ¼ oi;1 and v ¼ oj;1) or (2) (u ¼ oi;5 and v ¼ oj;5). By the symmetric property of HðFÞ, we only consider the case u ¼ oi;1 and
v ¼ oj;1.



(a) (b) (c)
Fig. 5. Illustrations for Appendix A, (a) Subcase A1.2, (b) Subcase A1.3, and (c) Subcase A1.4.
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Since jFij ¼ jFjj ¼ 0;Kjðd; tÞ � ðFj [ foj;1gÞ is hamiltonian connected. Let Pj be the hamiltonian path of Kjðd; tÞ � ðFj [ foj;1gÞ
joining oj;5 to oj;3. By induction, Kqðd; tÞ � Fq is hamiltonian connected for q 2 fi;1; . . . ;5g. Let Pi be the hamiltonian path of
Kiðd; tÞ � Fi joining u to oi;2; let P1 be the hamiltonian path of K1ðd; tÞ � F1 joining o1;4 to o1;j; let P2 be the hamiltonian path
of K2ðd; tÞ � F2 joining o2;i to o2;5; let P3 be the hamiltonian path of K3ðd; tÞ � F3 joining o3;j to o3;4; let P4 be the hamiltonian
path of K4ðd; tÞ � F4 joining o4;3 to o4;1; let P5 be the hamiltonian path of K5ðd; tÞ � F5 joining o5;2 to o5;j. Therefore, path
hu; Pi; P2; P5; Pj; P3; P4; P1;vi is the required path.

Subcase A1.4: The subgraph N of HðFÞ induced by VðHðFÞÞ � fi; jg is isomorphic to C1;n�2; vertex i is adjacent to j and all
the vertices in N; j is adjacent to i and all the vertices in N. We label the vertices in N as 1;2; . . . ; d� 2. See Fig. 5(c) for illus-
tration. Obviously, hi;1;2; . . . ; d� 2; ji and hi; d� 2; d� 3; . . . ;1; ji form two orthogonal hamiltonian paths of HðFÞ between i
and j. By Lemma 1, we can construct a hamiltonian path of Kðd; t þ 1Þ joining u to v unless (1) (u ¼ oi;d�2 and v ¼ oj;d�2) or (2)
(u ¼ oi;1 and v ¼ oj;1).

Suppose that u ¼ oi;d�2 and v ¼ oj;d�2. Obviously, hi;3; d� 2; . . . ;4;2;1; ji is a hamiltonian path in HðFÞ satisfying the
boundary conditions: u – oi;3 and v – oj;1. By Lemma 1, we can construct a hamiltonian path of Kðd; t þ 1Þ joining u to v.

Suppose that u ¼ oi;1 and v ¼ oj;1. Since jFij ¼ jFjj ¼ 0;Kjðd; tÞ � foj;1g is hamiltonian connected. Let Pj be the hamiltonian
path of Kjðd; tÞ � foj;1g joining oj;3 to oj;4. By induction, Kqðd; tÞ � Fq is hamiltonian connected for q 2 fi;2; . . . ; d� 2g. Let Pi be
the hamiltonian path of Kiðd; tÞ joining u to oi;3; let P3 be the hamiltonian path of K3ðd; tÞ � F3 joining o3;i to o3;j; let P4 be the
hamiltonian path of K4ðd; tÞ � F4 joining o4;j to o4;5 if d P 7 and let P4 be the hamiltonian path of K4ðd; tÞ � F4 joining o4;j to
o4;2 if d ¼ 6; let Pq be a hamiltonian path of Kqðd; tÞ � Fq joining oq;q�1 to oq;qþ1 for 4 6 q 6 d� 3; let Pd�2 be the hamiltonian
path of Kd�2ðd; tÞ � Fd�2 joining od�2;d�3 to od�2;2; let P2 be a hamiltonian path of K2ðd; tÞ � F2 joining o2;d�2 to o2;1; let P1 be a
hamiltonian path of K1ðd; tÞ � F1 joining o1;2 to o1;j. Therefore, hu; Pi; P3; Pj; P4; . . . ; Pd�2; P2; P1;vi is the required path.
Appendix B. Remaining part of Case B1 in Lemma 4

In these cases, jFj ¼ jEðeH1ðFÞÞj ¼ d� 4. Thus, F contains exactly one of oa;b, ob;a, or ðoa;b; ob;aÞ if ða; bÞ R EðeH1ðFÞÞ.
Subcase B1.1: eH1ðFÞ is isomorphic to the complete graph K5 � e for any edge e in K5. We label the vertices in K5 as

0;1; . . . ;4. See Fig. 6(a) for illustration. By the definition on eH1ðFÞ; fi; jg– f0;1g. Obviously, d ¼ 4 and jFj ¼ 0. By the symmet-
ric property of eH1ðFÞ, we may assume that ði; jÞ ¼ ð1;2Þ or ði; jÞ ¼ ð4;2Þ.
(a) (b) (c) (d)
Fig. 6. Illustrations for Appendix B, (a) Subcase B1.1, (b) Subcase B1.2, (c) Subcase B1.3, and (d) Subcase B1.4.
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(i) ði; jÞ ¼ ð1;2Þ. Obviously, hi;4;0;3; ji and hi;3;0;4; ji form two orthogonal hamiltonian paths of eH1ðFÞ. By Lemma 1, we
can construct a hamiltonian path between u and v of eK 1ðd; t þ 1Þ � F unless (1) (u ¼ oi;4 and v ¼ oj;4) or (2) (u ¼ oi;3 and
v ¼ oj;3).
Suppose that u ¼ oi;4 and v ¼ oj;4. Obviously, hi;3;4;0; ji is a hamiltonian path in eH1ðFÞ satisfying the boundary
conditions: u – oi;3 and v – oj;0. Suppose that u ¼ oi;3 and v ¼ oj;3. Obviously, hi;4;3;0; ji is a hamiltonian path in
eH1ðFÞ satisfying the boundary conditions: u – oi;4 and v – oj;0.

(ii) ði; jÞ ¼ ð4;2Þ. Obviously, hi;0;3;1; ji and hi;1;3;0; ji form two orthogonal hamiltonian paths of eH1ðFÞ. By Lemma 1, we

can construct a hamiltonian path between u and v of eK 1ðd; t þ 1Þ � F unless (1) (u ¼ oi;0 and v ¼ oj;0) or (2) (u ¼ oi;1 and
v ¼ oj;1).
Suppose that u ¼ oi;0 and v ¼ oj;0. Let Pi be the hamiltonian path of Kiðd; tÞ � fug joining oi;3 to oi;1; let P3 be the
hamiltonian path of K3ðd; tÞ joining o3;0 to o3;2; let P1 be the hamiltonian path of K1ðd; tÞ joining o1;2 to o1;4; Pj be the
hamiltonian path of Kjðd; tÞ joining oj;1 to v. Therefore, path hu; x; P3; Pi; P1; Pj;vi is the required path. Suppose that
u ¼ oi;1 and v ¼ oj;1. Let Pi be the hamiltonian path of Kiðd; tÞ � fug joining oi;3 to oi;0; let P3 be the hamiltonian path
of K3ðd; tÞ joining o3;1 to o3;2; let P1 be the hamiltonian path of K1ðd; tÞ joining o1;i to o1;3; Pj be the hamiltonian path
of Kjðd; tÞ joining oj;0 to v. Therefore, path hu; P1; P3; Pi; x; Pj;vi is the required path.

Subcase B1.2: The subgraph N of eH1ðFÞ induced by VðeH1ðFÞÞ � fi; jg is a complete graph; vertex i is adjacent to j and all
vertices in N; j is adjacent to i and exactly two vertices, say x1 and x2, in N. Since degeH1ðFÞ

ð0Þ < d; x1 or x2 is not vertex 0. We

label the remaining vertices in N as x3; . . . ; xd�1. See Fig. 6(b) for illustration. It is easy to see that hi; x2; x3; . . . ; xd�1; x1; ji and

hi; x3; . . . ; xd�1; x1; x2; ji form two orthogonal hamiltonian paths of eH1ðFÞ between i and j. By Lemma 1, we can construct a ha-

miltonian path between u and v of eK 1ðd; t þ 1Þ � F unless (1) (u ¼ oi;x2 and v ¼ oj;x2 ) or (2) (u ¼ oi;x3 and v ¼ oj;x1 ).
Suppose that u ¼ oi;x2 and v ¼ oj;x2 . Obviously, hi; x3; x2; x4; . . . ; xd�1; x1; ji is a hamiltonian path in eH1ðFÞ satisfying the

boundary conditions: u – oi;x3 and v – oj;x1 . Suppose that u ¼ oi;x3 and v ¼ oj;x1 . The hamiltonian path hi; x1; xd�1; . . . ; x3; x2; ji
in eH1ðFÞ satisfying the boundary conditions: u – oi;x1 and v – oj;x2 . By Lemma 1, we can construct a hamiltonian paths be-
tween u and v of eK 1ðd; t þ 1Þ � F.

Subcase B1.3: The subgraph N of eH1ðFÞ induced by VðeH1ðFÞÞ � fi; jg is isomorphic to C2;5; vertex i is adjacent to j and all
the vertices in N; j is adjacent to i and all the vertices in N. We label the vertices of C2;5 as indicated in Fig. 6(c). Obviously,
d ¼ 6 and jFj ¼ 2. Thus, jEðNÞj ¼ 3 and degNðx1Þ ¼ degNðx3Þ ¼ degNðx5Þ ¼ 2. It is easy to see that hi; x1; x2; x3; x4; x5; ji and

hi; x5; x4; x3; x2; x1; ji form two orthogonal hamiltonian paths of eH1ðFÞ between i and j. By Lemma 1, we can construct a hamil-

tonian paths between u and v of eK 1ðd; t þ 1Þ � F unless (1) (u ¼ oi;x1 and v ¼ oj;x1 ) or (2) (u ¼ oi;x5 and v ¼ oj;x5 ). By the sym-

metric property of eH1ðFÞ, we only consider the case u ¼ oi;x1 and v ¼ oj;x1 .
Since jFij ¼ jFjj ¼ 0;Kjðd; tÞ � ðFj [ foj;x1gÞ is hamiltonian connected. Let Pj be the hamiltonian path of Kjðd; tÞ � ðFj [ foj;x1gÞ

joining oj;x5 to oj;x3 . Let l be the index that xl is vertex 0 in N. By induction, Kqðd; tÞ � Fq is hamiltonian connected for
q 2 fi; x1; . . . ; x5g � fxlg. Let Pi be the hamiltonian path of Kiðd; tÞ � Fi joining u to oi;x2 ; let P1 be the hamiltonian path of
K1ðd; tÞ � F1 joining ox1 ;x4 to ox1 ;j if l – 1 and P1 ¼ fxg if otherwise; let P2 be the hamiltonian path of K2ðd; tÞ � F2 joining
ox2 ;i to ox2 ;x5 ; let P3 be the hamiltonian path of K3ðd; tÞ � F3 joining ox3 ;j to ox3 ;x4 if l – 3 and P3 ¼ fxg if otherwise; let P4 be
the hamiltonian path of K4ðd; tÞ � F4 joining ox4 ;x3 to ox4 ;x1 ; let P5 be the hamiltonian path of K5ðd; tÞ � F5 joining ox5 ;x2 to
ox5 ;j if l – 5 and P5 ¼ fxg if otherwise. Therefore, path hu; Pi; P2; P5; Pj; P3; P4; P1;vi is the required path.

Subcase B1.4: The subgraph N of eH1ðFÞ induced by VðeH1ðFÞÞ � fi; jg is isomorphic to C1;n�2; vertex i is adjacent to j and all
the vertices in N; j is adjacent to i and all the vertices in N. We label the vertices of C1;n�2 as indicated in Fig. 6(d). Obviously,
EðNÞ ¼ d� 3 and degNð1Þ ¼ d� 3. It is easy to see that hi; x1; x2; . . . ; xd�1; ji and hi; xd�1; xd�2; . . . ; x1; ji form two orthogonal ha-
miltonian paths of eH1ðFÞ between i and j. By Lemma 1, we can construct a hamiltonian paths between u and v in
eK 1ðd; t þ 1Þ � F unless (1) (u ¼ oi;xd�1

and v ¼ oj;xd�1
) or (2) (u ¼ oi;x1 and v ¼ oj;x1 ).

Suppose that u ¼ oi;xd�1
and v ¼ oj;xd�1

. Obviously, hi; x3; xd�1; . . . ; x4; x2; x1; ji is a hamiltonian path in eH1ðFÞ satisfying the
boundary conditions: u – oi;x3 and v – oj;x1 . By Lemma 1, we can construct a hamiltonian paths between u and v in
eK 1ðd; t þ 1Þ � F.

Suppose that u ¼ oi;x1 and v ¼ oj;x1 . Since jFij ¼ jFjj ¼ 0;Kjðd; tÞ � foj;x1g is hamiltonian connected. Let Pj be the hamiltonian
path of Kjðd; tÞ � foj;x1g joining oj;x3 to oj;x4 . Let l be the index that xl is vertex 0 in N. By induction, Kqðd; tÞ � Fq is hamiltonian
connected for q 2 fi; x2; . . . ; xd�1g � fxlg. Let Pi be the hamiltonian path of Kiðd; tÞ joining u to oi;x3 ; let P3 be the hamiltonian
path of K3ðd; tÞ � F3 joining ox3 ;i to ox3 ;j if l – 3 and P3 ¼ fxg if otherwise. Suppose l – 4, let P4 be the hamiltonian path of
K4ðd; tÞ � F4 joining ox4 ;j to ox4 ;x5 if d P 7 and let P4 be the hamiltonian path of K4ðd; tÞ � F4 joining ox4 ;j to ox4 ;x2 if d ¼ 6. Sup-
pose l ¼ 4, let P4 ¼ fxg. Let Pq be a hamiltonian path of Kqðd; tÞ � Fq joining oxq ;xq�1 to oxq ;xqþ1 for 4 6 q 6 d� 2 if l – q and
Pq ¼ fxg if otherwise; let Pd�1 be the hamiltonian path of Kd�1ðd; tÞ � Fd�1 joining oxd�1 ;xd�2

to oxd�1 ;x2 if l – d� 1 and
Pd�1 ¼ fxg if otherwise; let P2 be a hamiltonian path of K2ðd; tÞ � F2 joining ox2 ;xd�1

to ox2 ;x1 ; let P1 be a hamiltonian path of
K1ðd; tÞ � F1 joining ox1 ;x2 to ox1 ;j if l – 1 and P1 ¼ fxg if otherwise. Therefore, path hu; Pi; P3; Pj; P4; . . . ; Pd�1; P2; P1;vi is the
required path.
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