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Abstract
In many practical applications, the rates for ground water recharge and discharge are determined based on

the analytical solution developed by Bredehoeft and Papadopulos (1965) to the one-dimensional steady-state heat
transport equation. Groundwater flow processes are affected by the heterogeneity of subsurface systems; yet, the
details of which cannot be anticipated precisely. There exists a great deal of uncertainty (variability) associated
with the application of Bredehoeft and Papadopulos’ solution (1965) to the field-scale heat transport problems.
However, the quantification of uncertainty involved in such application has so far not been addressed, which is
the objective of this wok. In addition, the influence of the statistical properties of log hydraulic conductivity field
on the variability in temperature field in a heterogeneous aquifer is also investigated. The results of the analysis
demonstrate that the variability (or uncertainty) in the temperature field increases with the correlation scale of the
log hydraulic conductivity covariance function and the variability of temperature field also depends positively on
the position.

Introduction
Heat as a natural groundwater tracer has been

used frequently to assess the interchange of groundwa-
ter and surface water in groundwater basins by various
approaches (e.g., Anderson 2005; Ferguson and Woodbury
2005; Brookfield et al. 2009; Saar 2010; Lewandowski
et al. 2011). The analytical approaches afford fast and
straightforward means for determining surface water infil-
tration rates from temperature measurements. Brede-
hoeft and Papadopulos (1965) developed an analytical
solution for temperature profiles to describe the verti-
cal steady flow of groundwater and heat through an
isotropic, homogeneous, and fully saturated semiconfining
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layer. A graphical type curve solution method based
on temperature-depth profiles for estimating groundwater
velocities also presented by them. Building on their work,
the rates for ground water recharge and discharge in basins
were predicted in many studies (e.g., Cartwright 1970;
Taniguchi 1993, 1994; Ferguson et al. 2003; Schmidt
et al. 2006; Anibas et al. 2009; Schornberg et al. 2010).

It has been generally recognized that dispersion of
soluble plumes in groundwater is caused by large-scale
spatial heterogeneities of geologic formations. The natural
heterogeneity of the subsurface environment (including
spatial variations of soil properties such as hydraulic
conductivity) results in a nonuniform velocity field. The
spatial fluctuations of velocity enhance the spreading of
solutes and contribute to the highly irregular character
of the concentration distribution in field-scale plumes.
Because of the analogy between the contaminant transport
and heat transport, it is expected that the heterogeneity
of natural formations also plays an important role in
influencing the heat advection at field scale. Therefore, the
prediction of field-scale heat transport from the classical
heat transport equation in the uniform velocity field,
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developed at the local scale, is subject to a great deal
of uncertainty.

The hydraulic properties of the aquifer materials are
known to be highly variable in space. In most practical
situations, there are never enough data in describing the
spatial distributions of these properties in detail. Those
problems may result in large uncertainty in predicting
field-scale heat transport. From the practical application
point of view, the classical deterministic heat transport
equation may be viewed as an averaging one in a
stochastic sense, and the uncertainty (variability) needs to
be recognized when applying the mean transport model.
As such, the primary purpose of this study is to provide a
quantitative measure of uncertainty in assessing the heat
transport model of Bredehoeft and Papadopulos (1965)
applied to field situations.

Temperature Perturbation
As the starting point, we assume that the temperature

distribution in a locally saturated porous medium under
the steady-state condition can be characterized by the
Darcy-scale transport equation expressed as (e.g., de
Marsily 1986)

αe
∂2T

∂Xi∂Xj

− ∂

∂Xi

(
qiT

) = 0, i, j = 1, 2, 3 (1)

where T is the temperature, αe = K e/ρwCw, K e is the
effective thermal conductivity, Cw and ρw are specific
heat and density of the fluid, respectively, and qi is the
i th component of the specific discharge vector q = (q1,
q2, q3). In Equation (1), K e, ρw, and Cw are considered
as constants. The effect of varying the effective thermal
conductivity is small when compared with the effect
of varying the hydraulic conductivity (e.g., Bear 1972;
Hopmans et al. 2002; Anderson 2005) so that the effective
thermal conductivity in Equation (1) is treated as a
constant.

In the absence of sources or sinks, the conservation
of total mass for a steady state fluid flow:

∂qi

∂Xi

= 0 (2)

is imposed. This simplifies Equation (1) to

αe
∂2T

∂Xi∂Xj

− qi

∂T

∂Xi

= 0 (3)

In the following analysis, we concern the case where
both temperature and specific discharge are realizations of
space random fields. In addition, they can be decomposed
and expressed in terms of their mean and perturbation
around the mean as

T = T + T
′

(4)

qi = qi + q
′
i (5)

where the bar represents the mean value and the prime
denotes the perturbation of the quantity. Substituting the
perturbed forms (4) and (5) into Equation (3) and retaining
only first-order terms (i.e., removing terms involving
products of the perturbations) gives

αe
∂2

∂Xi∂Xj

(
T + T

′) − qi

∂T

∂Xi

− qi

∂T
′

∂Xi

− q ′
i

∂T

∂Xi

= 0

(6)

The expectation of Equation (6) results in

αe
∂2T

∂Xi∂Xj

− qi

∂T

∂Xi

= 0 (7)

which governs the mean temperature field. Subtracting
the mean Equation (7) from Equation (6) leads to the
first-order perturbation equation for T ′, that is,

αe
∂2T

′

∂Xi∂Xj

− qi

∂T
′

∂Xi

− q ′
i

∂T

∂Xi

= 0 (8)

For the case of the mean groundwater flow aligned with
the X 1 direction so that q1 = q and q2 = q3 = 0, the
mean and perturbation equations, Equations (7) and (8),
take the forms, respectively, as

αe
∂2T

∂X2
1

− q
∂T

∂X1
= 0 (9)

αe
∂2T

′

∂X2
i

− q
∂T

′

∂X1
− q ′

1
∂T

∂X1
= 0 (10)

For the case of vertical one-dimensional heat transport
through an isotropic, homogeneous, and fully saturated
porous medium, Equation (3) can be simplified to

αe
∂2T

∂X2
1

− q1
∂T

∂X1
= 0 (11)

An analytical solution to this equation constrained with
prescribed temperatures T 0 and TL specified at X 1 = 0
and X 1 = L, respectively, is in the form (Bredehoeft and
Papadopulos 1965)

T = T 0 + (T L − T 0)
exp

[
X1/μ

] − 1

exp
[
L/μ

] − 1
(12)

where μ = αe/q1. A temperature profile consisting of a
few measurement points with depth and the temperatures
at the upper and lower boundaries are sufficient to obtain
a fit with Equation (12) and then to obtain reasonable
flux estimates (Schmidt et al. 2007; Anibas et al. 2009).
Jensen and Engesgaard (2011) mentioned that the steady-
state solution is most suitable in the period where
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there is a marked difference in temperature between the
groundwater and the boundary.

Lu and Ge (1996) presented an extension of the
Bredehoeft and Papadopulos model by introducing an
additional source (or sink) term in accounting for constant
horizontal flows of water and heat. Their analytical
results demonstrated that the horizontal flows of heat and
fluid have a negligible effect on the vertical temperature
distribution if the rates are less than 10% of the vertical.
But the effect becomes significant when it is comparable
to the vertical. In addition, from the numerical simulations
of stochastic models of heat and fluid flow in a two-
dimensional porous medium, Ferguson and Bense (2011)
concluded that one-dimensional analytical solution can
provide good estimates of specific discharge into streams
for the specific discharge ranging between 1 × 10−7

and 1 × 10−5 m/s for the case with variance of log
hydraulic conductivity less than 1.0 m2/s2. However,
conduction into areas with the specific discharge less
than 10−7 m/s from adjacent areas can lead to significant
errors.

Note that under the assumption of uniform mean flow
(or a uniform mean head gradient) in the X 1 direction,
the mean heat transport equation (9) in this study will
be equivalent to the classical one-dimensional transport
equation proposed by Bredehoeft and Papadopulos (1965)
if the specific discharge in their transport equation is
replaced with the mean specific discharge. Equation (12)
may then be read as the expression for the mean
temperature distribution with the gradient of

� = ∂T

∂X1
= η exp

[
X1/μ

]
(13)

where

η = T L − T 0

μ

1

exp
[
L/μ

] − 1
(14)

The variable μ in Equation (13) is now defined as μ

= αe/q . Through Equation (13), Equation (10) may be
rewritten as

αe
∂2T

′

∂X2
i

− q
∂T

′

∂X1
− q

′
1� = 0 (15)

Temperature Variance
In this section we attempt to quantify the uncertainty

(temperature variance) to be anticipated in applying
Equation (12). This can be done through the application
of the spectral representation theorem (e.g., Gelhar 1986)
for the temperature perturbations.

The space-dependent � in Equation (15) causes
the nonstationarity in the temperature fields, a transfer-
function approach (or nonstationary spectral representa-
tion) (Li and McLaughlin 1991) is therefore used to solve
Equation (15). On the other hand, because of the uni-
form mean flow assumption, the only source of variability

in specific discharge is the hydraulic conductivity per-
turbation field. In this work, the logarithm of hydraulic
conductivity (lnK ) is modeled as a realization of a station-
ary random field and, in turn, stationarity of the specific
discharge field is presumed.

If the specific discharge perturbation field is expressed
in a Fourier spectral framework as

q
′
1 =

∫ ∞

−∞
exp [iR· X ] dZq1

(R) (16)

then the temperature perturbation field will admit the
following form in terms of a transfer function �Tq as

T
′ =

∫ ∞

−∞
�Tq dZq1

(R) (17)

In Equations (16) and (17), dZq1(R) is a complex random
amplitude, which is a function of a vector of wave
numbers R = (R1, R2, R3). Introducing Equations (16) and
(17) into Equation (15) leads to

∫ ∞

−∞
{αe

∂2�Tq

∂X2
i

− q
∂�Tq

∂X1
− � exp [iR· X ]}dZq1

(R) = 0

(18)

Making use of the uniqueness of the spectral repre-
sentation in Equation (18) with � = η exp[X 1/μ] in
Equation (13) results in

αe
∂2�Tq

∂X2
i

− q
∂�Tq

∂X1
− η exp

[
iR· X + X1/μ

] = 0 (19)

Equation (19) admits the following solution:

�Tq = −η
exp

[
iR· X + X1/μ

]
q

(
μR2 − iR1

) (20)

where R2 = R2
1 + R2

2 + R2
3. It follows from Equa-

tions (17) and (20) that

T
′ = −η exp

[
X1/μ

] ∫ ∞

−∞

exp [iR•X ]

q
(
μR2 − iR1

)dZq1
(R)

(21)

Note that to take the advantage of an analytical solu-
tion, the perturbation-boundary effect on T ′ is assumed
very small and negligible in obtaining Equation (20). It is
expected that the perturbation-boundary effect is largely
limited to a small region close to the medium bound-
ary when dealing with field-scale flow phenomena (e.g.,
Rubin and Dagan 1988, 1989). A similar assumption has
been made by, for example, Li and McLaughlin (1995),
Lu and Zhang (2002), and Chang and Yeh (2010) to ana-
lyze the behavior of field-scale flow in heterogeneous
aquifers.

By taking the expected value of the product of
the Fourier-Stieltjes integral representation for T ′ in
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Equation (21) and its complex conjugate together with
the orthogonality property of random Fourier increments
of q ′

1 (virtue of representation theorem), we obtain the
variance of temperature as follows:

σ 2
T =

〈
T

′
T

′ ∗〉 = η2 exp
[
2X1/μ

]
×

∫ ∞

−∞

1

q2
(
μ2R4 + R2

1

) 〈
dZq1

(R) dZ∗
q1

(R)
〉

= η2 exp
[
2X1/μ

] ∫ ∞

−∞

1

μ2R4 + R2
1

Sq1q1
(R)

q2
dR (22)

where the asterisk superscript identifies the complex
conjugation, < > stands for the ensemble average, and
Sq1q1

is the specific discharge wave number spectrum
in the X 1 direction. The reader may be referred to the
books, e.g., by Gelhar (1993), Zhang (2002), and Rubin
(2003) for a detailed application of representation theorem
to the analysis of the field-scale groundwater and solute
transport processes in heterogeneous aquifers.

The specific discharge wave number spectrum in the
X 1 direction can be computed according to Gelhar and
Axness (1983)

Sq1q1
(R) = q2

(
1 − R2

1

R2

)2

Sff (R) (23)

where Sff(R) is the spectral density function of the
random log hydraulic conductivity field (lnK ). Combining
Equation (23) with Equation (22) gives the form

σ 2
T = η2 exp

[
2X1/μ

]
×

∫ ∞

−∞

1

μ2R4 + R2
1

(
1 − R2

1

R2

)2

Sff (R)dR (24)

We proceed to compute Equation (24) explicitly. A hole-
type exponential function (Vomvoris and Gelhar 1990) is
considered representing the spatial pattern of correlation
of random log hydraulic conductivity field (lnK ), which
has the following wave number spectrum:

Sff (R) = 4

3

σ 2
f

π2

λ5R2

(1 + λ2R2)3 (25)

where λ represents the correlation scale of lnK and σ f
2 is

the variance of lnK . With Sff(R) given in Equation (25),
integrating Equation (24) over the wave number domain
yields the temperature variance

σ 2
T

(T L − T 0)
2 = 2

9
σ 2

f

exp
(

2X1
L

L
μ

)
[
exp

(
L
μ

)
− 1

]2

× 1

P

[
3P 4 − 4P 3 + 6P 2 − 12P + 12 ln (P + 1)

]
(26)

Figure 1. Dimensionless temperature variance as a function
of dimensionless correlation length of lnK .

where P = λ/μ. Due to the assumption of negligible
boundary effects on the perturbation solution made above,
Equation (26) is not applicable to the small region next
to the boundary.

It is apparent from Equation (26) that there is a linear
relationship between the variability in temperature fields
and the heterogeneity of the medium (σ 2

f ). The tempera-
ture variation will be large in areas where there exists a
large difference in temperature between the groundwater
and the boundary. Figure 1 demonstrates how the temper-
ature variance in Equation (26) is influenced by the lnK
correlation scale. As indicated in the figure, the variabil-
ity in temperature field increases with the lnK correlation
scale, λ. A larger λ produces a higher persistence of fluc-
tuations in lnK field around the mean. This implies that
positive increments in lnK tend to be followed by other
positive increments, while negative increments tend to be
followed by other negative increments. In other words,
the lnK fluctuations are either consistently above or below
the mean for a large λ. Those contribute to a greater vari-
ance of the specific discharge since the fluctuations in lnK
field acts as the source of the fluctuations in groundwa-
ter specific discharge field. In addition, the convection of
heat is carried by the groundwater flow in aquifers. The
fluctuations in the temperature field are therefore a direct
result of those in the specific discharge in heterogeneous
aquifers. Therefore, an increased variability in the specific
discharge caused by a larger λ will introduce greater vari-
ability of the temperature field around the mean. This is
why the variability in temperature field is enhanced by
a larger λ. Figure 1 also indicates that the temperature
variance is positively related to the position.

An Example of the Uncertainty of Temperature
Profiles

The square root of Equation (26), one standard devi-
ation of the mean values, offers a useful basis to quantify
the uncertainty associated with the prediction of tempera-
ture profiles in field situations using Equation (12). About
68.2% of the time, the value of temperature falls within
the range of mean temperature ± one standard deviation.
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Figure 2. Normalized temperature profiles along with one
standard deviation intervals as a function of dimensionless
position.

When the temperature profiles and the temperature
variance are normalized by the quantity � = (TL − T 0)/
[exp(L/μ) − 1], respectively, then Equations (12) and
(26) can be expressed as

� = T − T 0

�
= exp

[
X1/μ

] − 1 (27)

σ 2
� = σ 2

T

�2 = 2

9
σ 2

f

[
exp

(
X1

μ

)]2

× 1

P

[
3P 4 −4P 3 +6P 2 −12P +12 ln (P +1)

]
(28)

Figure 2 shows the normalized mean temperature
profiles in Equation (27) along with one standard deviation
(σ�) intervals plotted as the dimensionless X 1-coordinate.
It reveals that the prediction of temperature distribution
at large position in heterogeneous aquifers is subject
to large uncertainty. This implies that there can be of
large uncertainty anticipated in heat transport prediction
in the far-source region (downstream region) based on
the analytical solution of Bredehoeft and Papadopulos
(1965), corresponding to the mean stochastic solution.
For the planning and management of heat resources
purposes, it may be more reasonable to draw conclusions,
say, from the mean temperature with one or two
standard deviations in the downstream region rather than
only the mean temperature distribution. Many practical
applications of subsurface heat transport modeling involve
predictions over a relative large space scale, where direct
measurements are not possible in most field cases. Under
such conditions, the stochastic theory provides a useful
way of assessing the uncertainty about the ensemble mean
(or classical deterministic model prediction).

Conclusions
Within the stochastic framework, the solution of the

heat transport in heterogeneous porous earth materials
is developed in terms of the temperature variance. This

variance can be used to quantify the uncertainty (or
reliability) anticipated with the application of the classical
deterministic heat transport model. From the practical
application point of view, the classical heat transport
model may be treated as the mean model containing
effective parameters. Our result indicates that the lnK
correlation scale takes a role in increasing the variability
in the temperature field and the variability of temperature
field increases with the position.
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