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Abstract Schrödinger equation for harmonium and rela-

ted models may be transformed to the biconfluent Heun

equation. The solubility of this equation and its applica-

tions in quantum chemistry are briefly discussed.
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1 Introduction

The properties of exact solutions of Schrödinger equation

for the hydrogen atom and harmonic oscillator were of

fundamental importance for the formulation of theoretical

models of atoms, molecules and solids. The search for

other exactly solvable potentials resulted in the develop-

ment of several very general methods including the

factorization method of Hull and Infeld [1], the super-

symmetric formulation of quantum mechanics [2], and

closely linked to it concept of the shape-invariant potentials

[3]. In general, the exact wavefunctions corresponding to

these solutions were expressed in terms of some orthogonal

polynomials multiplied by factors deduced from the form

of the potential and from the asymptotic behavior of the

underlying differential equation at various limits (0 and1
in the case of spherical systems). It was also shown (see,

e.g., [2]) that for all known shape-invariant potentials and,

consequently, for most of exactly solvable equations, the

orthogonal polynomials are special cases of either conflu-

ent hypergeometric function 1F1ða; c; xÞ [4] or hypergeo-

metric function 2F1ða; b; c; xÞ [5, 6].

Endeavors to analytical solving quantum-mechanical

three-body problem have been taken since the earliest years

of quantum theory [7–9] and continue until now [10–16].

Bethe and Salpeter in their ‘‘Quantum Mechanics of One-

and Two-electron Atoms’’ state that The differential equa-

tion for the two-electron system is not separable. Unlike the

solutions for the hydrogen atom, the solutions for the

eigenfunctions and energy eigenvalues cannot be expressed

in closed analytic form [17]. This opinion seems to be not a

statement of a rigorous mathematical fact but rather an

expression of frustrations associated with numerous futile

attempts to achieve this task. Though in many aspects the

analytical theory of the helium atom reached significant

success, it is commonly recognized as a rather unrealistic

direction of development. Only a marginal minority of

quantum chemists, including the present authors, believes

that the analytical approach is promising and may lead to a

robust and accurate quantum chemical calculation protocol

for many-electron atoms and molecules.

In parallel to the central problem of the helium atom—a

system of three quantum particles interacting via Coulomb

forces—a search for exactly solvable three-particle prob-

lems led to several very interesting discoveries. Probably

the most important finding was the so-called Hooke atom

also referred to as harmonium. It was recognized in 1962

by Kestner and Sinanoğlu that the Schrödinger equation

describing two electrons interacting by the Coulomb forces
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and confined in a central harmonic (i.e., quadratic or par-

abolic) potential is separable [18]. The problem was shown

quasi-solvable analytically six years later by Santos [19]. In

quasi-exactly solvable systems, a single solution express-

ible in terms of a polynomial multiplied by asymptotic

factors may be obtained only for some specific values of

constants defining the potential. The results of Santos

remained unnoticed for several decades, and the same

system was rediscovered a quarter of a century later by

Taut [20], becoming a subject of numerous studies (see,

e.g., [19–24]). Some related systems, with modified

potentials, e.g., containing an additional linear term, were

also investigated and applied to the description of a variety

of phenomena [25–28].

Independently of the developments motivated by prob-

lems in quantum mechanics, mathematical studies of sec-

ond-order linear ordinary differential equations resulted

[29, 30] in formulations going far beyond the classical

equations belonging to the hypergeometric class [4–6]. To

the most interesting and hardly known in quantum chem-

istry equations belongs the class of the Heun equations [31]

known and studied since 125 years. A relatively recent

collection of works on this subject appeared in the pro-

ceedings of the Centennial Workshop on Heun’s Equation

[32]. Important monographs on this and related subjects

have been published by Slavyanov and Lay [29] and by

Ronveaux [30]. Among equations of the Heun class, the

most relevant in the context of harmonium is the bicon-

fluent Heun equation (BHE). It describes harmonium and

its more general form with an additional linear term. A

discussion of the relations between the BHE and the

Schrödinger equation for harmonium is the main subject of

this paper.

Hereafter, we use the following notation conventions: A

sans serif symbol (e.g., n; l; k) always corresponds to a

quantum number while the standard one j; k; l;m; n to an

integer index; T stands for a vector with elements tj;

ðsÞm ¼ sðsþ 1Þðsþ 2Þ � � � ðsþ m� 1Þ ð1Þ

is the Pochhammer symbol;

ðsÞm;a ¼ sðsþ aÞðsþ 2aÞ � � � sþ ðm� 1Það Þ ð2Þ

is the Pochhammer a-symbol (usually referred to in the lit-

erature [33] as the Pochhammer k-symbol); bac is the floor

function, i.e., the largest integer less than or equal to a.

2 Harmonium

Harmonium may be defined as a quantum three-body

problem described by the Schrödinger equation with har-

monic interactions between particles 1� 3 and 2� 3 and

the Coulombic interaction between particles 1� 2. The

problem is separable to three 3D equations also if the 1� 2

interaction is described by an arbitrary potential Vðr12Þ
which depends on the distance between the two particles

only [28]. The first equation corresponds to the free motion

of the center of mass. The second one describes the

oscillations of particle 3 and the center of mass of particles

1 and 2 (the spherical harmonic oscillator equation). The

third equation reads

hðrÞUnlml
ðrÞ ¼ EnlUnlml

ðrÞ ð3Þ

where r ¼ r1 � r2,

hðrÞ ¼ pðrÞ2

2l
þ VðrÞ þ l x2

2
r2; ð4Þ

r ¼ r12 ¼ jr1 � r2j; l is the reduced mass of particles 1 and

2 and x is a constant which depends on the parameters

characterizing the harmonic interactions between the par-

ticles (see, e.g., [28] for details). Eq. (3) is spherically

symmetric, and its solutions can be written as

Unlml
ðrÞ ¼ /nlðrÞ

r
Ylml
ðr̂Þ; ð5Þ

where /nlðrÞ is the radial part of the wavefunction and Ylml

denote the usual spherical harmonics in 3D.

Assuming

VðrÞ ¼ f
r
þ b r þ c; ð6Þ

where f; b and c are constants, and setting b ¼ �relx2;

c ¼ r2
elx2=2, where re is a new constant introduced to

allow for an easy physical interpretation of the potential,

we may write the radial Schrödinger equation as

� 1

2l
d2

dr2
þ lðlþ 1Þ

2lr2
þ f

r
þ l x2

2
r � reð Þ2�Enl

� �
/nlðrÞ ¼ 0: ð7Þ

Here, we see this equation as a result of exact separation of a

3-particle Schrödinger equation. Alternatively it can be

derived for a system of two particles interacting by the Cou-

lomb force and confined in a parabolic external potential.

If re ¼ 0, then the last equation describes harmonium

[19, 20, 24]. For re 6¼ 0, it corresponds to a harmonium-like

system in which the minimum of the parabolic potential is

shifted from r ¼ 0 to r ¼ re. This system, discussed in

detail by Ghosh and Samanta [26, 27], is referred to as

shifted harmonium. If x ¼ 0 and f\0, the equation

describes two interacting particles with opposite electric

charges (e.g., positronium or hydrogen atom) [24]. For x ¼
0 and f[ 0, it describes scattering of two particles with the

same sign of the charge. Finally, if f ¼ 0, we have a

spherical harmonic oscillator. For x[ 0, independently of

the values of the remaining parameters, all energies derived

from Eq. (7) are discrete. On the other hand, if x ¼ 0 and

f[ 0, then there are no discrete energy levels.
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After the substitutions

r ¼
ffiffiffiffiffiffiffiffiffiffi
2lx

p
r; re ¼

ffiffiffiffiffiffiffiffiffiffi
2l x

p
re; ð8Þ

Eq. (7) transforms to

� d2

dr2
þ kðk� 2Þ

4r2
þ

ffiffiffiffiffiffi
2l
x

r
f
r
þ r� reð Þ2

4
� Enl

x

" #
/nlðrÞ ¼ 0:

ð9Þ

where

k ¼ 2lþ 2 ð10Þ

is a quantum number used hereafter in parallel with l ¼
k=2� 1 in order to simplify the notation [34]. Square-

integrable solutions of Eq. (9) may be expressed as

/nlðrÞ� r k=2 e�ðr�reÞ2=4 P k
n ðrÞ: ð11Þ

The functions P k
n ðrÞ are square integrable and orthonormal

with respect to the weight function (measure)

wðrÞ ¼ rke�ðr�reÞ2=2: ð12Þ

This means that

Z1

0

P k
n ðrÞP k

n0 ðrÞwðrÞ dr ¼ C dn;n0 ; ð13Þ

where C is a positive constant. Since /nlðrÞ� r k=2 for r!
0;P k

n ð0Þ is finite. Therefore, without any loss of generality,

we set P k
n ð0Þ ¼ 1 as the normalization condition.

The equation for P k
n directly results from Eqs. (9) and

(11) and reads

d2

dr2
þ k

r
þ re � r

� �
d

dr
þ E k

n þ
kre � 2s

2r

� �� �
P k

n ¼ 0;

ð14Þ

where

s ¼
ffiffiffiffiffiffi
2l
x

r
f ð15Þ

and the eigenvalue E k
n ðre; sÞ is related to the energy of the

system as

Enl ¼ x E k
n þ lþ 3

2

� �
: ð16Þ

The eigenfunctions

P k
n ðrÞ ¼ P k

n re; s; E k
n ðre; sÞ; r

� �
ð17Þ

are square integrable in the sense of Eq. (13). The quantum

number n ¼ 0; 1; 2; . . . labels all consecutive eigenvalues

and eigenfunctions corresponding to fixed k; re and s.

Equation (14) has been extensively studied by two

independent communities. On one hand, the existence of

simple polynomial solutions of this equation, discovered

in connection with studies on electron correlation, moti-

vated numerous works in the community of quantum

chemists [18–28]. However, this equation is known in

mathematics since more than a century as the biconfluent

Heun equation and its properties were studied from both

purely mathematical perspective [29, 30, 35–38] and in the

context of its applications in different areas of physics

[39–41]. Very recently a brief review on its physical

applications has been published by Hortaçsu [42]. An

analysis of its application to modeling the behavior of two

interacting electrons in a uniform magnetic field and a

parabolic confinement was published several years ago by

Kandemir [34].

3 The traditional approach

In the traditional approach, motivated by the studies on

electron correlation problems, one looks for the polynomial

solutions of Eq. (14). To this aim, one expresses a solution

of Eq. (14) as a power series of r [19, 20]

P k
n re; s; E; rð Þ ¼

X1
m¼0

ak
m re; s; Eð Þ rm; ð18Þ

and then formulates conditions under which the expansion

terminates, i.e., P k
n is a polynomial. The normalization

P k
n ð0Þ ¼ 1 implies ak

0 ¼ 1.

The substitution of the expansion (18) to Eq. (14) leads

to the following three-term recurrence relation

B0ak
0 þ C1ak

1 ¼ 0;

Amak
m þ Bmþ1ak

mþ1 þ Cmþ2ak
mþ2 ¼ 0;

m ¼ 0; 1; 2; . . .

ð19Þ

with

Am ¼ E �m; Bm ¼ ðmþ k=2Þ re� s; Cm ¼ mðmþ k� 1Þ:
ð20Þ

The recurrence relation (19) generates a p-th order poly-

nomial if it terminates at ak
p, i.e., if ak

p 6¼ 0 but

ak
pþ1 ¼ ak

pþ2 ¼ � � � ¼ 0. This condition may by satisfied if

Ap ¼ 0 (i.e. E ¼ p) and ak
m;m¼ 0;1; . . .;p fulfill the set of

homogeneous equations (19) for m¼ 0;1;2; . . .;p. This

implies that [Eq. (16)]

Epl ¼ x pþ lþ 3

2

� �
ð21Þ
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and

Wpþ1ðAp;B;CÞ ¼

B0 C1 0 � � � 0 0 0

A
p
0 B1 C2 � � � 0 0 0

0 A
p
1 B2 � � � 0 0 0

..

. ..
. . .

. . .
. ..

. ..
.

..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 � � � A
p
p�2 Bp�1 Cp

0 0 0 � � � 0 A
p
p�1 Bp

																						

																						

¼ 0;

ð22Þ

where A
p ¼ fAp

0;A
p
1; . . .;Ap

p�1g;B ¼ fB0;B1; . . .;Bpg; C ¼
fC1;C2; . . .;Cpg;Ap

m ¼ p� m.

The determinant depends on s; re and k. Since k is fixed

by the selection of a specific angular momentum, Eq. (22)

imposes a relation s
p
j ¼ up

j ðreÞ; j ¼ 1; 2; . . .; pþ 1, between

s and re. Thus, for a given degree p of the polynomial and

for given re, we have a discrete set of pþ 1 values of s for

which the polynomial solutions exist. The wavefunctions

derived from this procedure are probably the only ones

known in the literature in which the r12 dependence

resulting from the Coulomb interaction between electrons

may be expressed exactly in a closed form [43].

Let us note that for given fs; re; kg, there exists a

complete orthonormal set of solutions of Eq. (14). If there

exists p for which the parameters fulfill Eq. (22), then for

one of these solutions E ¼ p and this solution is a poly-

nomial of degree p.

4 Biconfluent Heun equation

In the mathematical literature, the BHE in its canonical

form is usually expressed as [30, 35, 36]

x y00 þ 1þ a� b x� 2x2
� �

y0

þ c� a� 2ð Þ x� 1

2
dþ bð1þ aÞ½ �

� �
y ¼ 0: ð23Þ

It is a homogeneous, linear, second-order, differential

equation defined in the complex plane. In the two-dimen-

sional space of its particular solutions, one can choose a

solution which is finite at x ¼ 0. Then the second linearly

independent solution behaves at x ¼ 0 as x�a. The solution

finite at x ¼ 0 is usually denoted Nða; b; c; d; xÞ and refer-

red to as the biconfluent Heun function. It is usually

expressed as [30]

Nða; b; c; d; xÞ ¼
X1
m¼0

Amða; b; c; dÞ
ð1þ aÞm

xm

m!
; ð24Þ

where

A0 ¼ 1;

A1 ¼
1

2
dþ bð1þ aÞð Þ;

Amþ2 ¼ ðmþ 1Þbþ 1

2
dþ bð1þ aÞ½ �

� �
Amþ1

� ðmþ 1Þðmþ 1þ aÞðc� 2� a� 2mÞAm:

ð25Þ

The substitutions

x ¼ r=
ffiffiffi
2
p
2 h0;1i;

a ¼ k� 1 [ 0;

b ¼ �
ffiffiffi
2
p

re;

c ¼ 2 E þ kþ 1;

d ¼ 2
ffiffiffi
2
p

s;

ð26Þ

with all parameters real and s� 0; re� 0; E � 0, restrict the

domain of the equation to the real semiaxis and transform

Eq. (23) to Eq. (14). In the real semiaxis, we can set

Nða; b; c; d; xÞ ¼ P k; re; s; E; rð Þ ð27Þ

where P k; re; s; E; rð Þ is a formal solutions of Eq. (14)

which may be expressed as in Eqs. (18) and (24). By

construction, the normalization P k; re; s; E; 0ð Þ ¼ 1 is

retained. However, E is an independent parameter, and no

boundary conditions have been imposed for r!1. Using

the mapping between fa; b; c; dg and fk; re; s; Eg defined

by Eqs. (26), one can easily show the equivalence of the

recurrence relations (25) and (19). In particular, comparing

Eqs. (19), (24) and (26), we get

ak
m re; s; Eð Þ ¼

Am k� 1;�
ffiffiffi
2
p

re; 2 E þ kþ 1; 2
ffiffiffi
2
p

s

 �

2m=2 m! ðkÞm
:

ð28Þ

The asymptotic behavior of Nða; b; c; d; xÞ for x!1 is

given by [35, 36]

Nða; b; c; d; xÞ� Kða; b; c; dÞ x�ðcþ2þaÞ=2eb xþx2

; ð29Þ

where Kða; b; c; dÞ is a constant. Using (26) and (27), we

can rewrite Eq. (29) in the limit r!1 as

P k; re; s; E; rð Þ�K k; re; s; Eð Þr�ðEþkþ1Þeðr�reÞ2=2: ð30Þ

By an inspection of Eqs. (12) and (13), we can see that

P k; re; s; E; rð Þ is not square integrable, unless

K k; re; s; Eð Þ ¼ 0: ð31Þ

The last equation plays the role of the quantization con-

dition which determines the eigenvalues. If E ¼ E k
n ðre; sÞ is

a root of Eq. (31), then

Enl ¼ x E k
n ðre; sÞ þ lþ 3

2

� �
ð32Þ
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and

P k; re; s; E k
n ðre; sÞ; r

� �
¼ P k

n ðrÞ; ð33Þ

are the square-integrable solutions of Eq. (14).

The structure of expansion (18) for two electrons in a

uniform magnetic field was studied by Kandemir [34]. In

particular, he reduced the recurrence relation to a closed-

form expression. Here, we present a more general analysis.

In this derivation, a graphical approach, based on the ideas

originally developed by Isaiah Shavitt in his graphical

unitary group approach (GUGA) [44, 45], proved to be

very useful.

4.1 Expansion coefficients

The recurrence relation (19) may be rewritten as

ak
m ¼ pm�1 ak

m�1 þ tm�2 ak
m�2; ð34Þ

where

pm ¼ �
Bm

Cmþ1

; tm ¼ �
Am

Cmþ2

: ð35Þ

Equation (34) may be represented by a diagram which

facilitates an easy derivation of a closed-form formula for

the coefficients of the expansion (18). It also helps to better

understand the structure of this expansion and shows

interrelations between specific coefficients. The diagram,

corresponding to m ¼ 6, is presented in Fig. 1. In order to

express a specific coefficient, say ak
m, in terms of pj; j ¼

0; 1; . . .;m� 1 and tj; j ¼ 0; 1; . . .;m� 2, one has to start

from the uppermost node corresponding to ak
0 and move to

the lower levels of the graph along arcs taking all paths

connecting to the node ak
m, visiting each level only once.

The contribution from a given path is equal to the product

of quantities assigned to the arcs. In the right panel of

Fig. 1, these contributions are framed by the square boxes.

The value of ak
m is equal to the sum of contributions from

all paths. The left panel shows the directions according to

which we move along the diagram and, in the nodes, gives

the numbers of paths linking this specific node with the one

corresponding to ak
0 (i.e., the number of terms in the

expression for a given coefficient ak
m). The structure of the

graph is self-explanatory, and its extension to larger values

of m is obvious.1

Using the graph, one can easily write explicit expression

for the coefficients ak
m, with ak

0 ¼ 1 set by the normalization

condition. Then, we have

ak
1 ¼ p0;

ak
2 ¼ p1p0 þ t0;

ak
3 ¼ p2p1p0 þ p2t0 þ p0t1;

ak
4 ¼ p3p2p1p0 þ p3p2t0 þ p3p0t1 þ p1p0t2 þ t2t0; etc:

ð36Þ

By introducing

Qm ¼
Ym�1

j¼0

pj; Rj ¼
tj

pjpjþ1

; j ¼ 0; 1; 2; . . .;m� 2: ;

ð37Þ

we can rewrite Eqs. (36) as

ak
m re; s; Eð Þ ¼ Qm

Xbm=2c

n¼0

Sm
n ; ð38Þ

where

Sm
0 ¼ 1;

Sm
n ¼

Xm�2n

j1¼0

Rj1

Xm�2n

j2¼j1

Rj2þ2 � � �
Xm�2n

jn¼jn�1

Rjnþ2ðn�1Þ; n�bm=2c

ð39Þ

a
0

a
1

p
0

p
1

a
2

a
3

a
4

a
5

a
6

p
3

p
4

p
5

t0

t2

t
4

t1

t3

p
2

1

1

2

3

5

13

8

Fig. 1 Graphical representation of three-step recurrence relations

exemplified by Eq. (19). In the left panel, the ways of constructing

paths in the graph and the number of terms in each ak
m;m ¼ 0; 1; . . .; 6

are shown. In the right panel, the arc values are given. See text for

details

1 One can easily see that the recurrence defined by Eq. (34) is

structurally identical to the recurrence defining the Fibonacci

numbers. Indeed, it is enough to set pm ¼ tm ¼ 1 for all m and

initialize this sequence as ak
0 ¼ 1. The sequence of the Fibonacci

numbers may be produced by the diagram shown in the left panel of

Fig. 1 and the number of summands needed to compute the

coefficient ak
m is equal to the Fibonacci number Fm.
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The last equations may be expressed in a compact form

as

Sm
0 ¼ 1;

Sm
n ¼

Yn

l¼1

Xm�2n

jl¼jl�1

Rjlþ2ðl�1Þ; j0 ¼ 0; n�bm=2c:
ð40Þ

Let us note that the product represents n nested sums and is

non-commutative.

By the substitution of the explicit expressions (35), (37)

and (20), we get

Qm ¼ ð�1Þm
Ym�1

j¼0

Bj

Cjþ1

¼
ðkre=2� sÞm;re

m! ðkÞm
: ð41Þ

Similarly,

Rj ¼ �
Aj Cjþ1

Bj Bjþ1

¼ � ðE � jÞðjþ 1Þðjþ kÞ
s� ðjþ k=2Þ reð Þ s� ðjþ k=2þ 1Þ reð Þ

ð42Þ

Note that Eqs. (34)–(40) are valid for an arbitrary three-

term recurrence relation, i.e., for all forms of the Heun

equation.

Three term recurrences are fulfilled by many quantities

related to BHE. In particular, Sm fulfill the following

recurrence:

Sm
0 ¼ 1; Sm

n ¼ Sm�2
n�1 Rm�2 þ Sm�1

n : ð43Þ

Iterating this relation, we arrive at

Sm
n ¼

Xm�2

j¼bðn�1Þ=2c
S

j
n�1Rj: ð44Þ

The iteration terminates at j ¼ bðn� 1Þ=2c because

S2n�1
n ¼ 0. A three-term recurrence applies also to the

determinant Wp. If we set W0 ¼ 1 then, using the Laplace

formula, we get:

W1 ¼ B0W0;

W2 ¼ B1W1 � A0C1W0;

Wm ¼ Bm�1Wm�1 � Am�2Cm�1Wm�2:

ð45Þ

The last equation becomes identical with Eq. (34) if we

substitute

ak
m re; s; Eð Þ ¼ ð�1Þm WmðA;B;CÞ

C1C2 � � �Cm

¼ ð�1Þm WmðA;B;CÞ
m!ðkÞm

;

ð46Þ

where A ¼ fA0;A1; . . .;Am�2g. As one can easily see,

ð�1Þm WmðA;B;CÞ
C1C2 � � �Cm

¼ Vmð�T;PÞ; ð47Þ

where

Vmþ1ð�T;PÞ ¼

p0 1 0 � � � 0 0 0

�t0 p1 1 � � � 0 0 0

0 � t1 p2 � � � 0 0 0

..

. ..
. . .

. . .
. ..

. ..
.

..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 � � � � tm�2 pm�1 1

0 0 0 � � � 0 � tm�1 pm

																		

																		

¼ 0;

ð48Þ

and T ¼ ft0; t1; . . .; tm�1g;P ¼ fp0; p1; . . .; pmg. Then, the

expansion coefficients are given by

ak
m re; s; Eð Þ ¼ Vmð�T;PÞ; m ¼ 0; 1; 2; . . .; ð49Þ

with V0 ¼ 1, and the recurrence relations (34) may be

rewritten as2

Vm ¼ pm�1Vm�1 þ tm�2Vm�2: ð50Þ

Let us define

Zl ¼
Xl

m¼0

Vmð�T;PÞ rm: ð51Þ

Since

Vlþ1 rlþ1 ¼ Zlþ1 � Zl; ð52Þ

using Eq. (50), we get

Zlþ1 ¼ Zl 1þ pl rð Þ � Zl�1 pl � tl�1 rð Þr� Zl�2 tl�1 r2;

ð53Þ

where Z0 ¼ 1 and Zq ¼ 0 if q\0.

4.2 Harmonium: the special case of re ¼ 0

In the case of harmonium re ¼ 0, i.e., the minimum of the

parabolic potential is located at r ¼ 0. In this case, the s-

dependence of the equations is much simpler since Bm ¼
�s for all values of m. As a consequence,

Rj ¼ �
qj

s2
; j ¼ 0; 1; 2; . . .;m� 2; ð54Þ

and

Sm
n ¼ ð�1Þn rm

n

s2n
; n�bm=2c; ð55Þ

where

qj ¼ AjCjþ1 ¼ ðE � jÞðjþ 1Þðjþ kÞ; j¼ 0;1;2; . . .;m� 2;

ð56Þ

and

2 A large number of relations fulfilled by determinants, including the

ones used in this work, may be found in Refs. [46, 47].
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rm
0 ¼ 1;

rm
n ¼

Yn

l¼1

Xm�2n

jl¼jl�1

qjlþ2ðl�1Þ; j0 ¼ 0; n�bm=2c:
ð57Þ

Now, Eq. (38) may be rewritten as

ak
m 0; s; Eð Þ ¼ sm

m!ðkÞm

Xbm=2c

n¼0

ð�1Þn rm
n

s2n
ð58Þ

with the dependence on s explicitly shown. In the special

case of s ¼ 0, corresponding to the spherical harmonic

oscillator, the only nonzero contribution to Eq. (58) is

given by the term with n ¼ m=2. Thus, non-vanishing

coefficients correspond to m ¼ 2j; j ¼ 0; 1; 2; . . . and

ak
2j 0; 0; Eð Þ ¼

r2j
j

ð2jÞ!ðkÞð2jÞ
; ð59Þ

where, according to Eqs. (56) and (57),

r2j
j ¼

Yj�1

n¼0

q2n ¼
Yj�1

n¼0

ðE � 2nÞð2nþ 1Þð2nþ kÞ: ð60Þ

Combining Eqs. (59) and (60), we get

ak
2j 0; 0; Eð Þ ¼

ð�1Þjð�EÞj
j! 2j ðkþ 1Þ=2ð Þj

: ð61Þ

Equation (55) and the recurrence relations (43) and (44)

imply similar recurrences for rm
n :

rm
0 ¼ 1; rm

n ¼ qm�2 rm�2
n�1 þ rm�1

n ; ð62Þ

and

rm
n ¼

Xm�2

j¼bðn�1Þ=2c
rj

n�1 qj: ð63Þ

Equation (46) with re ¼ 0 is equivalent to Eq. (58) and,

depending on the circumstances using one or another may be

more convenient. In particular, comparing Eqs. (46) and (58), we

get the expansion of Wm, with re ¼ 0, in terms of powers of s:

WmðA;B;CÞ ¼
Xbm=2c

n¼0

ð�1Þnþm rm
n sm�2n: ð64Þ

The recurrence relation (62) substituted to the last equation

results in Eqs. (45).

5 Odds and ends

5.1 Expansion at þ1

One can also expand solutions of BHE at þ1 and obtain

the so-called recessive Thomé solutions [29]. The recessive

Thomé solution (Eq. (3.1.14) of [29]) is given by

P½1�ðrÞ ¼ rE
X1
m¼0

bmr�m: ð65Þ

with b0 ¼ 1 and

~B0b0 þ ~C1b1 ¼ 0;

~Ambm þ ~Bmþ1bmþ1 þ ~Cmþ2bmþ2 ¼ 0;

m ¼ 0; 1; 2; . . .

ð66Þ

where

~Am ¼ ðE �mÞðE �mþ k� 1Þ; ~Bm ¼�sþ reðE þ k=2�mÞ;
� ~Cm ¼m: ð67Þ

An analysis similar to the one leading to Eq. (46) results in

the following closed-form expression for the expansion

coefficients:

bm ¼
ð�1Þm

m!
Wmð ~A; ~B; ~CÞ: ð68Þ

5.2 Some special cases

The diagram representing three-term recurrence relations

may also illustrate the termination of the pertinent expan-

sions. For example, let ak
n 6¼ 0 for n\3, but ak

3 ¼ t1ak
1þ

p2ak
2 ¼ 0. If we wish to construct a solution for which ak

m ¼
0 if m� 3 then also ak

4 should vanish. But this is possible

only if t2 ¼ 0. If two consecutive coefficients (in this

example ak
3 and ak

4) vanish, all remaining ones with indices

larger than 4 also vanish. The condition ak
3 ¼ 0 is referred

to as the closing condition and is equivalent to Eq. (22). In

general, if the expansion terminates at ak
p, i.e., ak

p 6¼ 0 but

ak
pþ1 ¼ ak

pþ2 ¼ � � � ¼ 0, then

tp ¼ 0 ð69Þ

and

ak
pþ1 ¼

ð�1Þpþ1

ðpþ 1Þ! ðkÞpþ1

Wpþ1ðA;B;CÞ ¼ 0 ð70Þ

The first of these conditions implies

Ap ¼ E � p ¼ 0; ð71Þ

which is equivalent to Eq. (21). The second condition reduces

to Wpþ1 ¼ 0. The following examples, corresponding to

cases known from the literature, illustrate the procedure. In

order to simplify the formulas, we set re ¼ 0 and l ¼ 1=2.

• p ¼ 0: In this case, the closing condition reduces

to B0 ¼ �s ¼ 0. Then, the solution corresponds to

p ¼ 0 states of the spherical harmonic oscillator.

Pk
0ðrÞ ¼ 1;E ¼ x ðkþ 1Þ=2, and x is an arbitrary

positive number.
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• p ¼ 1: In this case Pk
1ðrÞ ¼ 1þ B0r ¼ 1� sr. The

closing condition

B0B1 � A0C1 ¼ s2 � k ¼ 0 ð72Þ

leads to

x ¼ f2

k
: ð73Þ

and, consequently,

E ¼ f2 kþ 3

2k
: ð74Þ

Parameter f is arbitrary but x is defined by Eq. (73). In

the case of electron-electron interaction f ¼ 1 and,

thus, x ¼ 1=k and E ¼ ðkþ 3Þ=ð2kÞ.

5.3 Harmonic oscillator

The BHE transforms to the spherical harmonic oscillator

equation if s ¼ 0 and re ¼ 0. In this case pm ¼ 0 and the

three-term recurrence (34) simplifies to ak
m ¼ tm�2ak

m�2. An

inspection of Fig. 1 shows that the only nonzero coeffi-

cients are ak
0 ¼ 1; ak

2 ¼ t0; a
k
4 ¼ t0t2; . . .; ak

2n ¼ t0t2. . .t2n�2.

The condition for the termination of the recurrence is the

quantization condition and if ak
2n is the last term of the

expansion then n ¼ n, where n is the principal quantum

number, and Ek
n ¼ 2n, i.e., Enl ¼ x 2nþ ðkþ 1Þ=2ð Þ. The

explicit form of the expansion coefficients may be easily

obtained using Eqs. (35). We get

ak
2j ¼

2�j ð�nÞj
j! ðkþ 1Þ=2ð Þj

: ð75Þ

One can see that this expression may also be obtained from

Eq. (61) upon the substitution E ¼ 2n. Thus,

Pk
nðrÞ ¼ 1F1 �n;

kþ 1

2
;
r2

2

� �
; ð76Þ

as it should be for the spherical harmonic oscillator (see,

e.g., [48]).

6 Several remarks on the non-polynomial solutions

As it was already mentioned, the family of the Heun

equations, including the BHE, was studied by the mathe-

maticians since more than a century [29, 30, 35–38]. A

very rich bibliography of the texts published on the Heun

functions throughout the years has been collected in the

framework of The Heun Project: Heun functions, their

generalizations and applications created at the University

of Sofia [49]. In this section, some general results derived

in the mathematical literature are briefly discussed and

transformed to a form suitable for quantum chemical

implementations.

6.1 Some general properties BHE

The constant Kða; b; c; dÞ in Eq. (29) which determines the

asymptotic behavior of Nða; b; c; d; xÞ for x!1 is given

by [35, 36]

Kða; b; c; dÞ ¼ Cða; cÞJk
aþ c

2
; b;

3a� c
2

; dþ b
c� a

2

� �
;

ð77Þ

where

Cða; cÞ ¼ Cð1þ aÞ
C a�c

2

� �
C aþc

2
þ 1

� � ; ð78Þ

Jkða; b; c; dÞ ¼
Z1

0

xk�1e�bx�x2

Nða; b; c; d; xÞdx ð79Þ

and k ¼ ðcþ aÞ=2þ 1. The integral is absolutely conver-

gent in a rather narrow range of the parameters: 0\k\1þ
ðaþ cÞ=2 [35]. However, for our aims, the absolute con-

vergence is not necessary. Besides, in some cases, the

singularities which appear when the integral is divergent

determine the energy eigenvalues.

Using Eqs. (26), (27) and (77), we can express

K k; re; s; Eð Þ from Eq. (30) as

K k; re; s; Eð Þ ¼ ckðkÞ
X1
m¼0

ak
mðr0e; s0; E0ÞGre

ðkþ mÞ; ð80Þ

where

ckðkÞ ¼
CðkÞ 2k=2

Cðk� kÞCðkÞ e
�r2

e=2; ð81Þ

k ¼ k þ E þ 1;

r0e ¼ re;

s0 ¼ s� re ðE þ k=2þ 1Þ;
E0 ¼ �E � 2;

ð82Þ

and, according to Eqs. (3.462) and (3.478) of Ref. [50],

Gre
ðmÞ ¼

Z1

0

rm�1e�ðr�reÞ2=2dr

¼ CðmÞD�mð�reÞe�r2
e=4; if re 6¼ 0;

2m=2�1 Cðm=2Þ; if re ¼ 0:

(
; ð83Þ

where D�mð�reÞ is the parabolic cylinder function.

The coefficients ak
m in Eq. (80) can be expressed in a

closed form using Eq. (49). By the substitution of the

parameters defined in Eqs. (82), we get
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ak
mðr0e; s0; E0Þ ¼ Vm �T0;P0ð Þ; ð84Þ

where T
0 ¼ ft00; t01; . . .; t0m�1g;P0 ¼ fp00; p01; . . .; p0mg and

t0n ¼
E þ nþ 2

ðE þ kþ nþ 2Þðnþ 2Þ ; n¼ 0;1; . . .;m� 1;

p0n ¼
s� reðE þ k=2þ nþ 1Þ
ðE þ kþ nþ 1Þðnþ 1Þ ; n¼ 0;1; . . .;m:

ð85Þ

6.2 Harmonium

The formulas simplify if we set re ¼ 0, i.e., if we consider

harmonium. Then

G0ðkþ mÞ ¼ 2ðkþmÞ=2�1C
kþ m

2

� �
: ð86Þ

Thus,

G0ðkþmÞ ¼ 2ðkþmÞ=2�1

Cðk
2
Þ ðk

2
Þl; if m¼ 2l; l¼ 0;1;2; . . .;

Cðkþ 1

2
Þ ðkþ 1

2
Þl; if m¼ 2lþ 1:

8><
>:

ð87Þ

Let us denote d k
mðkÞ ¼ ckðkÞG0ðkþmÞ. Then, using the

duplication formula for the gamma function

CðkÞ ¼ 2k�1ffiffiffi
p
p C

k
2

� �
C

kþ 1

2

� �
; ð88Þ

we get

d k
mðkÞ ¼

ffiffiffi
p
p

CðkÞ
Cðk� kÞ

�
2j C

kþ 1

2

� ��1 k
2

� �
j

; if m¼ 2j; j¼ 0;1;2; . . .;

2jþ1=2 C
k
2

� ��1 kþ 1

2

� �
j

; if m¼ 2jþ 1;

8>>>><
>>>>:

ð89Þ

According to Eq. (58),

ak
m 0; s;�E � 2ð Þ ¼

Xbm=2c

n¼0

ð�1Þn ~rm
n

sm�2n

m!ðkÞm
; ð90Þ

where ~rm
n is determined in terms of

~qj ¼ �ðE þ 2þ jÞðjþ 1Þðjþ kÞ ð91Þ

rather than in terms of qj as defined in Eq. (56). Alternatively

we can express am in terms of determinants Vm using Eq. (84).

Integrals Jkða; b; c; dÞ fulfill the following recurrence

relation [35]:

ðcþ a� 2� 2kÞJkþ2 �
1

2
d þ bð2kþ 1� aÞð ÞJkþ1

þ kðk� aÞJk ¼ 0: ð92Þ

In some analyses, this recurrence relation may be very

useful. In terms of the parameters describing harmonium, it

reads

2ðE þ 3ÞJEþkþ3 þ
ffiffiffi
2
p

s� reðE þ 2Þð ÞJEþkþ2 � ðE þ kþ 1Þ
� JEþkþ1 ¼ 0 ð93Þ

As an example of interesting consequences of this relation

let us note that for k ¼ 2 and for arbitrary s and re, the

values of E for which condition JEþ4 ¼ 0 is fulfilled may

also be derived from JEþ3 ¼ 2JEþ5.

6.3 Spherical harmonic oscillator: the special case

of re ¼ 0 and s ¼ 0

If re ¼ 0 and s ¼ 0 then, according to Eqs. (59) and (90)

for m ¼ 2j; j ¼ 0; 1; 2; . . .

ak
2j 0; 0;�E � 2ð Þ ¼

ð�1Þj ~r2j
j

ð2jÞ!ðkÞð2jÞ
ð94Þ

and a2jþ1 ¼ 0. According to Eqs. (60) and (91)

~r2j
j ¼ ð�1Þj

Yj�1

n¼0

ðE þ 2þ 2nÞð2nþ 1Þð2nþ kÞ: ð95Þ

Combining Eqs. (89), (94), (95) and using several times the

duplication formula (88), we get

Kðk; 0; 0; EÞÞ ¼
ffiffiffi
p
p

2k

Cð2c� 2aÞ 2F1ða; b; c; 1Þ
Cð1� 2aÞCðcÞ ; ð96Þ

where a ¼ E=2þ 1; b ¼ k=2; c ¼ ðkþ 1Þ=2. The hyper-

geometric function may be expressed by the gamma

functions using equation ([50], 9.122)

2F1ða; b; c; 1Þ ¼ CðcÞCðc� a� bÞ
Cðc� aÞCðc� bÞ : ð97Þ

After the substitution to Eq. (96) and some simple trans-

formations, we get a surprisingly simple expression

Kðk; 0; 0; EÞ ¼ C
kþ 1

2

� �
C �E

2

� ��1

: ð98Þ

The same result may be obtained by the straightforward

evaluation of Jk according to Eq. (79) with the Heun

function given by Eq. (76). Roots of equation

Kðk; 0; 0; EÞ ¼ 0 are equal to E ¼ 2n; n ¼ 0; 1; 2; . . .; and

the substitution of these roots to the appropriate expansion

gives the radial wavefunctions (76).

7 Final remarks

The quest of square-integrable analytical solutions of BHE,

apart of the mathematical interest, has been motivated by
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numerous applications in theory of atomic and molecular

structure. The applications range from the analysis of the

behavior of the wavefunction in the vicinity of the Cou-

lomb singularity [18, 20, 43] and the construction of the

exact density functionals ([51] and references therein) to

the studies on the dependence of the charge density dis-

tribution in a molecule on the masses of the constituent

particles [52, 53]. Until now, these applications are

restricted to the well-known polynomial solutions. An

extension to the non-polynomial ones is an interesting and

important challenge. Possibly, some further studies on the

properties of the solutions of BHE may result in tractable

algorithms for deriving the eigenvalues and deriving the

analytic forms of square-integrable non-polynomial solu-

tions. Maybe, by expressing the formal solution of BHE in

terms of the Sturm functions or the hypergeometric func-

tions rather than in powers of r; one could easily reduce the

set of solutions to the space of square-integrable functions.

Certainly, by using the Heun equation, we can see the

problem of harmonium from a wider perspective and get

new, powerful technical tools to study its properties.
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18. Kestner NR, Sinanoğlu O (1962) Study of electron correlation in

helium-like systems using an exactly solvable model. Phys Rev

128:2687–2692

19. Santos E (1968) Calculo aproximado de la energia de correlacion

entre dos electrones. Anal R Soc Esp Fis Quim 64:177–193

20. Taut M (1993) Two electrons in an external oscillator potential:

particular analytic solutions of a Coulomb correlation problem.

Phys Rev A 48:3561–3566

21. Cioslowski J, Pernal K (2000) The ground state of harmonium.

J Chem Phys 113:8434–8443

22. Matito E, Cioslowski J, Vyboishchikov SF (2010) Properties of

harmonium atoms from FCI calculations: calibration and

benchmarks for the ground state of the two-electron species. Phys

Chem Chem Phys 12:6712–6716

23. Maksym PA, Chakraborty T (1990) Quantum dots in a magnetic

field. Phys Rev Lett 65:108–111

24. Karwowski J, Cyrnek L (2004) Harmonium. Ann Phys (Leipzig)

13:181–193

25. Bose SK, Gupta N (1998) Exact solution of nonrelativistic

Schrödinger equation for certain central physical potentials.

Nuovo Cimento B 113:299–328

26. Samanta A, Ghosh SK (1990) Correlation in exactly solvable

two-particle quantum system. Phys Rev A 42:1178–1183

27. Ghosh SK, Samanta A (1991) Study of correlation effects in an

exactly solvable model two-electron system. J Chem Phys

94:517–522

28. Karwowski J, Szewc K (2010) Separable N-particle Hookean

systems. J Phys Conf Series 213:012016

29. Slavyanov SY, Lay W, Seeger A (2000) Special functions. A

unified theory based on singularities. Oxford University Press,

New York

30. Ronveaux A (1995) Heun’s differential equations. Oxford Uni-

versity Press, Oxford

31. Heun K (1889) Zur Theorie der Riemann’schen Functionen

Zweiter Ordnung mit vier Verzweigungspunkten. Math Annalen

33:161–179

32. Seeger A, Lay W (eds) (1990) Centennial workshop on Heun’s

equations—theory and applications. Max-Planck-Institut für

Metallforschung, Institut für Physik, Stuttgart

33. Dı́az R, Pariguan E (2007) On hypergeometric functions and

Pochhammer k-symbol. Divulgaciones Matemáticas 15:179–192
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