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SUMMARY

The importance of heterogeneous multicore programming is increasing, and Open Computing Language
(OpenCL) is an open industrial standard for parallel programming that provides a uniform programming
model for programmers to write efficient, portable code for heterogeneous computing devices. However,
OpenCL is not supported in the system virtualization environments that are often used to improve resource
utilization. In this paper, we propose an OpenCL virtualization framework based on Kernel-based Virtual
Machine with API remoting to enable multiplexing of multiple guest virtual machines (guest VMs) over the
underlying OpenCL resources. The framework comprises three major components: (i) an OpenCL library
implementation in guest VMs for packing/unpacking OpenCL requests/responses; (ii) a virtual device, called
virtio-CL, that is responsible for the communication between guest VMs and the hypervisor (also called the
VM monitor); and (iii) a thread, called CL thread, that is used for the OpenCL API invocation. Although the
overhead of the proposed virtualization framework is directly affected by the amount of data to be transferred
between the OpenCL host and devices because of the primitive nature of API remoting, experiments demon-
strated that our virtualization framework has a small virtualization overhead (mean of 6.8%) for six common
device-intensive OpenCL programs and performs well when the number of guest VMs involved in the
system increases. These results indirectly infer that the framework allows for effective resource utilization
of OpenCL devices. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Heterogeneous multicore programming is becoming more important because it allows programmers
to leverage the computing power of different heterogeneous devices while making optimal use of
the specific computation strength of each device so as to improve performance. Some programming
models have been proposed to provide a unified layer of heterogeneous multicore programming so
that programmers do not need to consider hardware factors, such as differences in the memory orga-
nizations and synchronization between host and devices. Two well-known programming models,
Compute Unified Device Architecture (CUDA) [1] and Open Computing Language (OpenCL) [2],
are both designed as host–device models. CUDA, which was proposed by NVIDIA, makes CPUs
the host and graphics processing units (GPUs) the devices. OpenCL was proposed by the Khronos
group, and its strong support from the industry has made it the standard for heterogeneous multicore
programming. In contrast, OpenCL makes CPUs the host, and it can support various architectures
such as CPUs, GPUs, and digital signal processors as devices. These programming models can help
programmers to focus on high-level software design and implementation.

*Correspondence to: Yi-Ping You, Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.
†E-mail: ypyou@cs.nctu.edu.tw

Copyright © 2012 John Wiley & Sons, Ltd.



484 T.-R. TIEN AND Y.-P. YOU

Unified heterogeneous programming models simplify the development process for programmers,
but resource management issues remain in multiuser systems because a user may not always have
immediate access to the available resources of heterogeneous devices. System virtualization repre-
sents a good solution to improving resource utilization by providing an environment that supports
the simultaneous execution of multiple guest operating systems (OSs) and supporting hardware
resource management to optimally share physical resources among OSs. The CPU performance and
memory virtualization have improved significantly in the past few years, thanks to the support of
hardware-assisted virtualization, but I/O capabilities and performance remain the weak points in
system virtualization. Many difficulties are encountered when virtualizing GPU devices because of
their architectures both being closed and tending to change markedly with each generation, which
limits the ability of guest OSs to utilize GPU resources, especially for general-purpose computing on
a GPU (GPGPU). There is currently no standard solution for using CUDA/OpenCL in system virtu-
alization, but there has been little research [3–5] into enabling CUDA support, and their evaluations
show that virtualization overheads were reasonable.

We hypothesized that combining the OpenCL programming model with system virtualization
would improve the utilization of heterogeneous devices. Enabling OpenCL support in system
virtualization provides the benefit of automatic resource management in the hypervisor [also called
the virtual machine (VM) monitor], which means that programmers do not have to consider resource
utilization issues and also that resources are allocated fairly. Such an approach also has other benefits
such as cost reduction and easier migration of executing environments due to the management
scheme provided by a VM. Our aim was to build an OpenCL support into a system VM and
to describe and test an environment that future studies could use to share hardware resources of
heterogeneous devices both fairly and efficiently.

In this paper, we present our methodologies for enabling OpenCL support in a system VM. The
ability to run OpenCL programs in a virtualized environment is supported by developing an OpenCL
virtualization framework in the hypervisor and building a VM-specific OpenCL run-time system.
We present virtio-CL, an OpenCL virtualization implementation based on the virtio framework [6]
in Kernel-based Virtual Machine (KVM) [7], and evaluate the semantic correctness and effective-
ness of our approach by comparing it with native execution environments. To our best knowledge,
this study is the first to provide support for running OpenCL programs in a system-virtualized
environment and to use the virtio framework for GPU virtualization.

The remainder of this paper is organized as follows. Section 2 introduces the basics of OpenCL
and system virtualization, and Section 3 introduces the system design and implementation of
OpenCL support in KVM. A performance evaluation is presented in Section 4. Section 5 introduces
related work, and conclusions are drawn in Section 6.

2. BACKGROUND

This section provides the basic information needed to understand the remainder of the paper,
including the fundamentals of OpenCL, system virtualization, GPU virtualization, and the
framework underlying this study (the KVM). For I/O virtualization, we focus on current mechanisms
used to virtualize GPU functionality.

2.1. Introduction to OpenCL

OpenCL is an open industry standard for the general-purpose parallel programming of
heterogeneous systems. OpenCL is a framework that includes a language, API, libraries, and a
run-time system to provide a unified programming environment for software developers to leverage
the computing power of heterogeneous processing devices such as CPUs, GPUs, digital signal pro-
cessors, and Cell Broadband Engine processors. Programmers can use OpenCL to write portable
code efficiently, with the hardware-related details being dealt with automatically by the OpenCL
run-time environment. The Khronos group proposed the OpenCL 1.0 specification in December
2008, whereas the current version, OpenCL 1.2 [8], was announced in November 2011.
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Figure 1. OpenCL platform model (adapted from [8]).

The architecture of OpenCL is divided into a hierarchy of four models: platform, execution,
memory, and programming models. In this section, we briefly introduce the definition and relation
between each model in the hierarchy. Detailed information about OpenCL can be obtained from the
OpenCL Specification [8].

2.1.1. Platform model. Figure 1 defines the platform model of OpenCL, which includes a host
connected to one or more OpenCL devices. An OpenCL device consists of one or more compute
units, which further comprise one or more processing elements (PEs). The PEs are the smallest unit
of computation on a device.

An OpenCL application is designed using a host–device model. The application dispatches jobs
(the workloads that will be processed by devices) from the host to the devices, and the jobs are exe-
cuted by PEs within the devices. The computation result will be transferred back to the host after the
execution has completed. The PEs within a compute unit execute a single stream of instructions in
a single-instruction multiple-data (SIMD) or single-program multiple-data (SPMD) manner, which
is discussed in Section 2.1.4.

2.1.2. Execution model. An OpenCL program is executed in two parts: (i) host part executes on the
host and (ii) the kernels execute on one or more OpenCL devices. The host defines a context for the
execution of kernels and creates command queues to perform the execution. When the host assigns
a kernel to a specific device, an index space is defined to help the kernel locate the resources of the
device. We introduce these terms in the following paragraphs.

Context. The host defines a context for the execution of kernels that includes resources such as
devices, kernels, program objects, and memory objects. Devices are the collection of objects of
OpenCL devices that are capable of running data-parallel and task-parallel works. Kernels are the
OpenCL functions that run on OpenCL devices. Program objects are the source codes or executables
of kernel programs. Memory objects are visible to both host and OpenCL devices. Data manipula-
tion by host and OpenCL devices is performed by memory objects. The context is created and
manipulated using functions from the OpenCL API by the host.

Command queue. The host creates command queues to execute the kernels. Types of commands
include kernel execution commands, memory commands, and synchronization commands. The host
inserts commands into the command queue, which is then scheduled by the OpenCL run-time sys-
tem. Commands are performed in one of two modes: in order or out of order. It is possible to
define multiple command queues within a single context. These queues can execute commands con-
currently, so programmers should use synchronization commands to ensure the correctness of the
concurrent execution of multiple kernels.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:483–510
DOI: 10.1002/spe



486 T.-R. TIEN AND Y.-P. YOU

2.1.3. Memory model. There are four distinct memory regions: global, constant, local, and private
memory. Global memory can be used by all work items (also called threads), constant memory is a
region of global memory that is not changed during kernel execution, local memory can be shared by
all work items in a work group (also called a thread block), and private memory can only be accessed
and changed by a single work item. The host uses OpenCL APIs to create memory objects in global
memory and to enqueue memory commands for manipulating these memory objects. Data are trans-
ferred between the host and devices by explicitly copying the data or by mapping and unmapping
regions of a memory object. The relationships between memory regions and the platform model are
described in Figure 2. OpenCL uses a relaxed consistency memory model, in that memory is not
guaranteed to be consistent between different work groups. However, the consistency of memory
objects that are shared between enqueued commands is ensured at a synchronization point.

2.1.4. Programming model. The OpenCL execution model supports data-parallel and task-parallel
programming models. Data-parallel programming refers to the application of a sequence of instruc-
tions to multiple data elements. The index space defined in the OpenCL execution model is used to
indicate a work item where data can be fetched for the computation. Programmers can define the
total number of work items along with the number of work items to form a work group or only the
total number of work items to specify how a unique work item will access data.

The OpenCL task-parallel programming model defines that a single instance of a kernel is exe-
cuted independently of any index space. Users can exploit parallelism via the following three
methods: (i) using vector data types implemented by the device; (ii) enqueuing multiple tasks; or
(iii) enqueuing native kernels developed by a programming model that is orthogonal to OpenCL.

The synchronization occurs in OpenCL in two situations: (i) for work items in a single work
group, a work group barrier is useful for ensuring the consistency, whereas (ii) for commands in the
same context but enqueued in different command queues, programmers can use command-queue
barriers and/or events to perform synchronization.

2.2. System virtual machine

System virtualization supports the simultaneous execution of multiple OSs on a single hardware
platform, with the hardware resources being shared among these OSs. System VMs provide the
benefits such as work isolation, server consolidation, safe debugging, and dynamic load balancing.
The evolution of multicore CPUs has increased the usefulness of system virtualization.

Figure 2. Conceptual OpenCL device architecture with processing elements (PEs), compute units, and
compute devices (adapted from [8]).

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:483–510
DOI: 10.1002/spe



OPENCL FOR GPGPU IN KVM 487

The hypervisor supports multiple OSs (called guest OSs) in a system VM running on a single
hardware device by managing and allocating the underlying hardware resources among guest OSs,
while ensuring that each guest OS does not affect the other guest OSs. The resources of the system
VM are time shared in a similar manner to the time-sharing mechanisms of the OS. When the control
switches from one guest to another guest, the hypervisor has to save the system state of the current
guest and restore the system state of the incoming guest. The guest system state comprises the pro-
gram counter, general-purpose registers, control registers, and other structures. Here, we focus on
system virtualization on the Intel x86 (IA-32) architecture.

2.3. GPU virtualization

Supporting the functionality of OpenCL in VM environments requires GPUs to be virtualized, which
has unique challenges because (i) they are extremely complicated devices, (ii) the hardware specifi-
cation of GPUs is closed, and (iii) GPU architectures tend to change rapidly and dramatically across
generations. These challenges make it nearly intractable to virtualize a GPU corresponding to a real
modern design. Generally, three main approaches are used to virtualize GPUs: software emulation,
API remoting, and I/O pass-through.

2.3.1. Software emulation. One way to virtualize a GPU is to emulate its functionality and to
provide a virtual device and driver for guest OSs, which are used as the interface between guest
OSs and the hypervisor. The architecture of the virtual GPU could remain unchanged, and the
hypervisor would synthesize operations of the host graphics in response to requests from virtual
GPUs. VMware has proposed VMware SVGA II as a paravirtualized solution for emulating a GPU
on hosted I/O architectures [9]. VMware SVGA II defines a common graphics stack and provides
2D and 3D rendering with the support of OpenGL.

Because OpenCL supports different kinds of heterogeneous devices, it is extremely complicated
to emulate such devices with different hardware architectures and provide a unified architecture
for OpenCL virtualization. Thus, software emulation was considered to be inappropriate for the
present study.

2.3.2. API remoting. Graphic APIs such as OpenGL and Direct 3D with heterogeneous program-
ming APIs such as CUDA and OpenCL are standard, common interfaces. It is appropriate to target
the virtualization layer at the API level, whereby the API call requests from guest VMs are for-
warded to the hypervisor, which performs the actual invocation. Such a mechanism acts like a guest
VM invoking a remote procedure call (RPC) to the hypervisor.

2.3.3. Input/output pass-through. Input/output pass-through involves assigning a GPU to a
dedicated guest VM so that the guest VM can access the GPU in the same way as in the native
environment. The hypervisor has to handle the address mapping of memory-mapped I/O (MMIO) or
port-mapped I/O (PMIO) between virtual and physical devices, which can be achieved by either soft-
ware mapping or hardware-assisted mechanisms such as Intel virtualization technology for directed
I/O (Intel VT-d) [10]. The use of the hardware support can greatly improve the performance of
I/O pass-through.

2.3.4. Comparing API remoting and input/output pass-through. A technical report by VMware [9]
describes four primary criteria for assessing GPU virtualization approaches: performance, fidelity,
multiplexing, and interposition. Fidelity relates to the consistency between virtualized and native
environments, and multiplexing and interposition refer to the abilities to share GPU resources.
Table I compares API remoting and I/O pass-through on the basis of these four criteria. I/O pass-
through exhibits better performance and fidelity than API remoting because it allows direct access
to the physical GPU and thus also its device driver and run-time library that are used in the native
environment. In contrast, API remoting requires modified versions of the device driver and run-time
library for transferring the API call requests/responses, and the data size of API calls is the key vir-
tualization overhead. Although I/O pass-through is considered superior on the basis of the first two
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Table I. Comparing API remoting and input/output pass-through
based on the four criteria.

API remoting Input/output pass-through

Performance � _
Fidelity � _
Multiplexing _ �
Interposition _ �

_: best supported ; �: supported ; �: not supported.

criteria, its fatal weakness is that it cannot share GPU resources across guest VMs. Resource sharing
is an essential characteristic of system virtualization, and API remoting can share GPU resources on
the basis of the concurrent abilities at the API level.

In this study, we chose API remoting for our OpenCL virtualization solution on the basis of the
comparison in Table I because this technique not only provides OpenCL support in a VM envi-
ronment but ensures resource sharing across guest VMs. The design and implementation issues are
discussed in Section 3.

2.4. Kernel-based Virtual Machine

Kernel-based Virtual Machine is a full virtualization framework for Linux on the x86 platform
combined with hardware-assisted virtualization. The key concept of KVM is turning Linux into a
hypervisor by adding the KVM kernel module. The comprehensive functionality in a system VM
can be adapted from the Linux kernel, such as the scheduler, memory management, and I/O subsys-
tems. KVM leverages hardware-assisted virtualization to ensure a pure trap-and-emulation scheme
of system virtualization on the x86 architecture, not only allowing the execution of unmodified OSs
but also improving the performance in virtualizing CPUs and the memory management unit. The
KVM kernel component has been included in the mainline Linux kernel since version 2.6.20 and
has become the main virtualization solution in the Linux kernel.

2.4.1. Basic concepts of Kernel-based Virtual Machine. Kernel-based Virtual Machine is divided
into two components: (i) a KVM kernel module that provides an abstract interface (located at
/dev/kvm) as an entry point for accessing the functionality of Intel VT-x [11] or AMD-V [12] and
(ii) the hypervisor process that executes a guest OS and emulates I/O actions with QEMU (Quick
EMUlator) [13]. The hypervisor process is regarded as a normal process for the viewpoint of the
host Linux kernel. An overview of KVM is provided in Figure 3.

Process model. The KVM process model is illustrated in Figure 4. In KVM, a guest VM is executed
within the hypervisor process that provides the necessary resource virtualizations for a guest OS,
such as CPUs, memory, and device modules. The hypervisor process contains N threads (N > 1)
for virtualizing CPUs (vCPU threads), with a dedicated I/O thread for emulating asynchronous I/O
actions. The physical memory space of a guest OS is a part of the virtual memory space in the
hypervisor process.

Figure 3. Kernel-based Virtual Machine (KVM) overview.
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Figure 4. Kernel-based Virtual Machine (KVM) process model (adapted from [14]).

Figure 5. Kernel-based Virtual Machine (KVM) execution flow from the viewpoint of the vCPU
(adapted from [14]).

Execution flow from the viewpoint of the vCPU. As illustrated in Figure 5, the execution flow of
vCPU threads is divided into three execution modes: guest, kernel, and user modes. In Intel VT-x,
the guest mode is mapped onto VMX nonroot mode, and both kernel and user modes are mapped
onto VMX root mode.

A vCPU thread in guest mode can execute guest instructions as in the native environment except
when it encounters a privileged instruction. When the vCPU thread executes a privileged instruc-
tion, the control will transfer to the KVM kernel module. This module first maintains the VM control
structure of the guest VM and then decides how to handle the instruction. Only a small proportion
of the actions is processed by the kernel module, including virtual memory management unit and
in-kernel I/O emulation. In other cases, the control will further transfer to user mode, in which the
vCPU thread performs the corresponding I/O emulation or signal handling by QEMU. After the
emulated operation has completed, the context held by the user space is updated, and then the vCPU
thread switches back to guest mode.

The transfer of control from guest mode to kernel mode is called a lightweight VM exit, and that
from guest mode to user mode is called a heavyweight VM exit. The performance of I/O emulation
is strongly influenced by the number of heavyweight VM exits because they cost much more than
lightweight VM exits.

Input/output virtualization. Each virtual I/O device in KVM has a set of virtual components, such
as I/O ports, MMIO spaces, and device memory. Emulating I/O actions requires access to such

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:483–510
DOI: 10.1002/spe



490 T.-R. TIEN AND Y.-P. YOU

virtual components to be maintained. Each virtual device will register its I/O ports and an MMIO
space handler routine when the device starts. When PMIO or MMIO actions are executed in the
guest OS, the vCPU thread will trap from the guest mode to the user mode and look up the record
of the allocation of I/O ports or MMIO spaces to choose the corresponding I/O emulation routines.
Asynchronous I/O actions such as the arrival of response network packets or the occurrence of
keyboard signals should be processed using the I/O thread. The I/O thread is blocked while wait-
ing for new incoming I/O events and handles them by sending virtual interrupts to the target guest
OS, or emulates direct memory access between virtual devices and the main memory space of the
guest OS.

2.4.2. Virtio framework. The virtio framework [6] is an abstraction layer over paravirtualized I/O
devices in a hypervisor. Virtio was developed by Russell to support his own hypervisor called lguest,
and it was adopted by KVM for its I/O paravirtualization solution. Virtio makes it easy to implement
new paravirtualized devices by extending the common abstraction layer. The virtio framework has
been included in the Linux kernel since version 2.6.30.

Virtio conceptually abstracts an I/O device into front-end drivers, back-end drivers, and one
or more ‘virtqueues’, as shown in Figure 6. Front-end drivers are implemented as device drivers
of virtual I/O devices and use virtqueues to communicate with the hypervisor. Virtqueues can
be regarded as memory spaces that are shared between guest OSs and the hypervisor. There is
a set of functions for operating virtqueues, including adding/retrieving data to/from a virtqueue
(add_buf/get_buf), generating a trap to switch the control to the back-end driver (kick),
and enabling/disabling call-back functions (enable_cb/disable_cb), which are the interrupt
handling routines of the virtio device. The back-end driver in the hypervisor retrieves the data
from virtqueues and then performs the corresponding I/O emulation on the basis of the data from
guest OSs.

The high-level architecture of virtio in the Linux kernel is illustrated in Figure 7. The virtqueue
and the data-transfer function are implemented in virtio.c and virtio_ring.c, and there
is a series of virtio devices such as virtio-blk, virtio-net, and virtio-pci. The object
hierarchy of the virtio front-end is shown in Figure 8, which illustrates the fields and methods of
each virtio object and their interrelationships. A virtqueue object contains the description of avail-
able operations, a pointer to the call-back function, and a pointer to a virt io_device that owns this
virtqueue. A virt io_device object contains the fields used to describe the features and a pointer to
a virt io_conf ig_ops object, which is used to describe the operations that configure the device. In
the device initialization phase, the virtio driver would invoke the probe function to set up a new
instance of virt io_device.

QEMU

Front-end drivers

Back-end drivers

Virtqueue(s)

Device emulation

Guest OS

KVM

Host Linux

Figure 6. Virtio architecture in Kernel-based Virtual Machine (KVM).
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Figure 7. High-level architecture of virtio (adapted from [15]).

Figure 8. Object hierarchy of the virtio front-end (adapted from [15]).

In this study, we implemented our API remoting mechanism based on the virtio framework to
perform the data communication for OpenCL virtualization. The design and implementation details
are discussed in Section 3.

3. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the software architecture and provides details of the design for enabling
OpenCL support in KVM.

3.1. OpenCL API remoting in Kernel-based Virtual Machine

We first describe the framework of OpenCL API remoting in KVM, including the software
architecture, the execution flow, and the relationships among the various software components.

3.1.1. Software architecture. Figure 9 presents the architecture of OpenCL API remoting proposed
in this study, which includes an OpenCL library specific to guest OSs, a virtual device, called
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Figure 9. Architecture of OpenCL API remoting in Kernel-based Virtual Machine (KVM).

virtio-CL, and the CL thread. Multiple guest VMs in the virtualization framework can be modeled
as multiple processes accessing the OpenCL resources in the native environment. The execution
behaviors of these processes depend on the implementation of the vendor-specific OpenCL run-
time system. The functions of each component (with bold, red borders) are described as follows:

Guest OpenCL library. The guest OpenCL library is responsible for packing OpenCL requests
of user applications from the guest and unpacking the results from the hypervisor. In our cur-
rent implementation, the guest OpenCL library is designed as a wrapper library and performs
basic verifications according to the OpenCL specifications, such as null pointer or integer value
range checking.

Virtio-CL device. The virtio-CL virtual device is responsible for data communication between
the guest OS and the hypervisor. The main components of virtio-CL are two virtqueues for data
transfer from the guest OS to the hypervisor and vice versa. The virtio-CL device can be further
divided into the front-end (residing in the guest OS) and the back-end (residing in the hypervi-
sor). The guest OS accesses the virtio-CL device by the front-end driver and writes/reads OpenCL
API requests/responses via virtqueues using the corresponding driver calls. The virtio-CL back-end
driver accepts the requests from the guest OS and passes them to the CL thread. Actual OpenCL API
calls are invoked by the CL thread. The virtqueues can be modeled as device memory of virtio-CL
from the viewpoint of the guest OS.

CL thread. The CL thread accesses vendor-specific OpenCL run-time systems in user mode. It
reconstructs the requests, performs the actual invocation of OpenCL API calls, and then passes the
results back to the guest OS via the virtqueue used for response transfer. Because the processing time
differs between each OpenCL API call, it is better to use an individual thread to handle OpenCL
requests than to extend the functionality of existing I/O threads in the hypervisor process because
this will mean that the OpenCL APIs are independent of the functionality of the I/O thread.

An alternative approach to creating an CL thread to process OpenCL requests is to imple-
ment the actual invocation of OpenCL API calls in the handler of the vCPU thread and con-
figure multiple vCPUs for each guest VM. However, both of these approaches require a buffer
(CLRequestQueue, as shown in Figure 10) to store segmented OpenCL requests in case an
OpenCL request is larger than the virtqueue for requests (VQ_REQ in Figure 10). In addition,
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Figure 10. Execution flow of OpenCL API remoting. The circled numbers are explained in the text.

the latter approach has to handle the synchronization of the virtqueue for the response (VQ_RESP
in Figure 10) between different vCPU threads, whereas the former approach handles the synchro-
nization of CLRequestQueue between the vCPU thread and the CL thread.

3.1.2. Execution flow. Figure 10 illustrates the execution flow of OpenCL API calls, which involves
the following processing steps:

1. A process running in a guest OS invokes an OpenCL API function.
2. The guest OpenCL library (libOpenCL.a) first performs basic verifications of the param-

eters according to the OpenCL API specifications. If the verifications fail, it returns the
corresponding error code to the user-space process.

3. After parameter verification, the guest OpenCL library sets up the data that need to be
transferred and executes an fsync() system call.

4. The fsync() system call adds the data to the virtqueue for requests (VQ_REQ) and then
invokes the kick() method of VQ_REQ to generate a VM exit. The control of the current
vCPU thread is transferred to a corresponding handler routine of VM exit in user mode.

5. In user mode, the handler routine copies the OpenCL API request to CLRequestQueue, which
is a memory space that is shared between vCPU threads and the CL thread. After the copy
process completes, control is transferred back to the guest OpenCL library. If the data size
of the request is larger than the size of VQ_REQ, the request is divided into segments, and
the execution jumps to step 3 and repeats steps 3–5 until all the segments are transferred. If
all of the data segments of the OpenCL request are transferred, the handler will signal to the
CL thread that there is an incoming OpenCL API request, and the CL thread starts processing
(see step 7).

6. After the request is passed to the hypervisor, the guest OpenCL library invokes a read()
system call, which waits for the result data and returns after all of the result data have
been transferred.

7. The CL thread waits on a blocking queue until receiving the signal from the handler routine of
VM exit in step 5. The CL thread then unpacks the request and performs the actual invocation.
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8. After the OpenCL API invocation has completed, the CL thread packs the result data, copies
them to the virtqueue for responses (VQ_RESP ), and then notifies the guest OS by sending
a virtual interrupt from the virtio-CL device.

9. Once the guest OS receives the virtual interrupt from the virtio-CL device, the corresponding
interrupt service routine wakes up the process waiting for response data of the OpenCL API
call, and the result data are copied from VQ_RESP to the user-space memory. Repeat steps 8
and 9 until all of the result data are transferred.

10. Once the read() system call returns, the guest OpenCL library can unpack and rebuild the
return value and/or side effects of the parameters. The execution of the OpenCL API function
has now been completed.

3.1.3. Implementation details. This section presents the implementation details of the proposed
virtualization framework, including the guest OpenCL library, device driver, data transfer, and
synchronization points.

Guest OpenCL library and device driver. The device driver of virtio-CL implements open(),
close(), mmap(), fsync(), and read() system calls. mmap() and fsync() are used for
transferring OpenCL requests, and the read() system call is used for retrieving the response data.
The guest OpenCL library uses these system calls to communicate with the hypervisor.

Before a user process can start using OpenCL resources, it has to explicitly invoke a specific
function, clEnvInit(), to perform the steps involved in resource initialization such as opening
the virtio-CL device and preparing the memory storages for data transfer. An additional function,
clEnvExit(), has to be invoked to release the OpenCL resources before the process finishes
executing. Therefore, minor changes are required so that OpenCL programs can be executed on the
virtualized platform: adding clEnvInit() and clEnvExit() at the beginning and the end of
an OpenCL program, respectively. However, these changes can be made automatically by a simple
OpenCL parser. An alternative approach that avoids such changes can be used, but it involves a com-
plex virtualization architecture and greatly increases the overhead. The alternative implementation
is discussed further in Section 3.2.5.

Synchronization points. There are two synchronization points in the execution flow: (i) in the CL
thread that waits for a completed OpenCL request and (ii) in the implementation of the read()
system call that waits for the result data processed by the CL thread. The first synchronization
point is handled by the use of pthread mutexes and condition variables. When the data segments
of an OpenCL request are not completely transferred to CLRequestQueue, the CL thread invokes
pthread_cond_wait() to wait for the signal from the handler routine of VQ_REQ. The
pseudocodes of the first synchronization point are presented in Figures 11 and 12. The second syn-
chronization point works as follows: the read() system call is first placed in the waiting queue
in the kernel space to be blocked. The blocked process will resume executing and will retrieve the
response data segment from VQ_RESP after the virtual interrupt of virtio-CL is triggered. The
pseudocodes of the second synchronous point are presented in Figure 13.

Figure 11. The first synchronization point (CL thread).

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:483–510
DOI: 10.1002/spe



OPENCL FOR GPGPU IN KVM 495

Figure 12. The first synchronization point (virtual machine exit handler).

Figure 13. The second synchronization point (read() system call).

The two synchronization mechanisms not only ensure data correctness among the data-transfer
processes but also allow the vCPU resource to be used by other processes in the guest OS.

Data transfer. The green and orange arrows in Figure 10 represent the paths of data transfer. The
green arrows indicate data copying among the guest user space, the guest kernel space, and the host
user space. Because the data transfer of OpenCL requests is processed actively by the guest OpenCL
library, data copying from the guest user space to the guest kernel space can be bypassed by prepar-
ing a memory-mapped space (indicated by the orange arrow). The data copying in the opposite
direction cannot be eliminated because the guest OpenCL library is passively waiting for results
from the hypervisor. Thus, there are two data-copy processes for a request and three data-copy
processes for a response.

3.2. Implementation issues

This section discusses the issues related to supporting implementation of OpenCL in KVM,
including the size of virtqueues and the data coherence between guest OSs and the hypervisor.

3.2.1. Size of virtqueues. A series of address translation mechanisms is used to allow both the guest
OS and the QEMU part to access the data from virtqueues. On one hand, the size of virtqueues
directly affects the virtualization overhead because larger virtqueues result in fewer heavyweight
VM exits; on the other hand, because the total virtual memory space of the hypervisor process is
limited (4 GB in 32-bit host Linux), the size of virtqueue is also limited.

In our framework, both VQ_REQ and VQ_RESP have a size of 256 kB (64 pages) according to
the configurations of the existing Virtio devices: virtio-blk and virtio-net. virtio-blk
has one virtqueue. The size of the virtqueue is 512 kB (128 pages), and virtio-net has two
virtqueues, each of which is 1024 kB (256 pages). A request (or a response) will be partitioned into
multiple 256-kB segments and then transferred sequentially if the data size of the request (or the
response) exceeds the size of virtqueue.
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3.2.2. Signal handling. A user OpenCL process may experience a segmentation fault when calling
OpenCL APIs. In the native environment, this would cause the process execution to terminate, but
in our virtualization framework, this situation needs to be handled carefully by the CL thread to
ensure that the hypervisor process does not crash. The CL thread has to build handler routines for
signals such as SIGSEGV to recover the thread from such a signal and return the corresponding
error messages to the guest OpenCL library.

3.2.3. Data structures related to the run-time implementation. Figure 14 lists the data structures
related to the run-time implementation in OpenCL. These data structures are maintained by the
vendor-specific OpenCL run-time system, and the users can only access them via the corresponding
OpenCL functions. For example, when a process invokes clGetDeviceIDs() with a pointer to
an array of cl_device_id as a parameter, the function fills each entry of the array with a pointer
to the object of an OpenCL device. In our framework, the CL thread is used to access the actual
OpenCL run-time system in user mode and consume the parameters provided by the guest process.
However, the CL thread cannot access the array directly because it is in a virtual address space
of the guest process. Thus, we have to construct a ‘shadow mapping’ of the guest array, whereby
the CL thread allocates a ‘shadow array’ and maintains a mapping table between the array in the
guest and the shadow array. Figure 15 illustrates an example of the shadow-mapping mechanism.
When a guest process invokes clGetDeviceIDs(), the CL thread allocates a shadow array and
creates a new entry in the mapping table that records the pointer type, the process identifier of the
guest process, and the mapping between the host address and the guest address. The CL thread

Figure 14. Data structures related to the OpenCL run-time implementation.

Figure 15. Shadow-mapping mechanism. KVM, Kernel-based Virtual Machine.
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Figure 16. Prototype of clCreateBuffer().

then invokes the actual OpenCL function with the shadow array and transfers all of the contents
of the shadow array to the guest process after the function invocation completes to ensure that the
cl_device_id array in the guest has the same contents as the shadow array.

When the guest process invokes an OpenCL function that uses a cl_device_id object, the
value of this object can be directly used because it is a pointer to the host address space. When the
guest process invokes an OpenCL function that uses an array of cl_device_id objects, the CL
thread will look up the mapping table to find the address of the shadow array for the actual func-
tion invocation. After the guest process invokes clEnvExit(), the CL thread deletes the entries
related to the process and releases the memory spaces recorded by the entries in the mapping table.

3.2.4. OpenCL memory objects. An OpenCL memory object (cl_mem) is an abstraction of
global device memory that can serve as a data container for computation. A process can use
clCreateBuffer() to create a memory object that can be regarded as a one-dimensional buffer.
Figure 16 shows the prototype of clCreateBuffer(), where context is a valid OpenCL
context associated with this memory object, flags is used to specify allocation and usage infor-
mation (Table II describes the possible values of flags), size indicates the size of the memory
object (in bytes), host_ptr is a pointer to the buffer data that may already be allocated, and
errcode_ret is the field used to store the error-code information.

The buffer object can be allocated in either the OpenCL device or the OpenCL host
memory, depending on the flags parameter. If the CL_MEM_USE_HOST_PTR or CL_MEM_
ALLOC_HOST_PTR option is selected, the buffer object would use the memory spaces pointed
by host_ptr that resides in the virtual address space of the guest process. Although the
memory spaces pointed by host_ptr belong to the OpenCL host memory, they can only be
accessed by a set of corresponding OpenCL functions such as clEnqueueReadBuffer() and
clEnqueueWriteBuffer(), and the behavior is undefined when directly accessing the mem-
ory spaces. Two difficulties are encountered when supporting the CL_MEM_USE_HOST_PTR
or CL_MEM_ALLOC_HOST_PTR option in our virtualization framework, which is illustrated in
Figure 17: (i) the CL thread cannot access this memory region directly and (ii) ensuring memory
coherence between the guest process and the CL thread remains a complicated problem even when
a shadow memory space is created in the CL thread. Possible solutions to the memory coherence
problem are discussed in Section 3.2.5.

3.2.5. Enhancement of the guest OpenCL library. The current implementation of our OpenCL
virtualization framework only fully supports the CL_MEM_COPY_HOST_PTR option, which
allocates storage in the device memory and copies the data pointed by host_ptr to the device
memory. The CL_MEM_USE_HOST_PTR and CL_MEM_ALLOC_HOST_PTR options are sup-
ported only if users follow the OpenCL specification to access the memory object by the corre-
sponding OpenCL functions. Memory coherence cannot be guaranteed if the memory region was
accessed by the OpenCL host program directly. Although the functions of clCreateBuffer()
are not fully supported in the current virtualization framework, the framework can be used to virtu-
alize most of the OpenCL operations on a CPU–GPU platform because buffer objects are generally
accessed by OpenCL functions in response to operations thereon. The second drawback in our
framework is that programmers have to add clEnvInit() and clEnvExit() function calls
at the beginning and the end of an OpenCL program, respectively, as mentioned in Section 3.1.3,
which means that the OpenCL programs are not natively portable.
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Table II. List of supported cl_mem_flags values (adapted from [8]).

cl_mem_flags Description

CL_MEM_READ_WRITE Specifies that the memory object will be read and
written by a kernel. This is the default.

CL_MEM_WRITE_ONLY Specifies that the memory object will be written but not
read by a kernel.

Reading from a buffer or image object created
with CL_MEM_WRITE_ONLY inside a kernel
is undefined.

CL_MEM_READ_ONLY Specifies that the memory object is read-only when
used inside a kernel.

Writing to a buffer or image object created with
CL_MEM_READ_ONLY inside a kernel is
undefined.

CL_MEM_USE_HOST_PTR Valid only if host_ptr is not null. If speci-
fied, it indicates that the application wants the
OpenCL implementation to use memory referenced
by host_ptr as the storage bits for the memory
object.

OpenCL implementations are allowed to cache the
buffer contents pointed to by host_ptr in device
memory. This cached copy can be used when kernels
are executed on a device.

The result of OpenCL commands that operate
on multiple buffer objects created with the same
host_ptr or overlapping host regions is considered

to be undefined.

CL_MEM_ALLOC_HOST_PTR Specifies that the application wants the OpenCL imple-
mentation to allocate memory from host accessible
memory.

CL_MEM_ALLOC_HOST_PTR and
CL_MEM_USE_HOST_PTR are mutually exclusive.

CL_MEM_COPY_HOST_PTR Valid only if host_ptr is not null. If specified,
it indicates that the application wants the OpenCL
implementation to allocate memory for the memory
object and copy the data from memory referenced by
host_ptr.

CL_MEM_COPY_HOST_PTR and
CL_MEM_USE_HOST_PTR are mutually exclusive.

CL_MEM_COPY_HOST_PTR can be used with
CL_MEM_ALLOC_HOST_PTR to initialize the
contents of the cl_mem object allocated using host
accessible (e.g., PCIe) memory.

A possible approach for solving these problems is to substitute the guest OpenCL library with a
new virtualization layer that can notify the hypervisor about the start/completion of a guest process
and intercept the read/write events of the guest process so as to ensure memory coherence between
the guest and shadow memory spaces. The virtualization layer is conceptually like a process VM.
The disadvantage of introducing such a layer is the higher cost of ensuring memory coherence.
Enhancing the guest OpenCL library constitutes one aspect of our future work.

4. EXPERIMENTAL RESULTS

Evaluations of the OpenCL virtualization framework proposed herein are presented in this section,
including the environments tested, the experimental results obtained, and the discussions thereof.
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Figure 17. Memory coherence problem in clCreateBuffer(). KVM, Kernel-based Virtual Machine.

4.1. Environment

4.1.1. Testbed. All of the evaluations were conducted on a computer with an Intel Core i7-930
CPU (containing eight cores operating at 2.8 GHz), 8 GB of RAM, and two NVIDIA GeForce GTX
580 GPUs running the Linux 2.6.32.21 kernel with NVIDIA CUDA SDK version 3.2 (including
NVIDIA OpenCL SDK). Our OpenCL virtualization framework was implemented in qemu-kvm-
0.14.0 operating with kvm-kmod-2.6.32.21. Each guest VM in the virtualization framework was
configured with one virtual CPU, 512 MB of RAM, and a 10-GB disk drive running the Linux
2.6.32.21 kernel. The size of virtqueues in virtio-CL was configured as 256 kB (64 pages).

As described in Section 3.1, the architecture of our OpenCL virtualization framework can be
modeled as multiple processes accessing the OpenCL resources in the native environment. To
realize the resource-sharing characteristics of our virtualization framework, we took advantage of
NVIDIA Fermi GPUs that support ‘concurrent kernel execution’ and ‘improved application context
switching’ [16]. Concurrent kernel execution allows multiple OpenCL kernels in an application to
execute concurrently if the GPU resources are not fully occupied, and the optimized Fermi pipeline
significantly improves the efficiency of context switches.

4.1.2. Benchmarks. The benchmarks we used to evaluate our proposed OpenCL virtualization
framework were collected from the NVIDIA OpenCL SDK [17] and the AMD Accelerated Parallel
Processing SDK [18], both of which contain a set of general-purpose algorithms in various domains.
Table III summarizes these benchmarks, including their descriptions, the number of OpenCL API
calls, and the amount of data transferred between the guest OS and the hypervisor process.

4.2. Evaluation

First, we evaluated the virtualization overhead of the proposed framework by measuring the
execution time of OpenCL programs for two configurations:

� Native
Benchmark programs execute on the host platform and access the vendor-specific OpenCL

run-time system directly. This configuration represents the baseline in all experiments.
� 1-Guest

Benchmark programs execute in a guest VM and acquire the functionality of OpenCL using
our proposed virtualization framework. This configuration is used to evaluate the overhead in
the virtualized environment.
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Table III. Parameters of the benchmark programs.

Number of Data size
Benchmark Source API calls (MB) Description

FastWalshTransform AMD 34 3.08 Generalized Fourier transformations
BlackScholes NVIDIA 34 77.27 Modern option pricing techniques that are com-

monly applied in the finance field
MersenneTwister NVIDIA 44 183.88 Mersenne twister random number generator and

Cartesian Box–Muller transformation on the
graphics processing unit

MatrixManipulation AMD 53 48.76 An implementation of the matrix multiplication
ScanLargeArray AMD 70 0.51 An implementation of scan algorithm for large

arrays
ConvolutionSeparable NVIDIA 38 72.75 Convolution filter of a 2D image with an arbi-

trary separable kernel
ScalarProduct NVIDIA 37 0.81 Scalar product of set of input vector pairs

Table IV. Execution time of seven OpenCL benchmarks for the Native and 1-Guest configurations.

Native 1-Guest Virtualization Virtualization
Benchmark (seconds) (seconds) Overhead (seconds) Overhead (%)

FastWalshTransform 1.175 1.256 0.081 6.9
BlackScholes 2.330 2.424 0.094 4.0
MersenneTwister 8.078 11.603 3.525 43.6
MatrixManipulation 0.969 1.082 0.113 11.7
ScanLargeArray 0.939 0.976 0.037 3.9
ConvolutionSeparable 3.937 4.154 0.217 5.5
ScalarProduct 0.581 0.631 0.050 8.6

Figure 18. Normalized execution time for the Native and 1-Guest configurations. FWT, FastWalshTrans-
form; BS, BlackScholes; MT, MersenneTwister; MM, MatrixManipulation; SLA, ScanLargeArray; CS,

ConvolutionSeparable; SP, ScalarProduct.

4.2.1. Virtualization overhead. Table IV summarizes the execution time of the seven OpenCL
programs for the Native and 1-Guest configurations, and Figure 18 shows the time with the Native
configuration normalized to 1. The overhead of executing the OpenCL programs in the virtualized
platform ranged from 3.9% [for ScanLargeArray (SLA)] to 43.6% [for MersenneTwister (MT)],
with the mean value of 12.0%. The overhead was only markedly higher than 10% for the MT
benchmark program—the mean overhead was 6.8% if MT is excluded.
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Figure 19. Ratios of execution time for OpenCL APIs and OpenCL host code. FWT, FastWalshTrans-
form; BS, BlackScholes; MT, MersenneTwister; MM, MatrixManipulation; SLA, ScanLargeArray; CS,

ConvolutionSeparable; SP, ScalarProduct.

Figure 20. Ratios of virtualization overheads for OpenCL APIs and OpenCL host code. FWT, FastWalsh-
Transform; BS, BlackScholes; MT, MersenneTwister; MM, MatrixManipulation; SLA, ScanLargeArray;

CS, ConvolutionSeparable; SP, ScalarProduct.

Overhead analysis. To identify the reason for the various overhead distributions, we first measured
the execution time for OpenCL APIs and OpenCL host code in both configurations. Figures 19
and 20 show the ratios of execution time and virtualization overheads for OpenCL APIs and
OpenCL host code, respectively. According to the analysis, MT is a CPU-intensive program, and the
overhead of OpenCL host code (referred to as the CPU virtualization in KVM) dominates the perfor-
mance loss. In addition, we analyzed the virtualization overhead of the OpenCL APIs. Table V and
Figure 21 provide detailed breakdowns of the virtualization overhead, which is divided into three
parts in our measurements: (i) data transfer from the guest VM to the hypervisor; (ii) data transfer
from the hypervisor to the guest VM; and (iii) other overheads. We used the gettimeofday()
function to measure the time required for data transfer from the guest VM to the hypervisor in
the guest OpenCL library and the transfer time in the opposite direction in the CL thread. Other
overheads represent the remainder of the period of the virtualization overhead that is incurred in
executing the guest OpenCL library, synchronizing between the vCPU thread and CL thread, exe-
cuting the CL thread, and other processes. The overhead caused by data transfer ranged from 78.3%
and 94.1%, and the other overheads ranged from 5.9% to 21.7%. As expected, the data transfer
dominates the OpenCL virtualization overhead because of the nature of API remoting.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014; 44:483–510
DOI: 10.1002/spe



502 T.-R. TIEN AND Y.-P. YOU

Table V. Detailed breakdown of the OpenCL virtualization overhead.

Overhead G to H� H to G� Others
Benchmark (seconds) (seconds) (seconds) (seconds)

FastWalshTransform 0.020 0.009 0.008 0.002
BlackScholes 0.092 0.045 0.042 0.005
MersenneTwister 1.416 0.042 1.067 0.307
MatrixManipulation 0.106 0.059 0.036 0.011
ScanLargeArray 0.005 0.002 0.002 0.0003
ConvolutionSeparable 0.133 0.048 0.068 0.017
ScalarProduct 0.010 0.003 0.006 0.0010

�Guest to hypervisor.
� Hypervisor to guest.

Figure 21. Breakdown of the virtualization overhead. FWT, FastWalshTransform; BS, BlackScholes;
MT, MersenneTwister; MM, MatrixManipulation; SLA, ScanLargeArray; CS, ConvolutionSeparable;

SP, ScalarProduct.

Table VI. Profiling information of data transfer and virtual machine exits.

Benchmark G to H (MB) H to G (MB) Total (MB) No. of virtual machine exits

FastWalshTransform 3.02 0.05 3.07 744
BlackScholes 46.75 30.52 77.27 485
MersenneTwister 0.75 183.13 183.88 1541
MatrixManipulation 32.75 16.01 48.76 482
ScanLargeArray 0.50 0.01 0.51 132
ConvolutionSeparable 36.75 36.00 72.75 645
ScalarProduct 0.79 0.22 0.81 66

We ascertained the amounts of data transferred to and from the hypervisor and the number of
VM exits to investigate the relationships among overheads and the aforementioned two factors. The
profiling information is given in Table VI and Figure 22. In general, the transfer of greater amount
of data between the host and the device in an OpenCL program results in more VM exits because
the data-copy process between the guest and the hypervisor requires a series of VM exits: two data-
copy processes from the guest to the hypervisor, and three data-copy processes from the hypervisor
to the guest for the data transfer of an OpenCL API call. Thus, both VM exits and data transfer
cause additional overhead. However, the relationship cannot be clarified by the profile information
because each benchmark program exhibits its own specific behavior that results in different amounts
of data transferred and numbers of VM exits.

Variable input size. To clarify the relationships among the amount of data transferred, the number
of VM exits, and the OpenCL virtualization overhead, we investigated BlackScholes (BS)—which
implements a mathematical model for financial options—with variable input sizes by adjusting the
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Figure 22. Profiling information of data transfer and virtual machine (VM) exits. FWT, FastWalshTrans-
form; BS, BlackScholes; MT, MersenneTwister; MM, MatrixManipulation; SLA, ScanLargeArray; CS,

ConvolutionSeparable; SP, ScalarProduct.

Table VII. OpenCL virtualization overhead and profile information of BlackScholes with variable input
size. optionCount is the variable that configures the input size.

Native 1-Guest Overhead Overhead Data size No. of
optionCount (seconds) (seconds) (seconds) (%) (MB) virtual machine exits

2,000,000 0.738 0.787 0.050 6.7 38.76 268
4,000,000 0.753 0.869 0.116 15.4 77.27 485
6,000,000 0.784 1.022 0.238 30.4 115.03 695
8,000,000 0.820 1.434 0.614 74.9 153.54 912
10,000,000 0.852 2.826 1.974 231.5 191.86 1124
12,000,000 0.877 4.281 3.404 388.1 229.81 1339
14,000,000 0.908 5.725 4.817 530.2 269.69 1557
16,000,000 0.946 7.267 6.320 667.8 306.07 1766

Figure 23. OpenCL virtualization overhead for BlackScholes with variable input size.

value of variable optionCount from 2�106 to 16�106. Table VII and Figures 23 and 24 summa-
rize the evaluation results and the profiling statistics, including both the amount of data transferred
and the number of VM exits. It can be seen that both of these parameters are proportional to the input
data size, and the OpenCL virtualization overhead has a slightly more than proportional increase
with respect to the input data size. Figure 25 provides a detailed breakdown of the virtualization
overhead for BS with variable input size.
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Figure 24. Profile information for BlackScholes with variable input size.

Figure 25. Breakdown of OpenCL virtualization overhead for BlackScholes with variable input size.

We observed that the contribution of other overheads was relatively stable, ranging from 12.9%
to 22.0%, whereas the ratio for hypervisor-to-guest data transfer increased from 43% to about 80%
when optionCount increased to 16�106, whereas the ratio for guest-to-hypervisor data transfer
decreased. As mentioned in Section 3.1.2, data transfer from the guest to the hypervisor is performed
actively by the vCPU thread and requires a series of VM exits, whereas the data transfer from the
hypervisor to the guest is performed actively by the CL thread and requires a series of VM exits and
virtual interrupts. This difference in the implementations of data transfer results in the overhead for
hypervisor-to-guest data transfer increasing faster as the amount of transferred data increases.

In conclusion, the virtualization overhead in our framework is strongly affected by the amount of
data transferred and the number of VM exits of OpenCL programs, and this characteristic is also
obvious in other API remoting approaches.

4.2.2. Evaluation in multiple guest virtual machines. The following experiment was used to
evaluate the scalability of our OpenCL virtualization framework. We executed multiple guest VMs,
each of which ran an arbitrary benchmark program. There were two configurations: 2-Guest and
3-Guest, which represent scenarios of concurrently executing two and three OpenCL programs by
different guest VMs, respectively. Figure 26 shows the normalized execution time of each bench-
mark in the Native, 1-Guest, 2-Guest, and 3-Guest configurations. We observed that the virtualiza-
tion overhead was smaller in the 2-Guest configuration than that in the 1-Guest configuration and
even than that in the Native configuration for most of the benchmarks: such as FastWalshTransform
(FWT), BS, MatrixManipulation (MM), SLA, and ConvolutionSeparable (CS). The virtualization
overhead in the 3-Guest configuration was larger than that in the 2-Guest configuration but still
smaller than that in the 1-Guest configuration.
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Figure 26. Normalized execution time for the Native, 1-Guest, 2-Guest, and 3-Guest configurations.
FWT, FastWalshTransform; BS, BlackScholes; MT, MersenneTwister; MM, MatrixManipulation; SLA,

ScanLargeArray; CS, ConvolutionSeparable; SP, ScalarProduct.

The experimental results shown in Figure 26 are surprising because we expected the virtualization
overhead to be larger in the 2-Guest and 3-Guest configurations than in the 1-Guest configuration.
To identify the reason for this, we determined the execution time of each OpenCL API function in
the guest OpenCL library and performed in-depth analyses of the interaction among two or three
OpenCL programs residing in two or three different VMs. We observed that the execution time of
OpenCL API calls for resource initialization in one program decreased dramatically if the other
program(s) had completed its(their) own resource initialization(s). Moreover, the difference in the
execution time for these API calls almost matched the difference in overall execution time of the
OpenCL program between the 1-Guest and 2-Guest configurations. This provided strong evidence
that the abnormality of the 2-Guest and 3-Guest configurations outperforming the 1-Guest configu-
ration is attributable to the implementation of the vendor-specific OpenCL run-time system, which
may contain a resource pool for maintaining the OpenCL resource initialization.

Figure 27 illustrates the scenario of multiple guest VMs accessing the vendor-specific OpenCL
run-time system. As mentioned in Section 3.1.1, the lifetime of a CL thread almost spans that of
the hypervisor process that it belongs to. Once an OpenCL process in a guest VM starts executing,

Figure 27. Scenario of multiple virtual machines accessing the vendor-specific OpenCL run-time system.
KVM, Kernel-based Virtual Machine; I/O, input/output; OS, operating system.
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the CL thread in the guest VM accesses the vendor-specific OpenCL run-time system and interferes
with the resource allocation scheme in the vendor-specific OpenCL run-time system, which some-
how keeps the information about the underlying OpenCL resources even if the OpenCL resources
are released by OpenCL API calls inserted by the programmers and the information are kept until
the CL thread ends (i.e. until the guest VM is shut down). Consequently, the execution time of
resource initialization-related API functions is nearly eliminated if a CL thread is active, and hence,
the performance of OpenCL virtualization in the 2-Guest and 3-Guest configurations surpasses that
in the 1-Guest configuration. In addition, without considering the influence of the resource initial-
ization mechanism of the run-time implementation, the virtualization overhead increases slowly as
the number of guest VMs increases. This implies that the virtualization framework improves the
utilization of the underlying OpenCL resources without further intervention from programmers.

4.3. A brief comparison with related work

The literature contains reports of researches into API remoting for virtualization. GViM [3],
vCUDA [4], rCUDA [19], and gVirtuS [5], which are discussed in detail in Section 5, are such
researches whose objectives were conceptually similar to those of the present study. In brief, GViM,
vCUDA, and rCUDA were designed to support CUDA virtualization in Xen-based VMs [20] for
high-performance computing, and gVirtuS supports CUDA virtualization in KVM, whereas the
present study enabled OpenCL support in KVM. In this section, we briefly compare virtualization
overheads of GViM, vCUDA, rCUDA, gVirtuS, and the present approach. Although the compari-
son might not prove the superiority of our approach over the others because of differences in the
evaluation configurations, such as the underlying hardware platforms, implementations of bench-
mark programs in CUDA and OpenCL, and input data sizes, the comparison still provides a rough
estimate of the relative virtualization overheads among the five frameworks. Table VIII summarizes
the input data size of the benchmark programs for the five frameworks.

Figure 28 shows the virtualization overhead of CUDA or OpenCL programs in GViM, vCUDA,
rCUDA, gVirtuS, and our approach (note that some results are not available for GViM, vCUDA,
rCUDA, and gVirtuS). The overhead of the benchmark programs in vCUDA ranged from 73.6%
(for BS) to 427.8% (for MT), which is much more than the overhead in GViM, gVirtuS, and the
present study. We believe that the high virtualization overhead in vCUDA and rCUDA is attributable
to the scheme that they use for data transfer between the hypervisor and guests, which involves
wrapping an API call as an RPC, whereas GViM, gVirtuS, and our framework use shared-memory-
based approaches for this communication. The virtualization overheads in GViM, gVirtuS, and our
framework were roughly similar: 4.0%, 6.9%, 11.7%, and 8.6% for BS, FWT, MM, and SP, respec-
tively, in our framework; 25.0%, 14.0%, and 3.0% for BS, FWT, and MM, respectively, in GViM;
and 22.4% and 11.1% for MM and SP, respectively, in gVirtuS. The five research frameworks are
compared in more detail in Section 5.

It is worth noting that in Section 3.2.3, we mention that the proposed framework requires an
increased level of indirection for pointers during the guest–host communication, but the evalua-
tion results show that the proposed framework performed slightly better than other frameworks for
most of the benchmarks; this is likely attributable to virtio-CL, the proposed shared-memory-based
communication mechanism, being tailored for the underlying hypervisor.

Table VIII. Configurations of input data size in this study and the related works.

Benchmark This study GViM vCUDA rCUDA gVirtuS

BlackScholes 16 MB 4 MB 16 MB – –
ConvolutionSeparable 36 MB – 36 MB – –
FastWalshTransform 32 MB 64 MB 32 MB N/A –
MersenneTwister 22.89 MB – 22.89 MB – –
ScanLargeArray 0.004 MB – N/A – –
MatrixManipulation 2 kB � 2 kB 2 kB � 2 kB – 2 kB � 2 kB 2 kB � 8 kB
ScalarProduct 2 MB – – – 2 MB
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Figure 28. Comparison of virtualization overheads among different virtualization frameworks. BS,
BlackScholes; CS, ConvolutionSeparable; FWT, FastWalshTransform; MT, MersenneTwister; SLA,

ScanLargeArray; MM, MatrixManipulation; SP, ScalarProduct.

5. RELATED WORK

OpenCL has become an industrial standard in the field of heterogeneous multicore computing.
Many industry-leading companies (e.g. AMD, Apple, IBM, Intel, and NVIDIA) have released their
own OpenCL run-time implementations to help users access OpenCL functionality [17, 18, 21–23].
However, there are no standard solutions for supporting OpenCL execution in a virtualized system
in either industry or academia. The present study represents the first research to support OpenCL in
a system virtualization environment based on API remoting. Although the framework currently
only supports GPU devices, it would be easy to extend it with API remoting to support more
OpenCL devices.

Several researches have adopted API remoting as an approach for virtualization. Lagar-Cavilla
et al. proposed VMGL, a solution for supporting the OpenGL graphics-acceleration API in Xen-
based or VMware-based VMs with the functionality of GPU multiplexing and the suspension and
resumption of execution [24]. VMGL virtualizes OpenGL API and uses an advanced OpenGL net-
work transmission scheme called WireGL [25] to optimize the data transfer of OpenGL contexts.
Weggerle et al. proposed VirtGL, which is an OpenGL virtualization solution for QEMU [26].
VirtGL implements OpenGL API remoting by adding a new QEMU virtual device, with data trans-
fer occurring via the MMIO spaces of the virtual device. Gupta et al. proposed GViM, which is
a CUDA virtualization solution for Xen hypervisor [3]. GViM uses the shared-memory-based I/O
communication mechanism in the Xen hypervisor to implement data transfer between guest VMs
and the dedicated VM that emulates I/O actions. GViM supports GPU multiplexing and implements
a simple credit-based scheduling mechanism for the CUDA API. Shi et al. proposed a CUDA API
remoting framework, called vCUDA, for the Xen hypervisor [4]. vCUDA uses an RPC scheme
named XML-RPC [27] to perform data transfer between the hypervisor and guests. Those authors
introduced a ‘lazy RPC’ mechanism to reduce the frequency of RPC and thus the virtualization
overhead. Duato et al. proposed rCUDA [19], which is a framework for executing CUDA appli-
cations in cluster environments that contain CUDA devices in certain cluster nodes. rCUDA uses
an RPC-based mechanism to perform data transfer among different cluster nodes. Giunta et al.
proposed gVirtuS [5], which is a CUDA virtualization framework, and developed a guest–host com-
munication mechanism, called vmSocket, which is independent of the underlying hypervisor and
the communication technology (such as shared memory, QEMU virtual device, and TCP/IP).

Table IX compares the related work and our study. Our virtualization framework enables OpenCL
support in KVM, whereas GViM and vCUDA allow CUDA programs to execute within Xen-based
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VMs. Unlike OpenCL, which supports different kinds of heterogeneous computing devices, CUDA
is only supported on machines with NVIDIA GPUs. Our proposed OpenCL virtualization frame-
work provides a solution for heterogeneous multicore computing in VMs. Both KVM and Xen
are well-known frameworks in the system virtualization field. Xen supports paravirtualization and
hardware-assisted virtualization, and KVM supports hardware-assisted CPU virtualization. Both
KVM and Xen provide excellent performance in CPU virtualization relative to other virtualiza-
tion frameworks. However, the architecture of I/O virtualization differs markedly between Xen and
KVM. The I/O actions of guest VMs in Xen have to be intercepted and processed by a specific
guest VM called the I/O domain (or Dom0), and thus, the I/O domain becomes the bottleneck of
I/O virtualization and results in unpredictable I/O bandwidth and latency [28, 29]. In contrast, the
I/O virtualization in KVM is processed in the same hypervisor process, and the architecture of
I/O processing is much simpler. Therefore, we consider KVM to be a better platform for OpenCL
virtualization than Xen.

6. CONCLUSION

This paper has described how to enable OpenCL support in KVM using API remoting. The proposed
OpenCL virtualization framework allows multiplexing of multiple guest VMs over the underlying
OpenCL resources, which provides for their better utilization. Owing to the characteristic that each
VM in KVM is a process in Linux, virtualizing OpenCL programs in multiple guest VMs can be
modeled as multiple processes accessing the OpenCL resources in the native environment. Although
the virtualization framework only supports running OpenCL programs in GPGPU architectures in
our current implementation, it would be easy to extend the API remoting scheme to support other
OpenCL devices.

Our evaluations indicate that the virtualization overhead of the proposed framework is mainly
due to data transfer and the synchronization between the KVM vCPU thread and our new added CL
thread, which are directly affected by the amount of data to be transferred for an API call because
of the primitive nature of API remoting and the limited size of the memory that is shared between
the hypervisor and guest VMs. The experimental results show that the virtualization overhead was
around 10% or less (mean of 6.8%) for six common GPU-intensive OpenCL programs. Furthermore,
OpenCL resources are better utilized because of the framework supporting of OpenCL multiplexing.
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