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Abstract— Understanding brain function using electroen-
cephalography (EEG) is an important issue for cerebral nervous
system diseases, especially for epilepsy and Alzheimer’s disease.
Many EEG measurement systems are used reliably to study these
diseases, but their bulky size and the use of wet sensors make
them uncomfortable and inconvenient for users. To overcome
the limitations of conventional EEG measurement systems, a
wireless and wearable multichannel EEG measurement system
is proposed in this paper. This system includes a wireless
data acquisition device, dry spring-loaded sensors, and a size-
adjustable soft cap. We compared the performance of the
proposed system using dry versus conventional wet sensors.
A significant positive correlation between readings from wet and
dry sensors was achieved, thus demonstrating the performance of
the system. Moreover, four different features of EEG signals (i.e.,
normal, eye-blinking, closed-eyes, and teeth-clenching signals)
were measured by 16 dry sensors to ensure that they could be
detected in real-life cognitive neuroscience applications. Thus, we
have shown that it is possible to reliably measure EEG signals
using the proposed system. This paper presents novel insights
into the field of cognitive neuroscience, showing the possibility of
studying brain function under real-life conditions.
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I. INTRODUCTION

STUDYING brain function has become an important
issue in neuroscience [1]–[3]. The electroencephalo-

graphy (EEG) imaging technique is important for probing
brain activation, and it is the most widely used technique
in both basic neuroscience research [4]–[6] and clinical
applications [7], [8] With the increased use of EEG, the
requirements for EEG data acquisition devices [9] and signal
processing methods have become more stringent [10]–[12].
The EEG-based brain-computer interface (BCI) [13] system
provides a reliable and efficient means of communication
between users and computers. This system has recently been
introduced for neuroscience [5] and rehabilitation engineering
[14] applications, including motor imagery [15]–[19], drowsi-
ness detection [20], [21], and sleep analysis [22], [23].

Current EEG systems are not sized appropriately for real-
life use, as their bulky size and wiring limitations restrict the
available range of BCI experiments and the corresponding
applications. In addition, conventional wet sensors are often
used for EEG measurements, but these sensors require prepa-
ration of the skin or the application of conductive electrolytes
at the skin-sensor interface, which can be time-consuming
and uncomfortable for the user. Moreover, the conductive gel
may cause a short circuit between nearby sensors when it is
applied excessively, and in cognitive experiments, drying of
the conductive gel in wet sensors can result in poor readings.

To overcome the limitations of conventional wet sensors,
such as skin preparation, different types of dry sensors
have been developed [24]–[32]. Some of these dry sen-
sors are based on micro-electromechanical systems (MEMS)
[26], [29], [30], [32], which acquire the EEG signals from
the forehead [29]. There are several drawbacks using dry
MEMS sensors, including the high manufacturing cost and
the hard substrate, which is uncomfortable to wear. Other
types of dry sensors are made using fabric-based sensors [33],
[34], which are a more comfortable option than dry MEMS
sensors. However, fabric-based sensor measurements are not
suitable for use on hairy sites (i.e., parietal and occipital sites).
Until now, dry sensors integrated with wearable and wireless
EEG systems have not been available.
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Fig. 1. Proposed design for the 16-channel EEG system with dry sensors. (a) Dry EEG sensor with a 15 mm diameter, a 7 mm depth and 8 probes. The
travel distance of each probe is 3 mm. There is a unique rubber pad around the bottom surface of the sensors. (b) Wireless EEG acquisition system with a
preamplifier, an ADC, a microcontroller, and a wireless module. Each circuit board is 36 mm in width. (c) Size-adjustable soft cap with 16 dry EEG sensors.
The placement of each sensor is in accordance. (d) Standard 10-20 EEG system.

In this paper, a wearable, wireless 16-channel EEG system
with dry EEG sensors was developed, consisting of dry spring-
loaded sensors, a wireless acquisition system and a size-
adjustable wearable soft cap. The dry sensors can be utilized
without the application of a conductive gel, even on hairy
sites. The sensors provide good electrical conductivity for
effective acquisition of EEG signals. In contrast to traditional
EEG measurement systems that use dry sensors, the proposed
system requires reduced skin preparation and benefits from
highly accurate EEG signals. Thus, the wireless and wearable
EEG measurement system developed here has the potential to
be used in cognitive engineering applications [35].

II. MATERIALS AND METHODS

The fundamental components of the proposed system are
shown in Fig. 1(a)–(d), including the dry spring-loaded sen-
sors, a wireless EEG acquisition system, and a size-adjustable
wearable soft cap, all in accordance with the international
10–20 system for sensor placements [35].

A. Design of Dry Spring-Loaded Sensor

The dry spring-loaded sensors were designed with
eight probes, as shown in Fig. 1(a). These probes were

designed to contact the skin and maintain electrical conduc-
tion: they are coated with gold on all surfaces to establish an
electrical contact similar to that of conventional wet sensors.
Building on our design from a previous paper [36], here,
we propose the addition of a unique rubber pad around the
bottom surface of the sensors, as indicated in Fig. 1(a). This
pad can significantly reduce the pain when force is applied
on the sensors. To test and demonstrate this design, a dry
sensor composed of the probes, a spring, a plunger, a barrel,
and the rubber pad was constructed. The top of the probe
has a spheroid shape and is coated with gold to enhance the
conductivity. Gold is chemically stable, biocompatible, and
does not easily react with other substances. Moreover, gold’s
high conductivity, high resistance to oxidation and resistance
to environmental degradation (i.e., resistance to other non-
chlorinated acids) justify the extensive use of gold materials
in the electronics and biomedical industries. The spring force
of the sensor was ∼23 g, which is the level required for
EEG signal measurements on the scalp [36]. Depending on
the location of spring contact with the scalp, the spring could
either increase or decrease in length.

In contrast to conventional wet sensors, dry sensors exhibit
the electronic characteristics of electrically conductive materi-
als. They obtain high-quality signals without skin abrasion or
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Fig. 2. Assembly process for the dry sensors, including injection-molding and packaging processes.

Fig. 3. Wireless and wearable 16-channel EEG system with dry sensors.

preparation. Moreover, unlike fabric-based sensors [37], [38],
the spring-loaded sensors allow a high level of geometric
conformity between the sensor and the irregular scalp surface
due to the flexibility of the probes when applied to the scalp.
This flexibility also can increase the skin-sensor contact area
on hairy sites.

B. Manufacturing of Dry EEG Sensors

The manufacturing process for the dry EEG sensors is
shown in Fig. 2. Eight probes are inserted into a piece of thin
copper plating that is applied to the flexible base of the sensor.
After insertion, the eight probes on the copper plate are all
conductive. When force is applied to the sensor, the flexible
substrate permits high geometric conformity to the irregular

scalp surface. The spring provides buffering effects, enabling
the dry EEG sensor to contact the scalp when force is applied.
The flexibility of the spring increases the comfort when the
sensor contacts the scalp. After fabricating and inserting the
probes into the flexible substrate, an injection-molding process
is used to integrate the flexible base with several probes. The
probes with the elastic base are fixed into the plastic mold.
Similar to the thin plate and spring contact probes, the sensors
also remain flexible after the injection molding process [36].

C. EEG Acquisition Module

A typical EEG signal ranges from 10 to 100 μV
in amplitude when measured from the scalp. EEG signals
measured through sensors on the scalp are easily affected by
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Fig. 4. Testing the accuracy of the signal from the dry sensors.

artifacts indirectly related to brain activation [39], [40], such
as electromyography and electrooculography. These artifacts
are irrelevant physiological signals in this experiment and
may significantly obscure the EEG signals of interest. The
16-channel EEG acquisition module was designed to measure
true EEG signals, as shown in Fig. 1(b). The acquisition
module consists of four major units: 1) a preamplifier unit;
2) a front-end analog-to-digital converter (ADC) unit; 3) a
microcontroller unit; and 4) a wireless unit. The wireless
16-channel integrated circuit-based acquisition module
described here measures approximately 51 × 36 × 8 mm3

and can be embedded into our system. When measured
by the dry EEG sensors, EEG signals are first amplified
by the preamplifier unit (ISL28470, Intersil, USA), which
amplifies the voltage difference between the reference and
EEG electrodes and simultaneously rejects common-mode
noise (i.e., power line noise). An instrumentation amplifier
was used as the preamplifier because of its extremely high
input impedance and high common-mode rejection ratio
(CMRR). The instrumentation amplifier improves the CMRR
and amplifies the EEG signals such that microvolt-level
signals can be detected successfully.

The gain of the preamplifier unit is set to 103 V/V, and
the cut-off frequency is regulated to 0.2 Hz by a high-pass

filter. The transfer function of this preamplifier circuit is as
follows:

Vout =
(

1 + RF

RG + 1/sC

)
Vin (1)

Vout

Vin
=

(
1 + RF

RG + 1/sC

)
(2)

Vout

Vin
=

(
1+ RF

Req

)
=

(
1+ 1.5 × 106

14.7 × 103+1/jω × 47 × 10−6

)
.

(3)

The preamplifier circuit, shown in Fig. 3, has two amplifiers:
one that is connected to the input voltage (Vin) and the ground
and another that is connected to the feedback of Vout and
reference voltage (VREF). Thus, using the superposition theo-
rem [41], [42], the transfer function of the preamplifier circuit
is as shown in (1). The values of the transfer function (e.g.,
RF = 1.5 M�, RG = 14.7 K� and equivalent impedance of
47 μF) are shown in (2). Equation (2) can be reorganized into
the form of a high-pass filter with input signals of frequency ω,
as presented in (3). The high-pass filter is regulated to 0.2 Hz
and consists of a resistor (resistance RG) and a capacitor
connected in series. Therefore, the gain of the preamplifier
unit is 103 V/V [i.e., (1 + 1.5 × 106/14.7 × 103)].
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Fig. 5. Comparison of the signal quality between the dry and wet sensors. EEG measurements from (a) frontal sites (Fp1) and (b) hairy sites (P3) are shown.

The front-end ADC (ADS1298, Texas Instruments, USA)
is used to digitize the amplified EEG signal. The minimum
input voltage of the ADC ranges from −1.94 to 1.94 mV,
and the maximum ranges from −23.30 to 23.30 mV. The
least significant bit voltage is 0.286 μV. The simplified
design of this system reduces the space requirements and
power consumption compared to other systems. The front-end
ADC digitizes the analog EEG signals with a sampling
rate of 512 Hz, and a sinc filter removes the frequencies
above 128 Hz, as shown in Fig. 3. The microcontroller unit
(MSP430F5522, Texas Instruments) was used to regulate the
signal sampling rate, magnification, and noise reduction. The
processed EEG signal from the ADC was reduced to 60 Hz
noise by the microcontroller unit using a moving average.
The microcontroller unit set the default gain of the ADC unit
to 2 V/V. Therefore, the total gain of the EEG signal was set
to 206 V/V (i.e., 103 × 2 V/V). Adjusting the gain of the
ADC unit to the maximum (12 ×), the total gain of the EEG
signal is 1236 V/V (i.e., 103 × 12 V/V). After removing the
noise and amplifying the EEG signal, the EEG signal was
transmitted to the computer interface by a wireless module,
specifically a Bluetooth module (HL-MD08R-C2, HotLife

Electronic Technology Co., Ltd., Taiwan). The Bluetooth
module supports a high band-width transmission with its
high baud rate (i.e., 921 600 b/s), according to the Bluetooth
v2.1+ enhanced data rate specification. Power for the board
is supplied by a commercial 750 mAh Li-ion battery with
a 3 V output voltage, which can also supply power for the
EEG acquisition circuit and can be continuously operated for
over 12 h.

D. BCI System

Standard EEG systems have multiple channels (i.e., 64 or
128 channels) available for measuring brain activity, with
sensors organized on an elastic head cap according to the
international 10–20 [43] system. Such a cap is suitable only
if the sensors are covered with a conductive gel. To solve
this problem, an easy-to-use, size-adjustable soft cap with dry
sensors is proposed here. The EEG size-adjustable soft cap is
fitted with 16 dry sensor sites, as shown in Fig. 1(c). The cap is
composed of an elastic material, providing a more comfortable
fit and more flexibility, enabling the experimenter to place
the sensors in close contact with the user’s scalp, which is
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Fig. 6. 16-channel EEG system was used to measure EEG signals from hairy sites using the dry sensors. The data show measurements of (a) normal EEG
signals and (b) EEG signals made with the eyes closed.

typically an irregular surface. The inner layer of the cap holds
in place the universal joints that connect to the dry sensors on
the scalp. This arrangement provides multiple angles of contact
with the scalp surface, thus providing stable EEG signals. The

outer layer of the cap, comprised of elastic fiber and Velcro,
provides great flexibility for covering the heads of various
users. The 16 dry sensors are located on the cap according
to international 10–20 system, as shown in Fig. 1(d), with
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Fig. 7. 16-channel EEG system was used to measure EEG signals on hairy sites using dry sensors. The data show measurements of (a) signals during an
eye blink and (b) signals during teeth clenching.

sites Fpz, AFz, F8, F4, Fz, F3, F7, T7, T8, C4, Cz, C3, P4,
Pz, P3, and Oz included.

III. RESULTS AND DISCUSSION

The experiments presented here consisted of three major
stages. In the first stage, a validation experiment was used
to verify the signal quality, as shown in Fig. 4. EEG data
were prerecorded using a conventional EEG electrode with
a conductive gel. These data were fed into a programmable
function generator and passed through a voltage divider, thus

generating simulated human EEG signals. The simulated EEG
signals were then fed to a dry electrode, and the output data
of the dry electrode were recorded. prerecorded data were
used to provide a set of standard EEG patterns for repeated
experiments so that the performance of the dry electrodes
could be objectively evaluated [9], [36], [38]. Therefore, the
physiological meaning of the prerecorded EEG data was not
interpreted except to validate the proposed dry sensors. The
aim of this validation process was to identify any distortion
caused by the dry EEG sensor during EEG measurements.
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Fig. 8. Results showing the difference between the normal state and the eyes closed state. (a) Subject at rest, showing normal EEG signals from the O1 and
O2 channels. (b) Subject with the eyes closed, showing alpha activity in the EEG signal measured from the O1 and O2 channels.

In the second stage, a user sat comfortably in front of a monitor
wearing both dry and wet sensor simultaneously. The corre-
lation between the conventional wet EEG electrode and the
dry EEG sensor was investigated. Finally, after demonstrating
the precision of the signals measured by the dry EEG sensors
through the circuit, the newly developed wireless and wearable
EEG cap with 16 dry sensors was used to measure a normal
EEG, an EEG with the eyes closed, an EEG during an eye
blink, and an EEG during teeth clenching, without the use of
the conductive gels or skin preparation.

Fig. 4 shows the design of the validation experiment to
test the signal quality of the dry sensors. EEG signals were
prerecorded using wet electrodes as described above and then
transmitted to the data acquisition device. The secondary
EEG signals that were recorded by the dry sensors were also
transmitted, and the correlation between the signals from the
dry and wet sensors was determined. The prerecorded EEG

signals and the signals from the dry EEG sensor were highly
correlated at 96.83%.

Fig. 5(a) shows the results of the simultaneous EEG
measurements made using both dry and wet sensors located
on the forehead (site Fp1). The EEG signals recorded by
the wet and dry sensors were highly correlated at 95.53%.
In addition to this correlation, the data show that the signal
quality from the dry sensor and readout circuit was stable
and reliable compared to the wet sensor. Fig. 5(b) shows the
results of EEG measurements made using the wet and dry
sensors on a hairy site (P3). The correlation of 92.88% on a
hairy site is significant.

According to these experimental results, the 16-channel dry
sensor system described here can be used for measuring EEG
signals with high signal quality, especially on hairy sites.
We next measured a series of EEG signals: normal signals,
eye-blink signals, signals with the eyes closed, and signals
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due to teeth clenching. The normal EEG signals that were
measured by the proposed system are shown in Fig. 6(a). The
EEG signals could be observed from frontal (i.e., Fpz, AFz,
F8, F4, Fz, F3, and F7), temporal (i.e., T7 and T8), central
(i.e., C4, Cz, and C3), parietal (i.e., P4, Pz, and P3), and
occipital (i.e., Oz) brain regions. Due to the scaling of the
plot in the figure, the signal variations appear relatively small,
but the raw EEG data were clear and reliable. EEG signals
with the eyes closed were also measured by the proposed
system, as shown in Fig. 6(b), and were detectable at the
frontal sites (i.e., Fpz, AFz, F8, F4, Fz, F3, and F7). In this
measurement, the alpha wave was larger. Thus, the signals
obtained from the Fpz, AFz, F8, F4, Fz, F3, and F7 sites
were more significant than those obtained from the temporal
(i.e., T7 and T8), central (i.e., C4, Cz, and C3), parietal
(i.e., P4, Pz, and P3), and occipital (i.e., Oz) areas. Fig. 7(a)
shows the 16-channel EEG-system measurement of signals
during an eye blink. Because the motion of blinking occurs
physically near the frontal area, the signals from blinking eyes
are significant in the frontal zone (i.e., Fpz, AFz, F8, F4,
Fz, F3, and F7). Therefore, during an eye blink, the signals
were more obvious on the frontal site relative to other sites
(i.e., central, temporal, parietal, and occipital). Fig. 7(b) shows
the signal due to teeth clenching, during which the whole
head (i.e., frontal, central, temporal, parietal, and occipital) had
significant signal variations. Fig. 8(a) and (b) shows the power
spectra of the EEG data collected by the dry sensors in this
paper, showing characteristic low frequency bands (1–30 Hz).
The EEG activity from a subject at rest [Fig. 8(a)] shows the
activated reactions caused by holding the eyes open for a few
seconds. Because the general alpha frequency band of the EEG
signal is distributed between 8 and 12 Hz, the experimental
results in Fig. 8(b) fit the trend in the alpha domain.

Here, we have shown positive results from measuring EEG
signals with the proposed system and its dry sensors. Our
experimental results have shown that dry sensors are capable
of recording EEG signals via the EEG measurement system.
The signal correlation between measurements performed with
dry and wet sensors at the same locations was high. These
results are significant with respect to the EEG measurement
system because the dry sensors can be utilized without using
conductive gel on hairy sites. In addition, these sensors can
effectively acquire EEG signals (i.e., normal, closed eyes,
blinking, and teeth-clenching signals) in frontal (i.e., Fpz, AFz,
F8, F4, Fz, F3, and F7), temporal (i.e., T7 and T8), central (i.e.,
C4, Cz, and C3), parietal (i.e., P4, Pz, and P3), and occipital
(i.e., Oz) areas. In contrast to traditional EEG measurement
systems, the use of dry sensors allows users to feel more
comfortable and experiments to be performed more quickly.

IV. CONCLUSION

In this paper, a wearable EEG system with dry spring-loaded
sensors is proposed to transfer the EEG signals wirelessly to
the computer. The developed system contains a size-adjustable
soft cap, dry spring-loaded sensors, and a 16-channel acquisi-
tion circuit. The experimental results show that the proposed
EEG measurement system with dry sensors can provide good

signal quality on hairy sites compared to conventional wet
sensors. Unlike the conventional system with wet sensors, the
proposed system can be used to measure EEG signals without
the use of conductive gel and skin preparation processes. Due
to the soft substrate in the dry sensors and the spring-loaded
probes, the design ensures that the dry sensors fit on the
scalp tightly. The soft cap is suitable for different head sizes
(i.e., small, medium, or large) for basic cognitive experiments.
The quality of the EEG signal measured with the dry sensors
approached that of the signal quality from the wet sensors.
Thus, researchers can use the EEG system with dry sensors
developed here to reliably investigate human cognitive states
in real-life conditions.
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