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We study the development of intricate, fully nonlinear immiscible interfacial patterns in the suction-driven radial
Hele-Shaw problem. The complex-shaped, contracting fluid-fluid interface arises when an initially circular blob of
more viscous fluid, surrounded by less viscous one, is drawn into an eccentric point sink. We present sophisticated
numerical simulations, based on a diffuse interface model, that capture the most prominent interfacial features
revealed by existing experimental studies of the problem. The response of the system to changes in the capillary
number is investigated, accurately revealing the occurrence of finger competition phenomena, and correctly
describing the velocity behavior of both inward- and outward-pointing fingers. For the large-capillary-number
regime, a set of complex interfacial features (finger merging, shielding, and pinch-off) whose experimental
realization is still not available, are predicted.
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I. INTRODUCTION

The viscous fingering problem [1] is one of the most
studied among fluid dynamic systems presenting formation
and evolution of elaborate patterned structures. It considers the
development of interfacial instabilities when a fluid displaces
another of higher viscosity between the narrowly spaced plates
of a Hele-Shaw cell [2]. A very popular, and intensively
investigated, version of the problem is the so-called radial
fingering flow driven by injection. It considers the radial
invasion of a less viscous fluid that is injected under a
constant injection rate against a more viscous liquid that
initially occupies the whole cell. The injection is performed
through an inlet located at the center of the upper cell plate.
Experiments involving the injection-driven radial flow for
immiscible fluids demonstrate that as the size of the fluid-fluid
interface grows outward, fingers form, spread, and start to
split at their tips, creating complex branched patterns [3–9].
Numerical investigations [10–12] used boundary integral and
conformal mapping techniques to accurately reproduce the
pattern-forming structures observed in such experiments.

A closely related problem to the conventional injection-
driven, immiscible flow in radial Hele-Shaw geometry results
if a blob of a more viscous fluid, surrounded by a less
viscous fluid, is sucked and drawn radially inward into a
sink located at the center of the cell. This setup defines the
suction-driven radial Hele-Shaw flow. This version of the
problem has been treated analytically in the zero surface
tension limit via conformal mapping methods. In this context,
the main interest of both theoretical physicists and applied
mathematicians was mostly in examining a finite-time blow-
up of the interfacial solutions, as well as cusp formation
phenomena [13–15]. Boundary integral simulations have also
been utilized to investigate the interface behavior for the small,
finite-surface-tension situation [16–18]. It has been found that
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the zero surface tension cusp formation is avoided, and instead
a narrow finger of the less viscous fluid forms, which then
rapidly propagates towards the sink. It is worth noticing that all
these works focused on understanding the regularizing effects
of surface tension and not exactly on the precise morphological
description of the interfacial patterns at advanced time stages.

In contrast to the radial Hele-Shaw problem driven by
injection, the analysis of fully nonlinear patterns induced by
suction for arbitrary, finite surface tension through experiments
and numerical simulations has been largely unexploited. On
the experimental side, there are just a couple of studies,
which were performed sometime ago [3,8]. The authors of
Refs. [3,8] focused on the situation of maximum viscosity
contrast, where the surrounded fluid has negligible viscosity.
These experimental works have revealed the development of
patterns that markedly differ from those traditionally obtained
in injection-driven flows (see Fig. 10 in Ref. [3] and Fig. 15 in
Ref. [8]). During the suction of the more viscous inner fluid it
has been observed that the initially circular fluid-fluid interface
shrinks and deforms by the penetration of multiple fingers of
the less viscous outer fluid. The invading fingers compete, and
eventually a single finger reaches the sink, while the remaining
fingers basically stop their inward moving growth. It has also
been noticed that under suction the penetrating fingers do not
tend to split at their tips, so instead of finger tip-splitting the
most prevalent pattern-forming mechanism is indeed finger
competition.

With respect to numerical simulations of the fully nonlinear
pattern formation dynamics under suction, only a few studies
have been undertaken: in Refs. [19–21] for the quarter
five-spot configuration and in Ref. [22] for the usual radial
Hele-Shaw setup. However, differently from the immiscible
flow circumstances experimentally examined in Refs. [3,8],
these studies [19–22] consider that the fluids involved are
miscible. Therefore, a numerical investigation of the advanced
time pattern-forming phenomena occurring under suction of
immiscible fluids in radial Hele-Shaw cells still needs to be
performed. This is in fact the main purpose of our current
paper. In this work we apply a diffuse interface formalism
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[23,24] to the suction-driven radial Hele-Shaw flow. First,
we try to reproduce as accurately as possible the main
morphological aspects of the patterns experimentally obtained
in Refs. [3,8]. Then we explore and predict other important
morphological features that have not yet been unveiled by
laboratory experiments.

The rest of this paper is organized in three additional
sections. Section II is devoted to introduce the setup of the
physical problem, the application of the diffuse interface
formalism to the suction-driven radial Hele-Shaw flow, and the
related governing equations. Section III presents our numerical
results, revealing a number of relevant interfacial structures as
capillary effects are varied. The occurrence of finger pinch-off
and droplet entrapment phenomena are discussed. Our main
conclusions are presented in Sec. IV.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

Consider a Hele-Shaw cell of constant gap thickness h

containing two immiscible, incompressible, viscous fluids (see
Fig. 1). Denote the viscosities of the fluids, respectively, as
η2 (inner fluid) and η1 (outer fluid) and assume that η2 > η1.
Initially, the fluid-fluid interface is a circle of diameter D0, and
a Cartesian coordinate system (x,y,z) is defined in such a way
that its origin is located at the center of this circular region. The
inner fluid is sucked at a point sink located at the center, and the
suction process continues up to a time t = tf , when the area
of the inner fluid reduces to πDf

2/4. This suction scheme is
performed at a constant flow rate Q, equal to the area covered
per unit time, and given by Q = π (D0

2 − Df
2)/4tf . Driven by

the action of suction, as time progresses the interface becomes
unstable, giving rise to complex interfacial shapes.

The governing equations for a diffuse interface description
of the problem, which is based on a Boussinesq Hele-Shaw-
Cahn-Hilliard model [23,24], can be written as

∇ · u = 0, (1)

∇p = −12η

h2
u − ερ∇ · [(∇c)(∇c)T ], (2)

ρ

(
∂c

∂t
+ u·∇c

)
= α∇2μ, (3)

μ = ∂f0

∂c
− ε∇2c. (4)

x

η

z
y

1

2
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η

FIG. 1. (Color online) Sketch of a suction-driven radial flow in
a Hele-Shaw cell of constant gap width h. The more viscous fluid
of viscosity η2 (η2 > η1) is sucked at the center of the cell [origin
of the (x,y,z) coordinate system] with constant flow rate Q. As a
consequence, complex interfacial patterns arise.

Here, u, p, η, and ρ successively denote the velocity vector,
the pressure, the viscosity, and the density of the binary fluid
system. In the context of our current problem the density ρ is
assumed to be constant. The phase-field variables of the inner
and outer fluids are set as c = 0 and c = 1, respectively. The
constant ε represents the coefficient of capillarity, while the
constant α denotes the coefficient of mobility. The chemical
potential is μ, and f0 is the classical part of the free energy
(or the Helmholtz free energy). To simulate an immiscible
interface, a convex profile of the Helmholtz free energy with
a characteristic specific energy f ∗, e.g., f0 = c2(1 − c)2f ∗, is
applied. The above expressions result in a surface free energy
E given by

E = ρ

∫ [
f0 + ε

2
(∇c)2

]
dV, (5)

where V is the volume of the fluid domain. In this framework,
the viscosity η is assumed to be related to the phase-field
variable c as [20,25,26]

η(c) = η1e
[R(1−c)], R = ln

(
η2

η1

)
. (6)

In order to render the governing equations and relevant
variables dimensionless, D0 and tf are taken as the character-
istic scales. This leads to a characteristic suction rate D0

2/tf .
Furthermore, the pressure is scaled by (12η1D

2
0)/(tf h2). Thus,

the dimensionless version of the governing equations is

∇ · u = 0, (7)

∇p = −ηu − C

S
∇ · [

(∇c)(∇c)T
]
, (8)

∂c

∂t
+ u·∇c = 1

Pe
∇2μ, (9)

μ = ∂f0

∂c
− C∇2c, (10)

f0 = c2(1 − c)2, (11)

Q = π

4
(1 − Dc

2). (12)

Dimensionless parameters, such as the viscosity contrast A, the
Péclet number Pe, the Cahn number C, the suction strength S,
and the terminal core diameter Dc, are defined as

Pe = ρD2
0

αf ∗tf
, A = eR − 1

eR + 1
, C = ε

D2
0f

∗ ,

S = 12η1D
2
0

ρf ∗h2tf
, Dc = Df

D0
.

The diffusional Péclet number and the Cahn number are the
nondimensional measures of the dissipation and dispersion
in the model [27]. Pe ∼ O(1/γ ) and C ∼ O(γ 2), where γ

measures the interface thickness, are proposed in Ref. [23].
Another important dimensionless parameter in the context

of injection- and suction-driven flows in radial Hele-Shaw
flows is the capillary number, which can be defined as the
ratio of the driven pressure by the suction, i.e., characteristic
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pressure (12η1D0
2)/(h2tf ), and the surface pressure σ̃ /D0,

and can be defined as [28]

C̃a = 12η1D0

σ̃ tf

(
D0

h

)2

, (13)

where σ̃ stands for the surface tension. Within the diffuse in-
terface formulation, if a one-dimensional interface (associated
with a given spatial variable ζ ) is assumed, a dimensionless
equilibrium surface tension (or free energy) can be expressed
as [29]

σ = 1

S

∫ [
f0 + C

2

(
∂c

∂ζ

)2]
dζ. (14)

The equilibrium surface tension σ can be calculated theoreti-
cally to replace the surface tension σ̃ appearing in Eq. (13), so
an equilibrium capillary number takes the form [24]

Ca = 3S√
C/2

. (15)

The numerical methods we employ in this work are similar
to the ones develop in Refs. [20,22,24,25], in which the
governing equations are recast into the well-known stream
function (φ)-vorticity (ω) formulation, yielding

u = ∂φ

∂y
, v = −∂φ

∂x
, (16)

∇2φ = −ω, (17)

where

ω = −R

(
u

∂c

∂y
− v

∂c

∂x

)
+ C

ηS

[
∂c

∂x

(
∂3c

∂x2∂y
+ ∂3c

∂y3

)
− ∂c

∂y

(
∂3c

∂x∂y2
+ ∂3c

∂x3

)]
.

In the present radial Hele-Shaw flow, the rotational part of
the velocity is smooth and can be obtained with high accuracy,
while the potential part of the inward velocity induced by
suction is related to a flow singularity at a sink. The flow
singularity makes accurate computations more difficult near
these locations. To avoid numerical instabilities near the sink,
we smooth out the point sink by distributing its strength in a
Gaussian way over a small circular core region. To accomplish
this, we consider a “Gaussian sink” [20,22,25] which is
characterized by a core size Dc = 0.15. The magnitude of
the dimensionless potential radial velocity satisfying these
requirements can be expressed as

upot = − Q

2πr
[1 − exp (−4r2/Dc

2)]r̂, (18)

where r denotes the radial distance away from the point sink
and r̂ represents the unit vector along the radial direction.

Our simulations are carried in a square computational
domain with length of 4/3. An initial circular more viscous
blob is placed at the center of the domain, so the interface
is located at r = 0.5. The simulations are terminated when
the penetrating less viscous fluid reaches the Gaussian core at
r = 0.075. This is done to minimize the effect of the core on
the simulations. Moreover, boundary conditions are prescribed

as follows:

x = ±2/3 : φ = 0,
∂c

∂x
= 0,

∂2c

∂x2
= 0, (19)

y = ±2/3 : φ = 0,
∂c

∂y
= 0,

∂2c

∂y2
= 0. (20)

Since the flux across the boundary is prescribed by the potential
part, the rotational components of velocity are confined in
the computational domain. As a result, the vanishing stream
function can be applied on the boundary. Moreover, since the
drop shrinks inward, the phase-field variable is uniform on the
boundaries, so zero values of gradients and second derivatives
are used.

To reproduce the extremely fine structures of the fingers,
a highly accurate pseudospectral method is employed. As a
result, the actual boundary conditions applied in the numerical
code are ∂φ/∂x = 0 at x = ±2/3. However, at the present
situation where no gradient of the phase variable is generated
on the boundaries, the above conditions automatically lead to
φ = 0. Both c and φ are expanded in a cosine series in the x

direction. In the y direction, discretization is accomplished by
sixth-order compact finite differences. Time integration is fully
explicit and utilizes a third-order Runge-Kutta procedure. The
evaluation of the nonlinearity at each time level is performed
in a pseudospectral manner.

It should be noted that the mixed compact finite difference–
spectral method implemented for the Poisson equation is
identical to the scheme applied in miscible fluid simulations
[26], which is a modification of the purely spectral approach
[20,25]. While the miscible simulations performed by using the
purely spectral approach [20,25] were validated by comparing
the growth rates with the respective values obtained from
linear stability theory, comparable accuracy of the mixed
method to the purely spectral approach was confirmed in a
different class of flows [30]. In addition, the validations of the
mixed method incorporated with the immiscible simulations
are supported by the good qualitative agreement with respect
to pattern formation, and good quantitative agreement for the
number of fingers, which had been achieved in the early
work of rotational flows [24] as well as in suction flows
presented below. Nevertheless, similarly to the conventional
finite difference method, numerical instability might occur if
the gradient of phase-field variable within the diffuse interface
is too significant. For a more detailed account about these
numerical schemes and their validations, the reader is referred
to Refs. [20,24–26,30].

III. NUMERICAL RESULTS AND DISCUSSION

In this section we focus on displaying numerical simu-
lations associated with significantly high viscosity contrast,
where the fingering instability is more prominent. So, through-
out this work we present a series of simulations for a fixed
value of the viscosity contrast, namely A = 0.922. This is
the maximum possible value of A we were able to simulate
for all range of Ca we study in this work, by keeping our
numerical code stable. In fact, this is the closest we can get
of the situation that has been experimentally investigated in
Refs. [3,8], where A = 1. Moreover, following Ref. [24], we
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consider that Pe = 103, and C = 10−5 in all the simulations.
However, the capillary number Ca [given by Eq. (15)] is
allowed to vary in order to evaluate the relative effects of
suction and surface tension, and their influence on the pattern
formation process.

Before we proceed, a few comments about the chosen value
for the Cahn number are in order. It is known that variation
of the Cahn number C changes the thickness of the interface,
so larger values of C can lead to strong diffusion through the
interface [31]. Therefore, to properly reach the sharp interface
limit one should consider a sufficiently small Cahn number.
On the other hand, the use of a Cahn number that is too
small could result in numerical instability. In this work, in
order to ensure the numerical stability of our code for all
values of the capillary number Ca we study, we utilize a
fixed small value of the Cahn number given by C = 10−5.
The appropriateness of this particular value of C is indirectly
validated by the good qualitative agreement between simulated
and experimental patterns, as well as quantitative predictions
regarding the number of fingers, which had been achieved in
our previous work on rotating Hele-Shaw flows [24], and also
on the suction-driven flows displayed here.

Figure 2 presents simulated patterned structures for three
values of the capillary number Ca = 1342, 2683, and 5367,

t=0.65

C
a=

13
42

C
a=

26
83

C
a=

53
67

t=t
b

FIG. 2. Numerical simulations showing typical fingering patterns
at times t = 0.65, and the breakthrough time tb, for increasingly larger
values of the capillary number: Ca = 1342 (tb = 0.834), Ca = 2683
(tb = 0.752), and Ca = 5367 (tb = 0.684).

taken at time t = 0.65 and at the breakthrough time tb.
The breakthrough time is defined when a dominant finger
of the inner less viscous fluid reaches the position of the
Gaussian core (r = Dc/2). The breakthrough times for these
three cases are tb = 0.834, 0.752, and 0.684, respectively. In
all cases an initially circular interface destabilizes due to the
Saffman-Taylor instability, and at early times a large number
of fingers develop. As time advances the penetrating fingers
of the less viscous fluid move inward, and their amplitudes
grow. These penetrating fingers present different sizes, clearly
indicating that there exists a competition among them as they
move toward the sink. Large length variability of the invading
fingers means larger competition. At later times, it can be
noticed that a smaller fraction of the inward pointing fingers
actually are able to “win the race” toward the center. We have
also observed that the fingers which have been left behind
are screened off, and their velocities are significant reduced.
Then, at t = tb, we see that a longer winning finger, closely
accompanied by other competing fingers, reaches the Gaussian
core near the center of the Hele-Shaw cell.

Although the general aspects of the simulated patterns
depicted in Fig. 2 are qualitatively in line with the ones
experimentally detected for inward radial flows with im-
miscible fluids [3,8], the agreement between their specific
morphological features is not perfect. For instance, while
the experiment presented in Ref. [8] (see, for instance, their
Fig. 15) shows that one single finger ends up breaking through,
the simulated structures illustrated in Fig. 2 indicate that a
few dominant fingers can arise and compete in the race to
the sink point. We believe this is in part due to the fact
that the immiscible experiments in Ref. [8] are performed
for the maximum viscosity contrast case A = 1, while the
simulations shown in Fig. 2 consider that A = 0.922. The
value of A is crucial in determining the actual number of
dominant fingers. We point out that a similar behavior has also
been observed in experiments [32,33] and simulations [34]
for immiscible flows in rectangular Hele-Shaw cells, where
the presence of a single dominant finger is clearly detected
when A = 1, but not when A < 1 where a larger number
of fingers can compete as front runners. In addition, it is
possible that the fact that we imposed an artificial Gaussian
sink [Eq. (18)], for which true breakthrough of the dominant
fingers cannot be simulated, could also contribute to create
differences between simulations and experiments with respect
to the specific competition among dominant fingers at later
times.

The numerical simulations shown in Fig. 2 are reassuring in
the sense that they are able to capture the most salient dynamic
and morphological aspects of the experiments. Additional
information can been extracted from our numerical results
shown in Fig. 2: It is apparent that by increasing the capillary
number Ca more vigorous fingering is detected. In this cases,
one observes a larger number of resulting fingers, and smaller
values of the breakthrough times. These numerical results
make perfect sense and serve to reinforce the validity and
effectiveness of our diffuse interface method.

We continue by discussing other relevant aspects of the
fingering patterns illustrated in Fig. 2. One of the most
conspicuous behaviors is related to the phenomenon of
finger competition, which refers to finger length variability.
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FIG. 3. Finger competition behavior for the patterns illustrated
in Fig. 2 for (a) Ca = 1342, (b) Ca = 2683, and (c) Ca = 5367. The
radial positions of the fingertips of inward fingers r are plotted as a
function of the polar angle θ . Clearly, the number of fingers, and the
competition among them are larger for higher values of the capillary
number.

Throughout our analysis, we define the inward (outward)
pointing fingers of the less (more) viscous fluid as inward
(outward) fingers. By inspecting Fig. 2 we can see that the
radial positions of the tips of the outward fingers form a nearly
circular interface which slowly contracts as time advances.
This indicates that the competition among outward fingers is
not very intense. At the same time, one can verify the quick
penetration of the inward fingers, whose fingertips are located
at clearly distinct radial positions. This shows the evident
finger competition among rapidly moving inward fingers.
These numerical findings are also consistent with the general
dynamical features revealed by experiments [3,8].

The competition among inward fingers can be even more
clearly observed in Fig. 3, which plots the radial position of
the tips of inward fingers as a function of polar angle θ for
the situations depicted in Fig. 2. In the case of a lower value
of the capillary number [Fig. 3(a)], radial positions of all the
fingertips are still quite uniform at time t = 0.65 due to strong
constraints imposed by surface tension. As suction continues,
a few dominant fingers evolve, and three of them approach
the Gaussian core. These dominant inward fingers are more
easily identified for the cases of higher values of the capillary
number [Figs. 3(b) and 3(c)]. Notice that the fingers that are
left behind are shielded and remain almost stationary, while the
winning fingers move quite rapidly toward the sink. Actually,
these competition and shielding effects play an important role
regarding the highly nonlinear merging phenomena we will
discuss later in this work.

By examining Figs. 2 and 3 one can tell that the inward
fingers move significantly faster than the outward fingers.
A more quantitative account of this fact is shown in Fig. 4:
Figure 4(a) plots the averaged radial positions rf of the
fingertips (of both inward and outward fingers) with respect
time, while Fig. 4(b) depicts how the averaged radial speed

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
(a)

t

r f

 

 

0 0.5 1
0

0.5

1

1.5
(b)

t

U
f

 

 
Stable Suction
Ca=1342 ; outward
Ca=2683 ; outward
Ca=5367 ; outward
Ca=1342 ; inward
Ca=2683 ; inward
Ca=5367 ; inward

0 0.5 1

0.8

0.9

1

1.1

1.2

t

r n

 

 

0 0.5 1
0.2

0.6

1

1.4

1.8

t

U
n

 

 

FIG. 4. (Color online) A more quantitative display of important
dynamic features of the patterns shown in Fig. 2: (a) Averaged
fingertip positions (rf ) of inward and outward fingers with time; (b)
averaged radial speeds (Uf ) of inward and outward fingers as time
is varied. The insets show normalized values of positions (rn) and
velocities (Un) which are scaled by the instantaneous values related
to the suction of a stable circular fluid-fluid interface (solid black
curve). The normalized averaged positions and radial speeds of the
inward and outward fingertips are quite symmetric, which reflects
faster inward fingers associated with slowly moving outward fingers.

of these fingers Uf evolves in time. The corresponding values
for the condition of a stable suction of an unperturbed circular
interface (solid black curves) are also shown. The insets show
normalized values of positions (rn) and velocities (Un) which
are scaled by the instantaneous values associated to the stable
suction situation.

From Fig. 4(a) we see that as time progresses the positions
of outward fingertips start to lag behind the curve of stable
suction, while the fingertips of inward fingers move ahead
of it. Note that more significant deviations from the stable
suction case occur for higher values of the capillary number.
In the inset of Fig. 4(a) it can be noticed that the movements of
the inward and outward fingers appear quite symmetric when
represented in terms of the normalized measurements. Even
more interesting is the fact all the breakthroughs occur at times
when deviations of the normalized radial positions approach
about 20%, i.e., at rn = 0.8 and 1.2 for the inward and outward
fingers, respectively.

Similar kind of conclusions can be extracted from Fig. 4(b),
where larger velocity deviations as compared to the stable
suction case are observed for higher capillary numbers. Again,
suggestive similarities for the breakthrough times exist, which
all occur at 70% deviations, i.e., Un=1.7 and 0.3 for the
inward and outward fingers, respectively. These facts indicate
that the averaged lengths of inward and outward fingers grow
by nearly a same rate if the reference frame moves along with
the stable suction interface.

The fact that the fingers that do not grow fast compared
to the dominant ones are slowed down can be explained
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FIG. 5. (Color online) Variation of the number of fingers Nf

with the radial distance r to the shrinking perturbed interface for
different values of the capillary number Ca. Corresponding analytical
predictions for the number of fingers (nmax) as given by Eq. (22) are
also shown. Good general agreement is obtained.

physically through the fingering phenomenon of shielding
(see, e.g., the article by Homsy in Ref. [2]). Shielding can be
understood as the tendency of a finger to grow in the direction
of the pressure gradient. As the fingers grow inwards, the
available space is more and more restricted and their growth is
hindered. In this scenario, the longer fingers grow faster and
obstruct the growth of the shorter fingers in their vicinities.
This shielding effect is similar to what is commonly seen in
experiments and simulations of rectangular Hele-Shaw flows
[32–34] where shielding is very effective when A = 1 and is
progressively less intense as the viscosity contrast is decreased
(A < 1). In addition, since the velocity field is inversely
proportional to the radial distance [Eq. (18)], the variation of
local velocity would enhance the different advancing speeds
among the fingers. Once the fingers are ahead, the faster
inward velocity drives the fingers further ahead of the slower
fingers.

Another quantitative measurement of relevance is related to
the number of interfacial fingers. Figure 5 illustrates that the
number of penetrating inward fingers Nf , obtained from our
numerical simulations (sim), varies with the radial distance to
the evolving interface r for different values of the capillary
number Ca. As demonstrated by the representative evolutions
shown in Fig. 2, numerous interface ripples start to grow after
a given latent period, so it is difficult to determine the precise
number of fingers at shorter times, before significant growth
has set in. Therefore, the extraction of Nf from the simulations
involves some uncertainties. Having said this, we stress that the
numbers recorded in Fig. 5 are counted only after individual
fingers can be clearly identified. In this setting, the number of
fingers increases slightly after the first measurement and then
might remain nearly constant (e.g., Ca = 1342) or decrease
continuously (e.g., Ca = 5367). As expected, a higher value
of the capillary number is always associated with a larger
number of fingers. These numerical results for Nf can be

directly compared to early time linear stability predictions for
the number of interfacial fingers. At the linear level, the number
of fingers is connected to the maximum of the growth rate and
given (in dimensional form) as [3,35]

nmax(r) =
√

1

3

(
1 + AQ

2πα
r

)
, (21)

where

α = h2σ

12(η1 + η2)
.

After proper rescaling, and assuming that

Q = π (D0
2 − Dc

2)

4tf
≈ πD0

2

4tf
,

η2 − η1 = (eR − 1)η1 ≈ eRη1,

a dimensionless version for Eq. (21) can be written as

nmax(r) ≈
√

1

3

(
1 + eRCa

8
r

)
. (22)

This expression is used to plot the analytical prediction curves
shown in Fig. 5. General good agreement is obtained between
analytical (nmax) and numerical (sim) predictions for the
number of fingers. This good agreement provides additional
validation for our numerical simulations.

At first glance, the good match between the results of
our fully nonlinear simulations and those given by Eq. (22),
originally obtained in Ref. [35], may seem surprising. After
all, Eq. (22) has been derived by a linear stability calculation
and, hence, should not normally extend beyond the early linear
regime. This is particularly true for the injection-driven Hele-
Shaw case [1–12], where the nonlinear phenomena of finger
tip-splitting is vividly present, resulting in finger branching
and finger proliferation. Of course, this introduces significant
discrepancies between linear predictions and the actual number
of measured fingers in more advanced stages of the dynamics.
However, for suction-driven Hele-Shaw flows the emerging
inward moving fingers do not split, so finger tip-splitting events
are absent [3,8]. Because of this fact, fingers do not proliferate
in the suction flow case, so the linear predictions are not as
bad when one compares linear data with the actual number of
fingers detected at nonlinear stages of the dynamics. Finally,
we point out that a similar good agreement between linear and
nonlinear predictions for the number of interfacial fingers can
also been found in the rotating Hele-Shaw problem, where
finger tip-splitting phenomena are also not present [36].

Possible reasons for the existing mismatch between Nf

and nmax as shown in Fig. 5 could be the occurrence of fully
nonlinear phenomena, for instance, finger merging, which can
alter the counting of the inward fingers at advanced times. Of
course, these nonlinear effects are not taken into account by
the linear stability calculation leading to nmax.

Up to this point we have concentrated our discussion on the
qualitative comparison of our numerical patterns (Fig. 2) with
those detected by a few available laboratory experiments [3,8].
In doing so, we used typical capillary number values similar to
those utilized in Refs. [3,8]. As a result, we managed to obtain
interfacial structures that resemble the experimental ones. In
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FIG. 6. Typical fingering patterns in the limit of high capillary
numbers Ca and for A = 0.922, exhibiting prominent nonlinear
phenomena such as finger merging, shielding, and pinch-off at
time t = 0.55 and at the breakthrough time tb: (a) Ca = 13461
(tb = 0.608), (b) Ca = 20125 (tb = 0.598), and (c) Ca = 26833
(tb = 0.589).

addition, our numerical model was also able to capture the
main dynamic features revealed by experiments, namely the
finger competition phenomena, as well as the velocity behavior
of both inward and outward fingers. To close this work, we
want to predict morphological characteristics and dynamic
behaviors that have not yet being assessed by experiments.
One way to perform such analysis is to run simulations for
higher values of the capillary number Ca. This is done in
Fig. 6 for Ca = 13416, 20125, and 26833. We stress that the
high capillary numbers used in Fig. 6 are indeed realistic.
For actual Hele-Shaw experiments using very high capillary
numbers (5.0 × 104), please see, for instance, Maxworthy’s
work published in Ref. [37]. So, for example, if one uses a
more viscous fluid (e.g., a mineral oil) of viscosity 0.03 Pa s,
surface tension 5–50 mN/m, D0/h ∼ 100, and operating time
tf < 5 s, the corresponding capillary number would be in the
range used in Ref. [37].

The numerical simulations for the high capillary number
limit shown in Fig. 6 do unveil dynamical and morphological
behaviors that have not yet been observed by experiments
of suction-driven flows in radial Hele-Shaw cells. In this
high-Ca regime, a considerably large number of inward

fingers penetrate the initially circular, more viscous blob so
fingering is really intense. This leads to the production of quite
convoluted patterned structures. In all cases depicted in Fig. 6
we see that multiple inward fingers compete: Some quickly
advance toward the sink, while the growth of others is shielded.
The first noteworthy fact is the observation that some fingers
merge while they move. Interestingly, as a result of this finger-
merging process, the roots of the dominant (or winning) fingers
are squeezed and eventually pinch-off, forming encapsulated,
island drops of the less-viscous fingers inside the more-viscous
one. Simultaneously, one also observes the pinch-off of the
slow-moving outward fingers of the more viscous fluid that
have been left behind. Consequently, tiny satellite droplets
of the more viscous fluid arise at the rim of the patterned
structures. It is also evident that the formation of both
entrapped and satellite drops are favored for larger values of
the capillary number. One advantageous aspect of our diffuse
interface model (as opposed to usual sharp interface numerical
methods) is the fact that we can predict and contemplate the
formation of such interesting merging and pinch-off events.

We point out that the occurrence of finger merging and
pinch-off had been actually observed in numerical simulations
of radial Hele-shaw flows involving miscible fluids [22,38],
where the effects of surface tension are negligible. However,
they are not very commonly discussed in injection- or
suction-driven radial Hele-Shaw displacements when the
confined fluids are immiscible. This is true despite the fact that
pinch-off and merging phenomena have indeed been observed
in experiments [39] and simulations [40] of immiscible
fluids in rectangular Hele-Shaw geometry. The appearance of
pinch-off and satellite drops under immiscible circumstances
have also been detected by experiments [36] and by phase-field
[41] and diffuse interface [24] simulations for radial flow
in rotating Hele-Shaw cells. Finally, the pinching-off of
droplets from the main body of the more viscous fluid has
also been unfolded in lifting Hele-Shaw flows, both by
numerical simulations with miscible fluids [42], as well as
by experiments with immiscible fluids [43]. So the shielding,
merging, and pinch-off of fingers detected numerically in
Fig. 6 sounds quite plausible, and we hope experimentalists
will feel motivated to obtain them in the laboratory.

By inspecting Fig. 6 it is evident that the resulting fingering
structures become very thin for very large values of Ca.
This might cause concerns on the validity of Hele-Shaw
assumption, where the gap width needs to be smallest length
scale of the problem. In the present study, the gap width is
embedded in the dimensionless suction strength S and does not
appear in the formulation explicitly. As a result, the validity of
the model can be ensured by properly combining the relevant
control parameters with a sufficiently small gap width. In this
context, the general validity of the model is kept even when
fingers are very thin. Nevertheless, one should be cautious
when interpreting the results when they are converted back
to the dimensional description. In this case, the limitation of
Hele-Shaw assumption has to be carefully checked.

We close this section by commenting on the lack of a more
quantitative parallel between our numerical results and the
experiments presented in Refs. [3] and [8]. Unfortunately,
these studies [3,8] do not allow for a more quantitative com-
parison between our numerical results and their experiments.
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For example, Ref. [8] discusses the suction flow case very
qualitatively: This is done in a single paragraph (see p. 238 of
Ref. [8], in a section entitled “Convergent flow”), and only one
picture of the experiment is provided (see p. 239 of Ref. [8],
their Fig. 15). No specific experimental data, such as the time
evolution of the number of fingers is presented, so not much
can be extracted other than the shape of the resulting pattern.
Moreover, in their Fig. 15 no scale bar is provided. The same
type of remarks can be made with respect to the experiment
displayed in Ref. [3]: Again, the discussion of the suction flow
situation is very brief (see pp. 523–526 of Ref. [3] in a section
entitled “Inward Fingering”), and just a photograph of the
experiment is shown (see p. 525 of Ref. [3], their Fig. 10, where
there is no scale bar). Similarly to that presented in Ref. [8],
no quantitative, systematic experimental data involving the
pattern evolution can be assessed. These observations justify
why a more quantitative comparison between our numerical
results and the available experiments [3,8] could not be done.
Of course, this indicates that even on the purely experimental
side, much still needs to be done regarding suction flow in
Hele-Shaw cells.

IV. CONCLUSION

We have performed intensive numerical simulations in
order to probe the advanced time pattern formation dynamics
of the radial viscous fingering problem induced by suction.

By employing a diffuse interface model we have been able to
generate complex patterns which contain the most important
morphological and dynamic features detected by previous
experimental investigations of the problem. In agreement with
experimental observations we have identified patterns showing
a strong competition among inward pointing fingers, while out-
ward pointing fingers do not compete as much. Our numerical
predictions regarding the velocity of both inward and outward
fingers, as well as the ones describing the number of fingers
that evolve with time, are also in line with experiments and
linear stability calculations, respectively. All these conclusions
have been reached for a set of values for the capillary number.
Moreover, at the large capillary number regime we unveiled
some interesting phenomena that have not yet being analyzed
experimentally, namely the occurrence of characteristic finger-
merging and pinch-off events. In this scenario, we predicted
the possible uprising of both entrapped island drops of the less
viscous fluid and of satellite droplets of the more viscous fluid
located at peripheral regions of the patterns.
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