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Summary This study proposes an optimization model for optimal treatment of bac-
terial infections. Using an influence diagram as the knowledge and decision model,
we can conduct two kinds of reasoning simultaneously: diagnostic reasoning and
treatment planning. The input information of the reasoning system are conditional
probability distributions of the network model, the costs of the candidate antibiotic
treatments, the expected effects of the treatments, and extra constraints regarding
belief propagation. Since the prevalence of the pathogens and infections are de-
termined by many site-by-site factors, which are not compliant with conventional
approaches for approximate reasoning, we introduce fuzzy information. The output
results of the reasoning model are the likelihood of a bacterial infection, the most
likely pathogen(s), the suggestion of optimal treatment, the gain of life expectancy
for the patient related to the optimal treatment, the probability of coverage asso-
ciated with the antibiotic treatment, and the cost-effect analysis of the treatment
prescribed.
© 2004 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Two generic reasoning tasks are vital in medi-
cal reasoning: diagnostic reasoning and treatment
planning. Diagnostic reasoning is the process of
reconstructing the past facts from the observed
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evidence. Treatment planning is reasoning about
the effects of actions treated on patients [1].
Usually, the practice of medicine requires both
kinds of reasoning to work simultaneously. How-
ever, few current reasoning methods can conduct
the two reasoning tasks successfully at one time.
Besides, the reasoning systems become more com-
plex when considering the complexity of human
bodies and its relationships with the environmental
factors.
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In some clinical cases, various factors may raise
the difficulty in reasoning, such as the demographic
variances of nosography, the incomplete knowledge
of the diseases (e.g. severe acute respiratory syn-
drome (SARS) in the early 2003), some specific re-
strictions on estimating relevant parameters of the
diseases, etc. In these cases, the clinicians’ expe-
riences and judgments may be useful to diagnosis
and prescription. Therefore, the site-by-site factors
and clinicians’ knowledge, which may be expressed
as extra constraints in the reasoning systems, need
to be integrated into the medical decision support
systems. At the same time, owing to the difficul-
ties to estimate the causal effects between possi-
ble pathogens and the diseases, the parameters of
the knowledge base can be expressed as fuzzy num-
bers.

Considering the clinical issues mentioned above,
the authors are motivated to develop a reasoning
model with the following features.

(i) Complete diagnostic reasoning as well as treat-
ment planning.

(ii) Combine the formal knowledge base as well
as decision-makers’ judgments that present as
extra constraints.

due to the difficulties of learning accurately the
cause—effect relationships among the nodes [14].
Second, as a common fact, the experts may have
some professional speculations in the form of con-
straints when reasoning from a Bayesian network
or an influence diagram. These constraints could
be boundary, dependency, or disjunctive condi-
tions. Third, the investigators of influence diagrams
used to maximize the utility functions by node re-
moval processes [11—13] and ignore diagnostic rea-
soning tasks. Oppositely, Bayesian networks have
been used widely in probabilistic reasoning but
lacked the capability to suggest the optimal deci-
sion [2,3,8—10].

This study proposes an optimization model to
make diagnostic reasoning and treatment planning
for bacterial infections, where the cause—effect re-
lationships are expressed with an influence diagram
and fuzzy data. The input information of the rea-
soning system are conditional probability distribu-
tions of the network model, the costs of the can-
didate antibiotic treatments, the expected effects
of the treatments, and extra constraints regard-
ing belief propagation. Since the prevalence of the
pathogens and infections are determined by many
s
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(iii) Work compatibly with the circumstance where
fuzzy information is involved.

In the following section, the background of this
research and the proposed approach will be inter-
preted.

2. Background

In medical informatics and other domains,
Bayesian networks [1—10] and influence diagrams
[6,8,11—13] are widely used knowledge repre-
sentation and decision models under uncertainty.
However, there are two limitations of utilizing the
above approaches for solving medical reasoning
problems:

(i) All associated probabilities are assumed to be
crisp.

(ii) Difficult to consider the constraints for the re-
lationships among the nodes in Bayesian net-
works or influence diagrams.

(iii) Treatment planning and diagnostic problems
are not considered in one paradigm.

The limitations mentioned above restrict the
practical usefulness of medical reasoning on
Bayesian networks and influence diagrams in the
following facts. First, the conditional probabili-
ties between a node and its parent or children
nodes could be fuzzy instead of a crisp numbers,
ite-by-site factors, the decisions involve uncer-
ainty not compliant with conventional approaches.
o, we allow the decisions to be made under fuzzy
ontexts, at which some of the parameters could
e fuzzy parameters [14], and some constraints re-
arding diagnosis are introduced. When a patient is
eceived, this reasoning system can, based on the
resent symptoms or bacteriological tests, help the
linician make precise diagnosis at the first decision
oint, and also supply the suggestions of optimal
reatment for the infection. The outputs of the rea-
oning model are the likelihood of a bacterial infec-
ion, the most likely pathogen(s), the suggestion for
he optimal treatment, the gain of life expectancy
f the patient related to the optimal treatment, the
robability of coverage associated with the antibi-
tic treatment, and the cost-effect analysis of the
reatment prescribed. The input—output diagram is
epicted in Fig. 1.
In the remaining of this article, the design con-

iderations are introduced in Section 3. An influ-
nce diagram is used to represent the relationships
mong the variables relevant to the infections. In
ection 4, this study describes the reasoning model
nd system thoroughly. In Section 5, we implement
he diagnostic reasoning and planning problem as
n optimization model. The illustration and solu-
ions of this numerical example is given as well. In
ection 6, some comments and lessons are given.
inally, we discuss the future extensions in Section
.
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Fig. 1. The input—output diagram of the optimization model in this study.

3. Design considerations

In this section, the authors will introduce an ex-
ample of urinary tract infection (UTI), the problem
and design goal, and handling the fuzzy information
sequentially.

3.1. An example of urinary tract infection
(UTI)

Consider one example of urinary tract infections
simplified from Leibovici et al. [5]. As depicted in
Fig. 2, this example uses an influence diagram as

the knowledge and decision model where the condi-
tional probability distributions for the relevant ran-
dom and decision variables are calculated. For the
sake of simplicity and without loss of generality, all
random nodes are assumed binary. The conditional
probability distributions of the variables are given
in Tables 1—3. The nodes and their states in Fig. 2
are described as follows.

• Pathogen (Pathoi): A microorganism capable of
causing urinary tract infection. For the conve-
nience of illustration, only 3 of 12 pathogens
are presented: Patho1 (Klebsiella pneumoniae),
Patho2 (Pseudomonas aeruginosa), Patho3 (Es-

F
o

ig. 2. A revised influence diagram for urinary tract infection
f (node name: description) for each node in the network to
[5]. In the latter part of this figure, the authors put pairs
explain what the nodes represent.
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cherichia coli). The states of this kind of nodes
are severity: severe (Pathoi = 1) and not severe
(Pathoi = 0).

• Urinary tract infection (UTI): The states of this
node are infected (UTI = 1) and not infected
(UTI = 0).

• Signs and symptoms of urinary tract infection
(Signi): The manifestations that might cause
from UTI. There are six possible signs presented
in Fig. 2: Sign1 (suprapubic pain), Sign2 (fre-
quent micturition), Sign3 (flank pain), Sign4 (uri-
nary symptoms), Sign5 (serum albumin) and Sign6
(fever). The states of these nodes are present
(Signi = 1) and absent (Signi = 0).

• Bacteriological tests (Testi): Test1 (growth of mi-
croorganisms in the blood), Test2 (growth of mi-
croorganisms in the urine) and Test3 (nitrite test).
The states of these nodes are positive (Testi = 1)
and negative (Testi = 0).

• Coverage of UTI (Coverage): The percent of
pathogens of UTI susceptible to an antibiotic
drug. The states of this node are covered (Cover-
age = 1) and not covered (Coverage = 0).

• Resistance to antibiotic drugs (Resist): The states
of this node are resistant (Resist = 1) and not re-

Table 1 The probability distributions of the
pathogens and UTI

P(+patho1) = 0.1
P(+patho2) = 0.09
P(+patho3) = 0.09
P(+uti| + patho1, +patho2, +patho3) = x̃1

P(+uti| + patho1, −patho2, +patho3) = x̃2

P(+uti| + patho1, +patho2, −patho3) = x̃3

P(+uti| + patho1, −patho2, −patho3) = x̃4

P(+uti| − patho1, +patho2, +patho3) = x̃5

P(+uti| − patho1, −patho2, +patho3) = x̃6

P(+uti| − patho1, +patho2, −patho3) = x̃7

P(+uti| − patho1, −patho2, −patho3) = x̃8

For instance, UTI∈ {0, 1} represents the dichotomy
between having urinary tract infection and not hav-
ing one. Also, +uti stands for the assertion UTI = 1
or ‘‘urinary tract infection is present’’, and −uti
stands for the negation of +uti, i.e., UTI = 0.

Denote Y the random node set of the influence
diagram depicted in Fig. 2. The probability distri-
bution of the random nodes given treatment tri can
be expressed as (3.1):

P(y) =
3∏

i=1

P(pathoi) × P(uti|patho1,patho2,patho3)

×
6∏

j=1

P(signj|uti) × P(resist)

×
3∏

k=1

P(testk|patho1,patho2,patho3)

×P(coverage|patho1,patho2,patho3,

resist, tri). (3.1)

3.2. Problem and design goals

C
T
f
p
b

sistant (Resist = 0).
• Antibiotic treatment (Tr): The treatment will be

appropriate if it matches the in-vitro susceptibil-
ity of the pathogens. For simplicity of demonstra-
tion, we consider 5 of 26 antibiotic drugs and one
additional state for no treatment. Thus, we have
six alternatives, that is Tr = {tr0, tr1, tr2, tr3, tr4,
tr5}, where tr0 stands for no treatment and tri = 0
or 1. When tri = 1, it means that tri is prescribed;
oppositely, tri = 0 means that tri is not prescribed.
For the efficiency of computation, we allow only
one antibiotic drug at one time, which let it possi-
ble to formulate this decision problem as a mixed
0—1 integer program. If more than one drug is
mixed in the therapy, the mixed treatment will
be regarded as another treatment. Notably, this
node is a decision node that has effects on the
coverage from urinary tract infection.

• Underlying (Underlying): The underlying disorder
of the patient, which will be represented by an
equivalent base years of the remaining life in this
illustrative example.

• Cost (Cost(tri)): A utility node associated with an-
tibiotic treatments.

• Gain (Gain): The gain in life expectancy obtained
by prescribing an antibiotic drug, which is a func-
tion of the coverage (Coverage) and the underly-
ing disorder of the patient (Underlying).

Each variable above is characterized by crisp or
fuzzy probabilities given the state of its parents.
onsider the conditional probabilities in Table 1 and
able 2, and the evidence that a patient has suf-
ered from frequent micturition (Sign2 = 1), flank
ain (Sign3 = 1) and urinary symptoms (Sign4 = 1),
ut has not fallen into a suprapubic pain (Sign1 = 0),

Table 2 The conditional probabilities of signs (Signi)

P(sign1| +uti) = 0.6 P(sign1| −uti) = 0.01
P(sign2| +uti) = 0.9 P(sign2| −uti) = 0.10
P(sign3| +uti) = 0.6 P(sign3| −uti) = 0.05
P(sign4| +uti) = 0.8 P(sign4| −uti) = 0.05
P(sign5| +uti) = 0.6 P(sign5| −uti) = 0.10
P(sign6| +uti) = 0.7 P(sign6| −uti) = 0.01
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serum albumin (Sign5 = 0) or fever (Sign6 = 0). De-
note the evidence set E = {e} = {Sign1 = 0, Sign2 = 1,
Sign3 = 1, Sign4 = 1, Sign5 = 0, Sign6 = 0}. We need to
solve the following two problems.

(i) Compute the belief distribution of Patho1,
Patho2, Patho3 and UTI.

(ii) Make the suggestion of the optimal treatment
based on the information given in Table 3, as-
suming the patient with resistance to the an-
tibiotic treatments (Resist = 1).

At the first decision point, the clinician tends
to make the diagnosis without biological test

results; that is, the task is reasoning on the sub-
graph omitting the nodes Testi and simplified as
to compute P(y|e), where e stands for an instance
of the evidence set E, and Y shrinks as {Patho1,
Patho2, Patho3, UTI, Coverage}. This is reasonable
because the tests will have no effect on the diag-
nostic results if they do not provide extra informa-
t
d
f
p
t
i

3

N
n
f
o
p
F

Fig. 3. The membership function µx̃1 (x1).

not a crisp but a fuzzy number, say x̃1, that is
P(+uti|+patho1, +patho2, +patho3) = x̃1, and is de-
scribed with a membership function µx̃1(x1) repre-
sented as follows (see Fig. 3):

µx̃1(x1) =
{

5(x1 − 0.6) − 5(|x1 − 0.8| + x1 − 0.8), 0.6 ≤ x1 ≤ 1.0,

0, elsewhere,
(3.2)

where ‘‘|*|’’ is the absolute value of a term *.
The above expression means that the support of

x̃1 is between 0.6 and 1.0. For example, if x1 = 0.7,
then µx̃1(x1) = 0.5. If x1 = 0.8 then µx̃1(x1) = 1.0,
which implies that x1 = 0.8 is the most confident
value. If x1 ≤ 0.6 or x1 ≥ 1.0 then µx̃1(x1) = 0, which
is least possible to happen.

For the fuzzy parameters in Table 1, we will for-
mulate the membership functions of x̃i, i = 1, 2, . . .,
8.

Consider a membership function µx̃(x) of a fuzzy
parameter x̃ as portrayed in Fig. 4. This piecewise
membership function is usually expressed as

µx̃(x) =




s1(x − a1), a1 < x ≤ a2

µx̃(a2) + s2(x − a2), a2 < x ≤ a3

µx̃(a3) + s3(x − a3), a3 < x ≤ a4 (3.3)
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eceiv
ion. If the treatment prescribed at the first time
oes not work, then some biological tests would be
urther required. Besides, this model would like to
rovide the suggestion for the optimal treatment
hat maximizes the gain of life expectancy and min-
mizes the total costs.

.3. Handling fuzzy information

otice that some of the parameters in Table 1 are
ot crisp but fuzzy numbers. Freeling [14] claimed
uzzy probability as an extension of probability the-
ry, which is more promising than possibility and
robability theory as the uncertainty mearsure.
or instance, P(+uti|+patho1, +patho2, +patho3) is

Table 3 The conditional probabilities of coverage give

Treatmenta The instance of (Patho1, Patho2, Patho3

(1, 1, 1) (1, 0, 1) (1, 1, 0) (

tr0b 0.3 0.4 0.4 0
tr1 0.7 0.9 0.99 0
tr2 0.7 0.7 0.85 0
tr3 0.8 0.8 0.87 0
tr4 0.7 0.95 0.8 0
tr5 0.8 0.9 0.85 0

a The costs of the tr0, tr1, tr2, tr3, tr4, tr5 are 5000 (the r
50,000, respectively.

b No treatment.
µx̃(a4) + s4(x − a4), a4 < x ≤ a5

0, elsewhere

here aj, j = 1, . . ., 5 represents the break points; si,
= 1, . . ., 4 represents the slopes of the segments.
he above expression is not convenient for compu-

sist = 1

0) (0, 1, 1) (0, 0, 1) (0, 1, 0) (0, 0, 0)

0.4 0.3 0.3 0.6
0.7 0.8 0.75 0.7
0.85 0.8 0.99 0.8
0.95 0.99 0.8 0.9
0.8 0.7 0.9 0.95
0.8 0.9 0.9 0.9

ing and process costs), $ 20,000, 25,000, 30,000, 32,000 and
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Table 4 The membership functions of fuzzy probabilities

Parameter µx̃i
(xi) Domain of xi

x̃1 5(x1 − 0.6)− 5(|x1 − 0.8| + x1 − 0.8) [0.6, 1]
x̃2 10(x2 − 0.7)− 10(|x2 − 0.8| − x2 − 0.8) [0.7, 0.9]
x̃3 20(x3 − 0.7)− 20(|x3 − 0.75| + x3 − 0.75) [0.7, 0.8]
x̃4 10(x4 − 0.5)− 10(|x4 − 0.6| + x4 − 0.6) [0.5, 0.7]
x̃5 10(x5 − 0.7)− 10(|x5 − 0.8| + x5 − 0.8) [0.7, 0.9]
x̃6 20(x6 − 0.55)−20(|x6 − 0.6| + x6 − 0.6) [0.55, 0.65]
x̃7 10(x7 − 0.4)− 10(|x7 − 0.5| + x1 − 0.5) [0.4, 0.6]
x̃8 100(x8)− 100(|x8 − 0.01| + x8 − 0.01) [0, 0.02]

tation. Here, we adopt an efficient way to express
a piecewise linear function. Consider the following
proposition.

Proposition 1. Let µx̃(x) be the membership func-
tion of a fuzzy variable x̃, as depicted in Fig. 4,
where aj, j = 1, 2, . . ., m are the break points of
µx̃(x), and sj, j = 1, 2, . . ., n are the slopes of line
segments between aj and aj+1, µx̃(x) can be ex-
pressed as the sum of absolute terms [15,16]:

µx̃(x) = µx̃(a1) + s1(x − a1)

+
m∑

j=2

sj − sj−1

2
(|x − aj| + x − aj) (3.4)

Now we are ready to express the membership func-
tions of the fuzzy parameters µx̃i

(xi) in Table 4. The
readers may find that all the eight fuzzy parame-
ters are triangular fuzzy numbers. However, the
membership functions in Table 4 involve absolute
terms, which is not convenient for computation.
Since µx̃(x) in (3.4) is a function to be maximized,
we used the following proposition to linearize the

Max z = s1(x − a1) + 2
m∑

j=2

sj−sj−1
2 (x − aj +

j∑
k=1

dk)

subject to
x + d1 ≥ a2,

x + d1 + d2 ≥ a3,

...
x + d1 + d2 + · · · + dm−1 ≥ am,

0 ≤ d1 ≤ a2,

0 ≤ dk−1 ≤ ak − ak−1, for k = 2, 3, . . . , m,

x ∈ F (feasible set),




where dk−1 stands for the lower bound of distance
between ak−1 and ak. For the detailed proof of
Proposition 2, please refer to [15,16].
Now we are ready to formulate the optimization
model for diagnosis and treatment planning.

4. System description

Here we formulate the diagnostic reasoning and
treatment planning problems as an optimization
model. The objectives of this model are described
a

4
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s follows.

.1. System objectives

he objectives of this model are described below.

(i) To maximize the sum of all fuzzy membership
functions. That is, we will make the sugges-
tions of optimal treatment under the maximal
confidence of the fuzzy information [17].

(ii) To maximize the gain in life expectancy.
iii) To minimize the total costs of the treatments.

n this problem, the clinician has six candidate
reatments to choose, where no treatment is in-
luded. We represent each antibiotic treatment as
binary variable tri (including tr0 standing for no

reatment) and the cost as Cost(tri). The total cost
membership functions.

Proposition 2. To maximize a membership func-
tion µx̃(x) in (3.4) is equivalent to solve the follow-
ing linear program [15,16]:(3.5)

Fig. 4. A membership function of fuzzy probability x̃.
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is
∑5

i=0Cost(tri). The objective functions can be ex-
pressed as follows:

Max z1 =
8∑

i=1

µx̃i
(xi) (4.1)

Max z2 = E(Gain(Coverage,Underlying)) (4.2)

Min z3 =
5∑

i=0

Cost(tri) (4.3)

where ‘‘E(*)’’ stands for the expectation of a
term *.

In (4.2), we express the expected gain in life ex-
pectancy as a function of Coverage and Underlying.
We assume that the underlying disorder and health
status can be converted to an equivalent base year,
in this case, 35 years, and the gain is a multiple of
the base year. This study assumes that, in this clin-
ical case, the patient has the ideal 35 years gain of
life expectancy if the probability to recover from
UTI is 1. Since the literature [5] shows that one-
year gained in life can be regarded equivalent to $
55,000, we re-write (4.2) as (4.4) for unit standard-
ization:

z
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optimization model. The interested readers may re-
fer to the literatures [2,3,7—10].

4.2. Basic constraints

Now we formulate the first category of constraints
as

∑
y

P(y)

= α
∑

patho1

∑
patho2

∑
patho3

∑
uti

∑
coverage

×

 3∏

j=1

P(pathoj) × P(uti|patho1,patho2,

patho3) × P(sign1 = 0|uti) × P(sign2 = 1|uti)
× P(sign3 = 1|uti) × P(sign4 = 1|uti)
× P(sign5 = 0|uti) × P(sign6 = 0|uti)

×
5∑

i=0

P(coverage|patho1,patho2,patho3,
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2 = 55, 000 × E(Gain(Coverage)) ∗ 35 (4.4)

etting that only one treatment can be chosen at
ne decision point, we can formulate the total
ost function as in (4.3). Notably, the probability
f coverage is determined by the resistance of an-
ibiotic treatment (given Resist = 1), the pathogens
Pathoj), and the treatment (tri). The reader may
efer to their relationships in Table 3. Defining tri
s a 0—1 variable, the expectation of Coverage,
(Coverage) can be computed as

E(Coverage|Resist = 1)

= α
∑

i

∑
patho1

∑
patho2

∑
patho3

tri

×P(coverage|patho1,patho2,

patho3, resist = 1, tri) (4.5)

here α is the normalizing constant, which will be
xplained in next subsection.
In this optimization program, two categories of

onstraints must to be satisfied: (1) the constraints
or the probability theory, and (2) the extra con-
traints regarding belief propagation. This opti-
ization model can be implemented with various
xact propagation methods. This study does not in-
end to discuss the details of reasoning algorithms
ut focus on how to formulate this problem as an
resist = 1, tri) = 1, (4.6)

5

i=0

tri = 1, tri = 1 or 0, (4.7)

here α is the normalizing constant which ensures
hat the sum of the probabilities of every instance
f y is 1. The constraint in (4.7) regulates the clin-
cian to prescribe only one treatment in the first
ecision point.

.3. Extra constraints

t the same time, in addition to a given formal
nowledge base, the clinicians may have some pro-
essional speculations about the features of some
odes and the relationships among them, in some
pecific diagnostic context. These features and re-
ationships can be identified as the following types
f constraints.

(i) Boundary constraints
Some posterior beliefs may have upper or
lower bounds. For instance, a clinician may
speculate that the posterior probability of
Patho3 should be higher than 0.3 but lower
than 0.5, which can be expressed as

0.3 ≤ P(+patho3|e) ≤ 0.5 (4.8)
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(ii) Dependency constraints
The beliefs of some nodes in the belief net-
work may exist mutually dependent relation-
ships. For example, a clinician may presume
that the posterior probability of Patho1 should
be some multiple of Patho3. Such a relationship
is expressed as

P(+patho1|e) ≤ 0.5P(+patho3|e) (4.9)

(iii) Disjunctive constraints
Sometimes the disjunctive condition between
the nodes may exist. For example, a doc-
tor may estimate that either P(+patho2|e) or
P(+patho1|e)is equal to or less than 0.4, which
is expressed as

either P(+patho2|e)
≤ 0.4 or P(+patho1|e) ≤ 0.4 (4.10)

4.4. The model

Combining constraints (4.8) and (4.10) into this rea-
soning system, this optimization program becomes




−M≤ P(+patho1|e)− 0.4≤M, which are inactive
constraints. The third inequalities in (4.12) exclude
the combinations when θ1 = 1, θ2 = 0 and θ1 = 0,
θ2 = 0. To summarize, (4.12) implies that either
P(+patho2|e)≤ 0.4 or P(+patho1|e)≤ 0.4 must be
satisfied.

5. Status report

The model formulated in the previous sec-
tion is a multiobjective program, so we adopt
the fuzzy approach [18,19] to solve it. Follow-
ing the steps described below, the model is
solved.

Step 1: Get the ideal solutions of every objective.
To obtain the ideal solutions, every objective is op-
timized independently regardless of other objec-
tives. In (4.11), we maximize z1, z′

2, and minimize
z3 individually to acquire their ideal solutions z∗

1,
z′∗

2 and z∗
3, respectively. The ideal values are z∗

1 = 8,
z′∗

2 = 1,722,198, and z∗
3 = 5000.

Step 2: Get the anti-ideal solution of every objec-

Max z1

Max z′
2

Min z3

s.t. (4.6)—(4.8), (4.10)




(4.11)

Since the disjunctive constraint (4.10) is a nonlinear
constraint, we will linearize it by some 0—1 vari-
ables as the following.

M(θ1 − 1) ≤ P(+patho2|e) − 0.4 ≤ Mθ1 + M(1 − θ2)

M(θ2 − 1) ≤ P(+patho1|e) − 0.4 ≤ Mθ2 + M(1 − θ1)

ε ≤ θ2 + θ1 ≤ 1

where θ1 and θ2 are 0—1 variables, M is a relatively
large number, and ε is a relatively small positive
number.

We can check the four possible com-
binations of θ1 and θ2. (1) θ1 = 1, θ2 = 1:
(4.12) turns into 0≤ P(+patho2|e)− 0.4≤M
and 0≤ P(+patho1|e)− 0.4≤M, which are in-
active constraint; (2) θ1 = 0, θ2 = 1: (4.12)
turns into −M≤ P(+patho2|e)− 0.4≤ 0 and
0≤ P(+patho1|e)− 0.4≤ 2M, which means that
when P(+patho1|e)≥ 0.4, P(+patho2|e) must
be less than or equal to 0.4; (3) θ1 = 1, θ2 = 0:
(4.12) works as 0≤ P(+patho2|e)− 0.4≤ 2M and
−M≤ P(+patho1|e)− 0.4≤ 0, which implies that
when P(+patho2|e)≥ 0.4, P(+patho1|e) must
be less than or equal to 0.2; (4) θ1 = 0, θ2 = 0:
(4.12) becomes −M≤ P(+patho2|e)− 0.4≤M and
(4.12)

tive.
To obtain the anti-ideal solutions, every objec-
tive is computed in the opposite way regardless
of other objectives. Now, we minimize z1, z′

2, and
maximize z3 to acquire the anti-ideal solutions z−

1 ,
z′−

2 and z−
3 , respectively. The anti-ideal values are

z−
1 = 4, z′−

2 = 733764.5, and z−
3 = 40,000.

Step 3: Define the membership function of every
objective by its ideal and anti-ideal solutions.
With the ideal and anti-ideal solutions of every ob-
jective, we can define their membership functions
as follows:

µzk
(zk) = zk − z−

k

z∗
k − z−

k

(5.1)

The membership functions evaluate the degree of
fulfillment for every objective.
Step 4: Maximize the minimal membership func-
tion of the three objectives.
Using Zimmermann’s fuzzy approach for multi-
objective programs, the model (4.11) can be con-
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verted into (5.2):

Max λ

s.t.

λ ≤ µz1(z1) = z1 − z−
1

z∗
1 − z−

1

λ ≤ µz′
2
(z2) = z′

2 − z′−
2

z′∗
2 − z′−

2

λ ≤ µz3(z3) = z3 − z−
3

z∗
3 − z−

3

(4.6)—(4.8), (4.12),




(5.2)

where λ is defined as λ = min1,2,3(µz1(z1),
µz′

2
(z′

2), µz3(z3)).

In (5.2), this study intends to search for the max-
imum of the minimal satisfaction level of all the ob-
jective functions. To avoid the poor estimation of
the fuzzy parameters and decision quality, we set
the strict lower bound for the membership of every
fuzzy parameter at 0.5. Applying the ideal and anti-
ideal values computed in Step 1 and Step 2, (5.2) is
specified as (5.3):

o
w
a
a
e
v
s
l

t
t
s
s
o

Table 5 The result table

λ 0.5714
z1 = ∑8

i=1µx̃i
(xi) 6.2857

z2 = E(Gain) 1616259
z3 = ∑5

i=0Cost(tri) 20000
P(+patho1|e) 0.4000
P(+patho2|e) 0.2916
P(+patho3|e) 0.3606
P(+uti|e) 0.9430
Optimal treatment tr1 = 1,

tr0 = tr1 = tr2 = tr3 = tr4 = tr5
P(+coverage|e, tr5) 0.8369
x1 0.800
x2 0.800
x3 0.750
x4 0.600
x5 0.800
x6 0.595
x7 0.450
x8 0.005
µx̃1 (x1) 1.000
µx̃2 (x2) 1.000
µx̃3 (x3) 1.000
µx̃4 (x4) 0.500
µx̃5 (x5) 1.000
µx̃6 (x6) 0.891
µx̃7 (x7) 0.500
µx̃8 (x8) 0.500

The suggested optimal treatment results in a
probability of 0.8369 to cover from the urinary tract
infection, equivalent gain in life expectancy as $
1,616,259, and the total costs in $ 20,000. Besides,
the clinician can make the diagnosis and optimal
prescription at the first decision point with an over-
all confidence of the fuzzy parameters at 0.5978.
We also find that x̃4, x̃7, x̃8 are referenced sig-
nificantly apart from the most possible values. It
makes sense that, under this reasoning context,
the experts need to make some subjective judg-
ment or trade-off between different, even conflict-
ing information sources, which make the fuzzy pa-
rameters referenced apart from their most con-
fident values. The detailed solutions and part of
LINGO solution report are listed in Table 5 and
Appendix B.

6. Lesson learned

During the implementation of the reasoning model,
the authors find the strength of the optimization
model. First, the reasoning system allows the clin-
icians to combine their special judgments or ex-
p

Max λ

s.t.

λ ≤ z1 − 4
8 − 4

λ ≤ z′
2 − 733764.5

1,722, 198 − 733764.5

λ ≤ z3 − 40, 000
5000 − 40, 000

(4.6)—(4.8), (4.12),




(5.3)

This study will solve (5.3) with LINGO 8.0 devel-
ped by LINDO Systems Inc. [21]. LINGO is a soft-
are designed to build and solve linear, nonlinear
nd integer optimization models. LINGO provides
n integrated package that includes a language for
xpressing optimization models, a full featured en-
ironment for building and editing problems, and a
et of built-in solvers. Part of the LINGO model is
isted in Appendix A.

LINGO 8.0 solves (5.3) in 1 s and ob-
ains the optimal treatment as tr1 (tr1 = 1,
r0 = tr2 = tr3 = tr4 = tr5 = 0), the normalizing con-
tant α = 303.9275, the optimal minimal member-
hip of the objectives λ = 0.5714, and the likelihood
f every pathogens:

P(+patho1|e) = 0.4000, P(+patho2|e) = 0.2916,

P(+patho3|e) = 0.3606, P(+uti|e) = 0.9430.

eriences as extra constraints, which supplement
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the incomplete formal knowledge. This is useful
for some newly discovered disease or infections,
and increase the flexibility and robustness for vari-
ous clinical settings. Second, the model completes
two major tasks in medical informatics: diagnos-
tic reasoning and treatment planning simultane-
ously, which is an important requirement for clin-
ical decision support systems. Third, LINGO pro-
vides an efficient computation tool for solving
the optimization model, especially when the au-
thors adopt some linearizing techniques to trans-
form the highly nonlinear program. Based on the
authors’ experiences, LINGO performs better in
solving linear programs than in solving nonlinear
programs.

However, the authors also find several potential
challenges in developing the proposed reasoning
system. First, as the clinical problems grow larger
and more complex, it may be a burden for the clin-
icians to formulate the model. In some diseases,
there may be tens or hundreds of nodes in the net-
works. The clinicians will have difficulties to esti-
mate the parameters or specify the conditions of
their diagnosis and prescription. Therefore, the sys-
tem needs some experts in knowledge engineer-

the LINGO models that were written in an external
programming language [21]. It will facilitate gen-
erating the codes for LINGO models and importing
the input data from other applications.

7. Future plans

The authors suggest several future extensions to
this research.

1. Global optimization: Most medical diagnostic
problems are highly nonlinear, and the global op-
timization is difficult to achieve in most cases.
The model solvers need some special techniques
to search for the global optimum. These opti-
mization techniques can improve the solution
quality and reliability of the reasoning model
[20].

2. Integration with other heuristic computation
techniques: As the problem and network struc-
ture grow complex, some heuristic methods may
be needed for belief propagation. The compu-
tation efficiency will be improved if the rea-
soning systems integrate some heuristic tech-
niques, such as stochastic simulation, genetic

3

4

ing or information management to participate in,
which consequently increases the costs to imple-
ment. Second, as the scales of network grow larger,
belief propagation will be more complicated and
time-consuming. Some special techniques for be-
lief propagation may be considered, such as clus-
tering, joint tree decomposition, stochastic simula-
tion, and so on [2,3,7—10]. How to integrate these
propagation methods and the optimization model
will be a critical issue in implementing the reason-
ing system. Third, as network structures become
huge, implementing the optimization model with
LINGO will be fairly challenging. LINGO provides
several interfaces with other applications, such as
Visual C++, Visual Java, Visual Basic, etc. The sys-
tem developers can bundle LINGO’s functionality
into their applications, or call functions from within
algorithms, neural network computing, etc.
. Integrate various medical knowledge bases:

The developers can integrate various medi-
cal knowledge bases to acquire richer diagnos-
tic references and treatment suggestions, such
as from traditional Chinese medicine, western
medicine, Indian medicine, and so on.

. Integrate with regional clinical or medical
databases: The reasoning system may raise the
feasibility and reliability by integrating local or
regional medical databases, which will guaran-
tee more accurate parameter estimation and
fitness to different regional diagnostic environ-
ments. It is also an important stepping stone to
build a complete medical decision support sys-
tem.
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Appendix A. Part of the LINGO model
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Appendix B. Part of the LINGO solution report

Local optimal solution found at iteration: 1269; objective value: 0.5714286
Variable Value Reduced cost

BETA 0.5714286 0.000000

BETA1 0.5978307 0.000000

BETA2 0.8874719 0.000000

BETA3 0.5714286 0.000000

COV 0.8368683 0.000000

tr0 0.000000 0.1428571

tr1 1.000000 0.5714286

tr2 0.000000 0.7142857

tr3 0.000000 0.8571429

tr4 0.000000 0.9142857

tr5 0.000000 1.428571

U1 1.000000 0.000000

U2 1.000000 0.000000

U3 1.000000 0.000000

U4 0.5000000 0.000000

U5 1.000000 0.000000

U6 0.8913229 0.000000

U7 0.5000000 0.000000
U8 0.5000000 0.000000

X1 0.8000000 0.000000

X2 0.8000000 0.000000

X3 0.7500000 0.000000

X4 0.6005808 0.000000

X5 0.8000000 0.000000

X6 0.5945661 0.000000

X7 0.4500000 0.000000

X8 0.5000000E −02 0.000000

D1 0.000000 0.000000

D2 0.000000 0.000000

D3 0.000000 0.000000

D4 0.2470962E −01 0.000000

D5 0.000000 0.000000

D6 0.5433854E −02 0.000000

D7 0.5000000E −01 0.000000

D8 0.5000000E −02 0.000000

ALPHA 303.9275 0.000000

P1 0.4000000 0.000000

P2 0.2915552 0.000000

P3 0.3605508 0.000000

UTI 0.9430058 0.000000

BIG M 1000.000 0.000000

G1 1.000000 0.000000

G2 0.000000 0.000000

EP 0.1000000E −02 0.000000
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