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1. Introduction

As is customary in structure studies of parallel architectures, we restrict our attention to a set of identical processors, and
we view the architectures of the underlying interconnection networks as graphs. The vertices of a graph represent the pro-
cessors of an architecture, and the edges of the graph represent the communication links between processors. There are
many mutually conflicting requirements in designing the topology of interconnection networks. It is almost impossible to
design a network which is optimum from all aspects. One has to design a suitable network depending on the requirements
of its properties. The hamiltonian property is one of the major requirements in designing the topology of a network. Fault-
tolerance is also desirable in massive parallel systems.

In this paper, a network is represented as a loopless undirected graph. For graph definitions and notations we follow [1].
G = (V,E)isagraphif Vis a finite set and E is a subset of {(u, )|(u, v) is an unordered pair of V}. We say that V is the vertex set
and E is the edge set. Two vertices u and v are adjacent if (u, v) € E. Let S be a subset of V. The subgraph of G induced by S is the
graph G[S] with V(G[S]) = S and E(G[S]) = {(u, v)|(u, v) € E, and {u, v} C S}. The complement G of a graph G with the same ver-

tex set V(G) defined by (u, v) € E(G) if and only if (u,v) ¢ E(G). We use e to denote |E(G)|. The degree of a vertex u of
G,deg.(u), is the number of edges incident with u. A graph G is k-regular if deg.(x) =k for any vertex x in G. A path,
(vo, V1, V2, ..., %), is an ordered list of distinct vertices such that »; and »;,; are adjacent for 1 <i< k- 1. A path is a
hamiltonian path if its vertices are distinct and span V.

In [5], the performance of the hamiltonian property in faulty networks is discussed. In [10], Huang et al. define a param-
eter on fault-tolerant hamiltonicity. A hamiltonian graph G is k fault-tolerant hamiltonian if G — F remains hamiltonian for
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every F c V(G) UE(G) with |F| < k. The fault-tolerant hamiltonicity H;(G) is defined to be the maximum integer k such that G is
k fault-tolerant hamiltonian if G is hamiltonian and is undefined otherwise. Clearly, H;(G) < 6(G) — 2 if H;(G) is defined. They
also introduce the concept of fault-tolerant hamiltonian connectivity. A graph G is hamiltonian connected if there exists a
hamiltonian path joining any two vertices of G. All hamiltonian connected graphs except the complete graphs K; and K,
are hamiltonian. A graph G is k fault-tolerant hamiltonian connected if G —F remains hamiltonian connected for every
F c V(G) UE(G) with |F| < k. The fault-tolerant hamiltonian connectivity H; (G) is defined to be the maximum integer k such
that G is k fault-tolerant hamiltonian connected if G is hamiltonian connected and is undefined otherwise. There are a lot of
study on fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity [6-11,14]. It can be checked that
Hf (G) < 0(G) — 3 only if Hf(G) is defined and |V(G)| > 4.

In this paper, we consider the fault-tolerant hamiltonian connectivity of the WK-recursive network. The WK-recursive
network is proposed by [15]. We use K(d,t) to denote the WK-recursive network of level t, each of which basic modules
is a d-vertex complete graph, where d > 1 and ¢ > 1. It offers a high degree scalability, which conforms very well to a mod-
ular design and implementation of distributed systems involving a large number of computing elements. A transputer imple-
mentation of a 15-vertex WK-recursive network has been realized at the Hybrid Computing Center, Naples, Italy. In this
implementation, each vertex is implemented with the IMS T414 Transputer [12]. Recently, the WK-recursive network has
received much attention due to its many favorable properties. In particular, it is proved that K(d, t) is hamiltonian connected
[2] and H;(K(d,t)) = d — 3 [4]. In this paper, we prove that Hf (K(d,t)) = d — 4.

In the following section, we give the definition of WK-recursive network. In Section 3, we give some preliminaries for the
discussion on the fault-tolerant hamiltonian connectivity of the WK-recursive network. In Section 4, we prove that
Hf(K(d,t)) =d—4.

2. WK-recursive networks

The WK-recursive network can be constructed hierarchically by grouping basic modules. A complete graph of any size d
can serve as the basic modules. We use K(d, t) to denote a WK-recursive network of level t, each of whose basic modules is a
d-vertex complete graph, where d > 1 and t > 1. The structures of K(5,1),K(5,2), and K(5,3) are shown in Fig. 1. K(d,t) is
defined in terms of a graph as follows:

Each vertex of K(d, t) is labeled as a t-digit radix d number. Vertex a; 1a; » ...a;ao is adjacent to (1) a;_1a;_> ...a;b, where
b+# ap and (2) a;_qa;_> .. .ajﬂaj_](aj)j’l if j # a;_4 and a;1 = q;_, = ... = ao, where (a,-)j’1 denotes j — 1 consecutive g;s. An
open edge is incident with a,_1a; »...ao if a;_1 = a;_» = --- = ap. The open edge is reserved for further expansion. Hence,
its other end vertex is unspecified. The open vertex set O, of K(d, t) is the set {a; 1a; 5 ...ao|a; = a;.; for 0 <i < t — 2}. In other
words, O, contains those vertices with open edges.

Obviously, K(d, 1) is a d-vertex complete graph augmented with d open edges. For t > 1,K(d,t + 1) consists d copies of
K(d,t), say K;(d,t),K>(d,t),...,Kq(d,t). Thus, we consider K;(d,t) as the ith component of K(d,t+ 1). Let I = {wy,...,wy}
be any q subset of {1,2,...,d}, we define graph K;(d,t) is the subgraph of K(d,t+ 1) induced by ! ,V(Kw,(d,t)). For
t > 2, the open vertices of K;(d,t) can be labeled as 0;o and o;; for 1 <i# j <d where 0;¢ is the only open vertex of
K(d,t+1) in Kj(d,t) and o;; is the vertex in K;(d,t) joining with the vertex o;; in Kj(d,t) with an open edge. Note that
(0i4,0j;) is the only edge joining K;i(d, t) to K;(d, t).

Now, we define the extended WK-recursive network Ki(d,t) as V(Ki(d,t)) = V(K(d,t)) U {x} and E(Ki(d,t)) = E(K(d, t))U
{(050,X)|oc € {1,2,...,d} — {i}}. For example, K2(5,1) and K3(5,2) are illustrated in Fig. 2. Obviously, Ki(d, t) is isomorphic
to Ki(d,t) for 1 <i=j<d.

3. Preliminaries
The following theorem is proved by Ore [13].

Theorem 1 [13]. Assume that G is an n-vertex graph with n > 4. Then G is hamiltonian if e < n— 3, and is hamiltonian
connected ife < n — 4.

Corollary 1. Assume that n > 4. Then K, is (n — 3) fault-tolerant hamiltonian and (n — 4) fault-tolerant hamiltonian connected.

Proof. Let F be any subset of V(K,) UE(K,). We use F, to denote F N V(K,). Then K,, — F is isomorphic to K,_, — F' where F’
is a subset of edges in the subgraph of K, induced by {1,2,...,n} — F,. Obviously, |F| < |F| — |F,| < n—3 — |F,|. Since n — |F,|
is the number of vertices of K,_, — F’, the lemma follows from Theorem 1. O

Let F c V(K(d,t+ 1)) UE(K(d, t + 1)) with |[F| < d — 4. For 1 < q < d, we use F, to denote F N (V(Ky(d, t)) UE(K,(d, t))). Note
that it is possible F — ngqu # (). For example, it is possible (012,021) € F but (012,021) ¢ Ug:]Fq.

Now, we construct another graph H(F) from the complete graph K, with vertex set {1,2,...,d} by considering vertex i
corresponds to the i-component of K(d,t+1) for every i. Let F' = {(«,B)|0xs € F, 05, € F, Or (0,4,054) € F}. We set
H(F) = K, — F'. Since |F| < d — 4, by Corollary 1, H(F) is hamiltonian connected. This result will help us to find a hamiltonian
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(a) (b)

Fig. 2. The graphs (a) K2(5,1) and (b) K3(5,2).

path between any two vertices in K(d,t + 1) — F. However, there are several problems need to be conquered. Let us consider
the following example.

Assume that u is a vertex in K;(d, t) and v is a vertex in Kj(d, t) with 1 <i#j<d. Let (i=w;,ws,..., wq = j) be a hamil-
tonian path of H(F). Let P; be a hamiltonian path of K;(d, t) — F; joining u to 0;u,, let P; be a hamiltonian path of Ky, (d, t) — Fy,
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Fig. 3. Finding a hamiltonian path of K(d,t + 1) — F between u and v with a hamiltonian path of H(F) between i and j.

joining 0w, w, , t0 Ow,w,., for 2<q<d-1, and let P; be a hamiltonian path of K;(d, t) — F; joining 0;w, , to v. Obviously,
(P;,P,,...,P;) forms a hamiltonian path of K(d, t + 1) — F joining u to v. See Fig. 3 for illustration.

Yet, we need to guarantee the existence of required paths in each component. Later, we will prove K(d, t) is (d — 4) fault-
tolerant hamiltonian connected by induction. In the induction step, we assume K(d, t) is (d — 4) fault-tolerant hamiltonian
connected and prove that K(d, t + 1) is (d — 4) fault-tolerant hamiltonian connected. With the assumption, the required ham-
iltonian path P, exists for 2 < q < d — 1. However, we cannot find P; if u = 0;,. Similarly, we cannot find P; if 0;,, , = v. To
solve the problem, we can find another hamiltonian path (i = z1,2,,...,2z4 = j) of H(F) to meet the boundary conditions that
u # 0;;, and v # 0j;, ,. As a conclusion, we have the following lemma.

Lemma 1. Assume that K(d,t) is (d —4) fault-tolerant hamiltonian connected. Let F c V(K(d,t+ 1)) UE(K(d,t + 1)) with
|F| < d— 4. Letube avertex in K;(d, t) and let v be a vertex in K;(d, t) with 1 < i+ j < d. Suppose that (i = wy,w,,...,wy = j) bea
hamiltonian path of H(F) that satisfies the boundary conditions: u # o;,,, and v # o;,,, ,. Then there exists a hamiltonian path of
K(d,t+ 1) — F joining u and v.

From the above discussion, we have three problems to prove that K(d,t + 1) — F is hamiltonian connected; i.e., there ex-
ists a hamiltonian path of K(d, t + 1) — F between any two vertices u and v. First, assume that u is a vertex in K;(d, t) and vis a
vertex in Kj(d, t) with 1 < i # j < d. We need to find a hamiltonian path in H(F) that meets the boundary conditions. Second,
find a hamiltonian path of K(d, t + 1) — F joining u and v if we cannot find a hamiltonian path in H(F) that meets the bound-
ary conditions. Finally, find a hamiltonian path of K(d,t + 1) — F joining u and v if both u and v are in K;(d, t) for some i.

Now, we face the first problem. Let P; = (uq,us,...,u,) and P, = (vq, v,..., v,) be any two hamiltonian paths of G. We
say that P; and P, are orthogonal if uy = v1,u, = vy, and uy # v, for ¢ =2 and g = n — 1. We say a set of hamiltonian paths
{P1,Ps,...,Ps} of G are mutually orthogonal if any two distinct paths in the set are orthogonal. Suppose there are three mutu-
ally orthogonal hamiltonian paths between any two vertices of H(F). By pigeon-hole principle, we can easily find a hamil-
tonian path with the desired boundary conditions. For this reason, we would like to know all the cases that there are at
most two orthogonal hamiltonian paths in H(F). As mentioned above, H(F) is isomorphic to a graph G with n vertices and
e<n-—4.

However, we need some background. Let G and H be two graphs. We use G + H to denote the disjoint union of G and H.
We use G Vv H to denote the graph obtained from G + H by joining each vertex of G to each vertex of H. For 1 < m < n/2, let
Cpn be the graph (K, + Kn_om) V K. See Fig. 4 for illustration.

The following theorem is proved in [3].

Theorem 2. Assume that G is an n-vertex graph withn > 4 and e < n — 4. Let s and t be any two vertices of G. Then there are at
least two orthogonal hamiltonian paths of G between s and t. Moreover, there are at least three mutually orthogonal hamiltonian
paths of G between s and t except the following cases:
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Fig. 4. Illustration of Cp, .

C1: G is isomorphic to K, where s and t are any two vertices of G.

C2: G is isomorphic to Ks — (1,2) where s and t are any two vertices except {s,t} = {1,2}.

C3: The subgraph H induced by V(G) — {s, t} is a complete graph with n > 6 where s is adjacent V(G) — {s} and t is adjacent to s
and exactly two vertices in H.

C4: The subgraph induced by V(G) — {s, t} is isomorphic to C,5 where s is adjacent V(G) — {s} and t is adjacent to V(G) — {t}.

C5: The subgraph induced by V(G) — {s, t} is isomorphic to C1 ,_, with n > 6 where s is adjacent V(G) — {s} and t is adjacent to
V(G) — {t}.

To solve the remaining problems, we need some path patterns.

Lemma2. Letd > 4,t > 1,and I = {wy,...,wy} be any nsubset of {1,2,...,d}. Let u be a vertex in Ky, (d, t) and v be a vertex in
Kw,(d,t) such that u # oy, w, and v # ow, w, ,- Let F be any subset of V(K(d,t + 1)) UE(K(d,t + 1)) such that (1) there exists an
edge between Ky, (d,t) — Fy and Ky,,,(d,t) — Fgi1 for 1 <q<n-—1(2) Kw,(d,t) — Fq is hamiltonian connected for 1 < q <n.
Then there is a hamiltonian path P of K(d, t) — F joining u to v.

Proof. Since there exists an edge between K, (d,t) — F; and Kw,,, (d,t) — Fgi1 for 1 < q < n-1, the edge (Owgwysr > Owg. wy)
and the vertices Owgwg,1>Owg,y v, AI€ NOL in F for 1 < g <n- 1. Since K, (d,t) — Fq is hamiltonian connected for 1 <q <n,
there exists a hamiltonian path P; of Ky, (d,t) — F; joining u to 0y, w,, there exists a hamiltonian path P, of K, (d, t) — F, join-
ing Owgwg, 1O Owgw,., for 2 < g <n-1, there exists a hamiltonian path P, of K, (d, t) — F, joining ow,w, , to v. Therefore
P = (u,Py,P,,...,Py, v) is a hamiltonian path of K;(d,t) — F joining u tov. O

Lemma 3. Letd > 4 and t > 1. Assume that u and v are two vertices of K(d,t). Let r and s be any two open vertices such that
{u, v} Nn{r,s}| = 0. Then there exist two disjoint paths R and S such that (1) R joins u to one of the vertex in {r,s}, say r, (2) S joins
vtos, and (3) RUS spans K(d, t).

Proof. We prove this lemma by induction on t. The lemma is obviously true for t = 1 because K(d, 1) is isomorphic to the
complete graph K, with 0, = V(K(d, 1)). Thus, we assume that this lemma holds for K(d,n) for every 1 < n < t. We claim
the statement holds for K(d,t + 1).

Let ue V(K;(d,t)),v € V(K;(d,t)),r € V(Ki(d,t)), and s e V(K(d,t)). Since there is only one open vertex in each
component, we have k # . Now, we consider the following cases.

Case 1:i #j.

Subcase 1.1: [{i,j} n{k,[}| = 0. Thus, there exists an index in {k,I}, say k, such that u# o;;. Let I = {i,k} and
L ={wi,wy,....wy 5} ={1,2,...,d} — I such that w; =j,wy_, =1, and » # 0;,,,. By Lemma 2, there exists a hamiltonian
path R of K, (d, t) joining u to r; there exists a hamiltonian path S of K, (d, t) joining v to s. Obviously, R and S are the required
paths.

Subcase 1.2: |{i,j} n {k,I}| = 1. Without loss of generality, we assume that i = k. Let R be a hamiltonian path of K;(d, t)
joining u to r. Let I = {wy,wy,...,wy_1} ={1,2,...,d} — {i} such that w; =j and w,_; = L. By Lemma 2, there exists a
hamiltonian path S of K;(d, t) joining v to s. Obviously, R and S are the required paths.

Subcase 1.3: |{i,j} Nn{k,I}| =2. Without loss of generality, we assume that i=k and j=I By assumption,
Hu, v} n{r,s}| =0. Let I ={w,,...,wq_1} ={1,2,...,d} — {i,j}. By induction, we can find two disjoint paths S;; and Sj,
such that (1) Sj; joins v to 0;,, (2) Sj joins 0;,, , to s, and (3) Sj; USj; spans K;(d, t). Let R be a hamiltonian path of K;(d, t)
joining u and r. By Lemma 2, there exists a hamiltonian path S’ of K;(d,t) joining oy,; to oy, ;. Obviously, R and
S= (v,Sﬂ,S’,SfZ],s) are the required paths.
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Case 2:i=]j.

Subcase 2.1:i ¢ {k,I}. Let] = {wy,wo,...,wy_»} ={1,2,...,d} — {i,k} such that wy_, = I. By induction, we can find two
disjoint paths S;; and S of K;(d, t) such that (1) S;; joins u to 0;, (2) Sip joins v to 0, and (3) Si; U Si; spans K;(d, t). Let R be a
hamiltonian path of K(d, t) joining o,; and r. By Lemma 2, there exists a hamiltonian path S’ of K;(d, t) joining oy, ; to s.
Obviously, R = (u,S;,R,r) and S = (2,S;,,5,s) are the required paths.

Subcase 2.2: i € {k,I}. Without loss of generality, we assume that i = k. Let [ = {wq,w,...,wy_1} ={1,2,...,d} — {i}
such that wy_; = L. By induction, we can find two disjoint paths S;; and Sj; of K;(d, t) such that (1) S;; joinsu tor, (2) Sj; joins v
to 0;,, and (3) Si; US;, spans Ki(d, t). By Lemma 2, there exists a hamiltonian path S’ of K;(d, t) joining o,, ; to s. Obviously,
R=S; and S = (v,S,,5,s) are the required paths. O

4. Fault-tolerant hamiltonian connectivity

Lemma 4. Both K(d, t) and K(d, t) are (d — 4) fault-tolerant hamiltonian connected ford > 4,t > 1, and 1 <i < d.

Proof. Since Ki(d, t) is isomorphic to Ki(d, t) for 1 <i # j < d, we consider K'(d, t) in the following.

Suppose t = 1. Note that K(d, 1) is isomorphic to K; and K (d, 1) is isomorphic to Ky, — e where e is any edge in Ky, ;. By
Corollary 1, K4 and K4,1 — e are (d — 4) fault-tolerant hamiltonian connected.

Assume that this lemma holds for K(d,q) and K(d, q) for every 1 < q < t. We will claim that K(d,t + 1) and K'(d,t + 1)
are also (d — 4) fault-tolerant hamiltonian connected.

First, we show that K(d, t) is (d — 4) fault-tolerant hamiltonian connected. Since K(d, t) is hamiltonian connected, K(4, t) is
0 fault-tolerant hamiltonian connected. Thus, we assume that d > 5. Let u be a vertex in K;(d, t), v be a vertex in K;(d, t) with
u # v and F be the faulty set with |F| < d — 4. We need to find a hamiltonian path of K(d,t + 1) — F joining u to v.

Case A1l: i # j. Assume that there exists a hamiltonian path (i = wy,ws,...,wy =j) of H(F) joining i and j that meet the
boundary conditions: u # 0;,, and 0, , # v. By Lemma 1, there exists a hamiltonian path of K(d, t + 1) — F joining u and v.
By Theorem 2, such hamiltonian path in H(F) that meets the boundary conditions except the cases C2, C3, C4, and C5 of
Theorem 2. We will show that this lemma holds for H(F) is isomorphic to K5 — (1,2), the subgraph N of H(F) induced by
V(H(F)) — {i,j} is a complete graph; isomorphic to C; 5; isomorphic to C; ,_». Since the proof of this part is tedious, we leave
this part in Appendix A.

Case A2: i=j. Without loss of generality, we assume that i=j=1. Let A=K;(d,t)U{(01,,0:1)]2 <1 <d},
B={0;1]2<r<d},and C=K(d,t+1)—A—B.Weset F, =FNA,Fg=FnB,and Fc =FnC.

Suppose that |F4] >0 or |Fg| > 0. We consider the graph k} (d,t). Let F' =Fa U {(01,,X)|0;1 € F or (01,,01) € F for
2 < r < d}. Obviously, |F'| < d — 4. By induction on I~<} (d, t), there exists a hamiltonian path P; of I~<} (d,t) — F joining u to v.
Thus, path P; can be written as (u,Pq1,014,X,01p, P12, ). Since |F4] >0 or |Fg| > 0, |Fc| < d — 5. Therefore, H(F) — {1} is
hamiltonian connected. There exists a hamiltonian path (@ = wy,...,wy_1 = b) of H(F) — {1} joining vertex a to vertex b. By
Lemma 2, there is a hamiltonian path Q of K;(d,t + 1) — F joining o, to 0, ; where I = {wy,...,wy_; }. Hence, hamiltonian
path (u,Pi1,01,4,041,Q,0p1,01p, P12, v) be the required path.

Suppose that |F4| = 0 and |Fg| = 0. Hence, |F¢| < d — 4. Therefore, H(F) — {1} is hamiltonian. Let (wy,...,wg_1,w;) be the
hamiltonian cycle in H(F) — {1} with |[{01w,,01w,,} N {u, v}| = 0. By Lemma 3, there exist two disjoint paths R and S such
that (1) R joins u to one of the vertex in {01 w,, 01w, , }, SAY 01.w,, (2) S joins v to 01, ,, and (3) RU S spans K; (d, t). By Lemma
2, there is a hamiltonian path P of K;(d,t) — F joining oy, 1 to oy, ,1 where I = {wy,..., w4 1}. Hence, hamiltonian path
(u,R, 01 w,,P, 01w, ,,S, v) be the required path.

Second, we show that K1(d, t) is (d — 4) fault-tolerant hamiltonian connected for d > 4 and t > 2. Let u and v be any two
distinct vertices in K1(d, t) and F be the faulty set with |F| < d — 4. We want to show that there exists a hamiltonian path of
K'(d,t) — F joining u to v.

We construct graph H'(F) by setting V(H! (F)) = V(H(F)) U {0} and E(H'(F)) = E(H(F)) U{(r,0)|o,¢ ¢ F where 2 < r < d}.
Obviously, H! (F) is hamiltonian connected.

Case B1: u € K;(d,t) and v € Kj(d, t) with i # j. Assume that there exists a hamiltonian path (i = wy,w,,..., w4 =j) of
H (F) joining i and j that meet the boundary conditions: u # 0;,, and 0;,,, # v. By Lemma 1, there exists a hamiltonian path
of K(d,t + 1) — F joining u and v. By Theorem 2, such hamiltonian path in H!(F) that meets the boundary conditions except
the cases C2, C3, C4, and C5 of Theorem 2. We will show that this lemma holds for H! (F) is isomorphic to K5 — e where e is
any edge in Ks, the subgraph N of H!(F) induced by V(H!(F)) — {i,j} is a complete graph; isomorphic to C; 5; isomorphic to
C1n—2. Since the proof of this part is tedious, we leave this part in Appendix B.

Case B2: u € K;(d, t) and v is the vertex x. Since |F| < d — 4, [FNK(d,t + 1)| < d — 4 and there exists at least one vertex orx
with {0, x, (0rx,X)} N F = (. With above proof, K(d,t + 1) — F is hamiltonian connected. There exists a hamiltonian path P; of
K(d,t + 1) — F joining u to o,. Hence, hamiltonian path (u, P, 0,x,x = v) be the required path.

Case B3: u, v € Ki(d,t). Let A = K;(d, t) U{(0j,,0:;)|1 <T#i<d},B={o0,;|]1 <r#i<d},and C=K(d,t+ 1) — {(0jx,X)} —
A—B.Weset Fp =FNnA Fg=FnB,and Fc = FnC.
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Suppose that |F4| > 0 or |[Fg| > 0. Consider the graph I~<§(d, t).LetF = FoU {(0ir,%)|0;; € For (0i;,0;;) € Ffor 1 <r#i<d}.
Obviously, |F'| < d — 4. By induction on Ki(d, t), there exists a hamiltonian path P; of Kﬁd, t) — F' joining u to v. Path P; can be
written as (u, Pij, 0;4,X, 0;p, Pip, v). Since |F4| > 0 or |Fg| > 0,|F¢| < d — 4. Therefore, H' (F) — {i} is hamiltonian connected.
There exists a hamiltonian path (a =wy,...,b =w,) of H'(F) — {i} joining vertex a to vertex b. By Lemma 2, there is a
hamiltonian path Q of Kj(d,t+1)—F joining oq; to o0p; where I={w;,...,wg}. Hence, hamiltonian path
(U, Pi1,0i4,044,Q,0p4,0ip, Pia, v) be the required path.

Suppose that |F4| =0 and |Fz| = 0. Hence, |F¢| < d— 3. Therefore, we know that H'(F)— {i} is hamiltonian. Let

(w1, ...,W4,w;) be the hamiltonian cycle in H! (F) — {i} with [{0;w,,0iw,} N {u, v}| = 0. By Lemma 3, there exist two disjoint
paths R and S such that (1) R joins u to one of the vertex in {0;,,0iw,}, Say 0iw,, (2) S joins v to 0;,,,, and (3) RU S spans
Ki(d,t). By Lemma 2, there is a hamiltonian path P of K;(d,t) — F joining o,,; to o,,; where I = {wy,...,wy}. Hence,

hamiltonian path (u,R, 0;,, P, 0;w,,S, v) be the required path. [

Theorem 3. ;(K(d,t)) =d—-4ford > 4andt > 1.

Proof. Since §(K(d,t)) =d — 1, (K(d,t)) <d
d

—4. By Lemma 4, K(d,t) is (d —4) fault-tolerant hamiltonian connected.
Therefore, Hf (K(d,t)) =d -4 ford > 4and t > 1.

O

Appendix A. Remaining part of Case Al in Lemma 4

Subcase A1.1: H(F) is isomorphic to the complete graph Ks — (1,2) and {i,j} # {1,2}. Obviously, d = 5 and |F| = 1. Thus,
exactly one of 01,,0,1, Or (012,0,;) is fault. By the symmetric property of H(F), we may assume that (i,j) = (1,3) or
(i.j) = (5,3).

(i) (i,j) = (1,3). Obviously, (i,5,4,2,j) and (i,4,2,5,j) form two orthogonal hamiltonian paths of H(F). By Lemma 1, we

can construct a hamiltonian path between u and v of K(d,t+ 1) — F unless (1) (u = 0;4 and v = 0;,) or (2) (u = 0;5
and v = 0;5).
Suppose that u = 0;4 and v = 0;,. Obviously, (i,5,2,4,j) is a hamiltonian path in H(F) satisfying the boundary condi-
tions: u # 0;5 and v # 0j4. Suppose that u=0;5 and v = 0;5. Since exactly one of 013,021, Or (012,027) is fault,
Kj(d,t) — {oj5} is hamiltonian connected. Let P; be the hamiltonian path of K;(d,t) — {0;5} joining 0;4 to 0j,. By
induction, K, (d, t) — F is hamiltonian connected for q € {i,5,4, 2}. Let P; be the hamiltonian path of K;(d, t) — F joining
u to 0;4; let Ps be the hamiltonian path of K5(d, t) joining 05, to 0s;; let P4 be the hamiltonian path of K4(d, t) joining 04;
to 04; let P, be the hamiltonian path of K> (d, t) joining 0, to 0, 5. Therefore, path (u, P;, P4, P;, P2, Ps, v} is the required
path.

(ii) (i,j) = (5,3). Obviously, (i,1,4,2,j) and (i,2,4,1,j) form two orthogonal hamiltonian paths of H(F). By Lemma 1, we

can construct a hamiltonian path between u and v of K(d,t+ 1) — F unless (1) (u = 0;; and v = 0;j;) or (2) (u = 0i»
and v = 0j,).
The case (1) is similar to (2). We consider (1) only. Let u = 0;; and v = 0;;. Since exactly one of 01, 021, Or (012,02,1) is
fault, K;(d, t) — {01} is hamiltonian connected. Let P; be the hamiltonian path of Kj(d, t) — {0;1} joining o;; to 0;,. By
induction, Ky(d, t) — F is hamiltonian connected for q € {i, 1,2,4}. Let P; be the hamiltonian path of K;(d, t) joining u
to o;4; let P; be the hamiltonian path of K;(d, t) joining 014 to 0;;; let P, be the hamiltonian path of K4(d, t) joining
042 t0 041; let P, be the hamiltonian path of K;(d, t) joining 02; to 0, 4. Therefore, path (u,P;, P, P>, P4, P1, v) is the
required path.

Subcase A1.2: The subgraph N of H(F) induced by V(H(F)) — {i,j} is a complete graph; vertex i is adjacent to j and all the
vertices in N;j is adjacent to i and exactly two vertices 1 and 2 in N. We label the remaining vertices in Nas 3,...,d — 2. See
Fig. 5(a) for illustration. It is easy to see that (i,2,3,...,d — 2,1,j) and (i,3,...,d — 2,1, 2,j) form two orthogonal hamiltonian
paths of H(F) between i and j. By Lemma 1, we can construct a hamiltonian path of K(d,t + 1) — F joining u to v unless (1)
(u=0;; and v =0;,) or (2) (u=0;3 and v = 0j1).

Suppose that u = 0;; and v = 0;,. Obviously, (i,3,2,4,...,d — 2,1,j) is a hamiltonian path in H(F) satisfying the boundary
conditions: u # 0;3 and v # 0;;. Suppose that u = 0;3 and v = 0;;. Thus, the hamiltonian path (i,1,d —2,...,3,2,j) in H(F)
satisfying the boundary conditions: u#0;; and v#o0;,. By Lemma 1, we can construct a hamiltonian path of
K(d,t + 1) — F joining u to v

Subcase A1.3: The subgraph N of H(F) induced by V(H(F)) — {i,j} is isomorphic to C, 5; vertex i is adjacent to j and all the
vertices in N;j is adjacent to i and all the vertices in N. We label the vertices in N as 1,2,...,5. See Fig. 5(b) for illustration.
Thus, d = 6 and |F| = 3. Obviously, |F;| = |F;| = 0. Moreover, (i,1,2,3,4,5,j) and (i,5,4,3,2,1,j) form two orthogonal hamil-
tonian paths of H(F) between i and j. By Lemma 1, we can construct a hamiltonian path of K(d,t + 1) joining u to v unless (1)
(u=o0;7 and v =0j;) or (2) (u = 0;5 and v = 0;5). By the symmetric property of H(F), we only consider the case u = 0;; and
V=0;ji.
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Fig. 5. Illustrations for Appendix A, (a) Subcase A1.2, (b) Subcase A1.3, and (c) Subcase A1.4.

Since |F;| = |Fj| = 0,K;(d, t) — (F; U {o;1}) is hamiltonian connected. Let P; be the hamiltonian path of K;(d, t) — (F; U {0j1})
joining o;s to 0;3. By induction, Kq(d, t) — F, is hamiltonian connected for q € {i,1,...,5}. Let P; be the hamiltonian path of
Ki(d,t) — F; joining u to 0;,; let P; be the hamiltonian path of K;(d, t) — F; joining 014 to 04;; let P, be the hamiltonian path
of K»(d, t) — F, joining 0,; to 0,5; let P; be the hamiltonian path of K3(d, t) — F3 joining 0s; to 034; let P4 be the hamiltonian
path of K4(d,t) — F4 joining 043 to 041; let Ps be the hamiltonian path of Ks(d,t) — Fs joining 0s, to os;. Therefore, path
(u, P;, P, Ps, P, P3, P4, Py, v) is the required path.

Subcase A1.4: The subgraph N of H(F) induced by V(H(F)) — {i,j} is isomorphic to C;,_»; vertex i is adjacent to j and all
the vertices in N;j is adjacent to i and all the vertices in N. We label the verticesin Nas 1,2,...,d — 2. See Fig. 5(c) for illus-
tration. Obviously, (i,1,2,...,d — 2,j) and (i,d — 2,d — 3,...,1,j) form two orthogonal hamiltonian paths of H(F) between i
and j. By Lemma 1, we can construct a hamiltonian path of K(d, t + 1) joining u to v unless (1) (u = 0;4_, and v = 0j4_,) or (2)
(u=o0;7 and v = 0j4).

Suppose that u =0;4., and v = 0j4_,. Obviously, (i,3,d—2,...,4,2,1,j) is a hamiltonian path in H(F) satisfying the
boundary conditions: u # 0;3 and v # 0;;. By Lemma 1, we can construct a hamiltonian path of K(d,t + 1) joining u to v.

Suppose that u = 0;; and v = 0;;. Since |F;| = |Fj| = 0,K;(d, t) — {0;1} is hamiltonian connected. Let P; be the hamiltonian
path of Kj(d, t) — {0;1} joining 0;3 to 0;4. By induction, K,(d, t) — F4 is hamiltonian connected for q € {i,2,...,d — 2}. Let P; be
the hamiltonian path of K;(d, t) joining u to o;3; let P; be the hamiltonian path of K5(d, t) — F3 joining o03; to os3;; let P4 be the
hamiltonian path of K4(d, t) — F4 joining 04 to 045 if d > 7 and let P4 be the hamiltonian path of K4(d, t) — F4 joining 04; to
04 if d = 6; let P4 be a hamiltonian path of K,(d, t) — F4 joining 0qq-1 t0 0gq.1 for 4 < q < d — 3; let Pq_, be the hamiltonian
path of K4 ,(d,t) — Fq_» joining 04 543 t0 04_25; let P, be a hamiltonian path of K,(d, t) — F; joining 0,4, to 0,;; let P, be a
hamiltonian path of K;(d, t) — F; joining 01, to 0q;. Therefore, (u,P;, P3,Pj, Pa,...,P4_2,P2, Py, v) is the required path.

Appendix B. Remaining part of Case B1 in Lemma 4

In these cases, |F| = |[E(H'(F))| = d — 4. Thus, F contains exactly one of 0u., Op., OT (05 ,0p) if (0, ) ¢ E(H'(F)).

Subcase B1.1: Hl(F) is isomorphic to the complete graph Ks — e for any edge e in Ks. We label the vertices in Ks as
0,1,...,4. See Fig. 6(a) for illustration. By the definition on H'(F), {i,j} # {0, 1}. Obviously, d = 4 and |F| = 0. By the symmet-
ric property of H!(F), we may assume that (i,j) = (1,2) or (i,j) = (4,2).

:
|

(a) (b) (c)

Fig. 6. Illustrations for Appendix B, (a) Subcase B1.1, (b) Subcase B1.2, (c) Subcase B1.3, and (d) Subcase B1.4.



244 T.-Y. Ho et al./ Information Sciences 271 (2014) 236-245

(i) (i,j) = (1,2). Obviously, (i,4,0,3,j) and (i,3,0,4,j) form two orthogonal hamiltonian paths of H(F). By Lemma 1, we
can construct a hamiltonian path between u and v of K' (d,t+1) — Funless (1) (u=o0;4and v = 0j4) or (2) (u = 0;3 and
v = 0j3).
Suppcj)se that u =0;4 and v = 0j4. Obviously, (i,3,4,0,j) is a hamiltonian path in i:Il(F) satisfying the boundary
conditions: u # 0;3 and v # 0j0. Suppose that u=0;3 and v = 0;3. Obviously, (i,4,3,0,j) is a hamiltonian path in
H! (F) satisfying the boundary conditions: u # 0;4 and v # 0. N

(ii) (i,j) = (4,2). Obviously, (i,0,3,1,j) and (i, 1, 3,0,j) form two orthogonal hamiltonian paths of H'(F). By Lemma 1, we
can construct a hamiltonian path between u and v of K’ (d,t+1) —Funless (1) (u=o0;0and v = 0j0) or (2) (u = 0;; and
V=0j ).
Suppose that u = 0;o and v = 0jo. Let P; be the hamiltonian path of Kj(d,t) — {u} joining 0;3 to 0;1; let P3 be the
hamiltonian path of K3(d, t) joining 03¢ to 03>; let P; be the hamiltonian path of K;(d, t) joining 01, to 014;P; be the
hamiltonian path of Kj(d,t) joining 0;; to v. Therefore, path (u,x,Ps, P;, P1,P;, v) is the required path. Suppose that
u=0;; and v = 0j;. Let P; be the hamiltonian path of K;(d, t) — {u} joining 0;3 to 0;0; let P; be the hamiltonian path
of K5(d,t) joining 031 to 035; let P; be the hamiltonian path of K;(d, t) joining 04; to 013; P; be the hamiltonian path
of K;(d, t) joining o;q to v. Therefore, path (u, Py, Ps, P;, x, P;, v) is the required path.

Subcase B1.2: The subgraph N of H! (F) induced by V(I?I1 (F)) — {i,j} is a complete graph; vertex i is adjacent to j and all
vertices in N;j is adjacent to i and exactly two vertices, say x; and x,, in N. Since degﬁl(F)(O) < d,x; or x, is not vertex 0. We

label the remaining vertices in N as X3, ...,X4_1. See Fig. 6(b) for illustration. It is easy to see that (i,x2,X3,...,X4_1,X1,j) and
(i,X3,...,X4_1,X1,X2,j) form two orthogonal hamiltonian paths of H! (F) between i and j. By Lemma 1, we can construct a ha-
miltonian path between u and v of K' (d,t+1) — F unless (1) (u = 0;x, and v = 0jx,) or (2) (u = 0ix, and v = 0j4, ).

Suppose that u = 0;,, and v = 0j,,. Obviously, (i,X3,X2,X4,...,X4-1,%,j) is a hamiltonian path in H! (F) satisfying the
bou~ndary conditions: u # 0;,, and v # 0j,,. Suppose that u = 0;,, and v = 0;,,. The hamiltonian path (i,x;,x4_1,...,X3,X2,j)
in H'(F) satisfying the boundary conditions: u # 0y, and v # 0;,. By Lemma 1, we can construct a hamiltonian paths be-
tween u and v of K'(d,t + 1) — F.

Subcase B1.3: The subgraph N of H!(F) induced by V(H!(F)) — {i,j} is isomorphic to C,s; vertex i is adjacent to j and all
the vertices in N;j is adjacent to i and all the vertices in N. We label the vertices of C, 5 as indicated in Fig. 6(c). Obviously,
d=6 and |[F| =2. Thus, |[E(N)| =3 and degg(x;) = degy(x3) = degg(xs) = 2. It is easy to see that (i,X1,X»,X3,Xs,Xs,j) and
(i,Xs,X4,X3,X2,X1,j) form two orthogonal hamiltonian paths of H! (F) between i and j. By Lemma 1, we can construct a hamil-
tonian paths between u and v of K! (d,t+1) — F unless (1) (u = 0y, and v = 0j,) or (2) (u = 0;x, and v = 0j, ). By the sym-
metric property of H! (F), we only consider the case u = 0;,, and v = 0j,,.

Since |Fi| = |Fj| = 0,Kj(d, t) — (F; U{0jx, }) is hamiltonian connected. Let P; be the hamiltonian path of K;(d, t) — (F; U {0jx, })
joining 0jx, to 0j,,. Let | be the index that x; is vertex 0 in N. By induction, Ky(d,t) — F, is hamiltonian connected for
q € {i,x1,...,Xs} — {x;}. Let P; be the hamiltonian path of K;(d,t) — F; joining u to 0;,; let P; be the hamiltonian path of
Ki(d,t) — Fy joining oy, x, to 0 if I# 1 and P; = {x} if otherwise; let P, be the hamiltonian path of K,(d, t) — F, joining
Ox,i tO Oy, x,; let P; be the hamiltonian path of K3(d, t) — F3 joining oy, to oy, x, if [ # 3 and P; = {x} if otherwise; let P4 be
the hamiltonian path of K4(d,t) — F4 joining 0y, x, t0 0y, ; let Ps be the hamiltonian path of Ks(d,t) — Fs joining 0y, to
0x, if I # 5 and Ps = {x} if otherwise. Therefore, path (u, P;, P;, P, Pj, P3, P4, P, v) is the required path.

Subcase B1.4: The subgraph N of H!(F) induced by V(H! (F)) — {i,j} is isomorphic to Cy ,_»; vertex i is adjacent to j and all
the vertices in N;j is adjacent to i and all the vertices in N. We label the vertices of C; ,_, as indicated in Fig. 6(d). Obviously,
E(N)=d -3 and degg(1) =d — 3.1t is easy to see that (i,x1,Xa,...,X41,j) and (i,Xq_1,X4_2, . .., X1,j) form two orthogonal ha-
miltonian paths of H'(F) between i and j. By Lemma 1, we can construct a hamiltonian paths between u and v in
Rl(d, t+1) — F unless (1) (u = 05, , and v = 0jx, ,) o1 (2) (U = 0jx, and v = 0j, ). _

Suppose that u = 0y, , and v = 0;,, ,. Obviously, (i,X3,X4_1,...,Xs,X2,X1,j) is @ hamiltonian path in H!(F) satisfying the
Izoundary conditions: u # 0;x, and v # 0j,,. By Lemma 1, we can construct a hamiltonian paths between u and v in
K'(d,t+1) —F.

Suppose that u = 0;,, and v = 0j,. Since |F;| = |Fj| = 0,Kj(d, t) — {0;4, } is hamiltonian connected. Let P; be the hamiltonian
path of Kj(d, t) — {0jx, } joining 0;, to 0;,. Let | be the index that x, is vertex 0 in N. By induction, K4(d, t) — F, is hamiltonian
connected for q € {i,x,...,X4_1} — {x;}. Let P; be the hamiltonian path of K;(d, t) joining u to o0;,; let P; be the hamiltonian
path of K3(d, t) — F3 joining oy, to 0y, if [ # 3 and P; = {x} if otherwise. Suppose [ # 4, let P, be the hamiltonian path of
K4(d, t) — F4 joining oy, j to 0, «, if d > 7 and let P4 be the hamiltonian path of K4(d, t) — F4 joining oy, j to oy, x, if d = 6. Sup-
pose [ = 4, let P4 = {x}. Let P; be a hamiltonian path of K,(d,t) — Fq joining 0x,x, , t0 Oxx,,, for 4 <q<d-2if I+ q and
P, = {x} if otherwise; let P;_; be the hamiltonian path of Ky ;(d,t) — F4_; joining o0y, ,x,, t0 0y, ,x if I#d—1 and
P41 = {x} if otherwise; let P, be a hamiltonian path of K,(d, t) — F, joining 0y, ., , t0 0x,x,; let P; be a hamiltonian path of
Ky(d,t) — F; joining o0y, , to 0y if I# 1 and Py = {x} if otherwise. Therefore, path (u,P;,P3,P;,Ps,...,P4_1,P2,P1, v) is the
required path.
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