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A Unified Approach to a Characterization of Grassmann Graphs and
Bilinear Forms Graphs

TunG-SHAN Fu anp Tavuan HuanG

Wilbrink and Brouwer [18] proved that certain semi-partial geomctries with some weak
restrictions on parameters satisfy the dual of Pasch’s axiom. Inspired by their work, a class of
incidence structures associated with distance-regular graphs with classical parameters is studied
in this paper. As a consequence, the Grassmann graphs and the bilinear forms graphs are
characterized simultaneously among distance-regular graphs with classical parameters, together
with some extra geometric conditions.

1. INTRODUCTION

By a graph I, we shall mean a finite, simple and undirected graph. For x in V/(I'),
the vertex set of T, let I;(x)={y e V(I | a(x, y) =i}, where d(x,y) is the distance
between x and y. If A, B= V(I), 8(A, B) is defined to be the minimum of a{a, b) for
all ae A and b € B. A distance-regular graph I’ of diameter d is one for which the
parameters ¢; = |I_,(x) N Ii(y)l, & =|Lx)NI(y)l and b; = I 1(x) N [i(y)| depend
only on the distance {=4a(x,y). It is clear that @, =b,—b,—¢. The sequence
{bo, by, ... by i€, €2,...,ca} is called the intersection array of I Most distance-
regular graphs related to classical groups and groups of Lie type have an intersection
array the parameters of which can be expressed in terms of the diameter d and three
other parameters ¢, « and B, called the classical parameters, as follows:

(I SR (o T

(i=0,1,...,d), where [}] denotes the Gaussian coefficient with basis g (for g =1, it is
the ordinary binomial coefficient). Clearly,

=l e -ralF-L1-15D) 9

(i=0,1,...,d). Furthermore, the corresponding eigenvalues 64> &, >+ - - > 0, can be
calculated in terms of the intersection array as follows:

o[ Yoo -1

(i=0,1,...,d). Refer to [4, Chapters 6 and 8] for more details.

The Grassmann graphs J,(n, d) (with parameters (@, 8) ={q, [* " {"']— 1)) and the
bilinear forms graphs £, (n, d) (with parameters (a, 8)= (g —1, 4" — 1)), defined
below, are two typical examples in this family. Distance-regular graphs with classical
parameters (d, g, @, 8} and g = 1 have been characterized by Neumaier and Terwiiliger
[4, Theorem 6.1.1]. We consider the case of g =4 here. Our main purpose in this paper
is to prove the following theorem:
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MaN THeorem. Let I' be a distance-regular graph of diameter d =3, with
intersection array {by, b, ..., by jcy, ..., cq} as in (1a, b) and such thar:
(A1) B> elf];
(A.2) every singular line of I has size at least o« + 1, where & + 1 =max{S, q};
(A.3) for any vertex x and maximal cliqgue m, |[(x) Nm/|# 1.
Then q is a prime power and one of the following holds:
(1) (e, B)=(q,[" {*'1-1), n=2d + 1, g =4, and I is isomorphic to the Grassmann
graph J.(n, d); or
(2) (o, B)=(q—1,9g"— 1), n=d +1, ¢ =5, and I is isomorphic to the bilinear forms
graph H,(n, d).

The Grassmann graph J,(n, d) (also called the g-analog of the Johnson graph)
is defined on the set of all d-dimensional subspaces of an n-dimensional vector space
over GF(g). Two vertices x and y are adjacent whenever dim(x Ny)=d —1. The
bilinear forms graph H,(n,d) (also called the g-analog of the Hamming graph) is
defined on the set of all bilinear forms on W X V, where W and V are vector spaces of
dimension d and n (d <n), respectively. Two forms e and f are called adjacent if -the
rank of e — fis 1. With respect to given bases of W and V, the vertex set of H,(n, d) is
identical to the set of all d X n matrices over GF(g). Indeed, J,(n, d) and H,(n, d) are
the collinearity graphs of the (d, g, n)-projective incidence structures [11] and the
(d, g, n)-attenuated spaces [10,12], respectively. The (d, q, n)-projective incidence
structure is the collection of subspaces of the n-dimensional vector space over GF(g)
where subspaces of dimension 4 are called *points’, those of dimension d — 1 are called
‘lines’, and incidence is the usual containment. An alternative interpretation can be
found in [2]. Let V be an (n + d)-dimensional vector space over GF(g) and let W be a
given n-dimensional subspace of V. The (d, g, n)-attenuated space is the collection of
subspaces U of V with UNW =0, where subspaces U of dimension d are called
‘points’, those of dimension d —1 are called ‘lines’, and incidence is the usual
containment. The bilinear forms graph H,(n, d) can be viewed not only as a subgraph
but also as a geometric hyperplane of the Grassmann graph J,(n + d, d).

The Grassmann graphs J,(n,d)(n=3d=9, (g, d)#(2,n/3)) have been charac-
terized by Sprague in [13], and the bilinear forms graphs H,(n,d) (n=2d =6,9=4)
have been characterized by Huang in [10] (see also Cuypers [7] for a later improvement
of that characterization). The above two numerical constraints on # and d, interpreted
as B = a[¥] with d =3 in terms of the classical parameters, were needed in both cases
because both Sprague and Huang used the Bose—Laskar argument, and the condition
g =4 is assumed in [10] because of [S]. In this paper, the Bose—Laskar argument is
replaced by the following two theorems, obtained by the technique of graph
representations, which provide essential information on intersections of maximal
cliques of a distance-reguliar graph simply in terms of the parameters of the graph. As a
consequence, the above constraint is partially improved to 8 > «[9], i.e. n = 2d + 1 for
J,(n,d)and n=d +1 for H,(n, d). However, the assumption a + 1= max{5, g} is still '
needed because the following Theorem A(ii) is used.

For a vertex x of a graph I, let x' =N(x)U{x}. If § is a set of vertices, we let
St ={esxt and $* = (S) {x, y}** is called the singular line determined by x and
y whenever x and y are adjacent.

THEOREM A [4,p. 160]. Ler I be a distance-regular graph of diameter at least 3 with
second largest eigenvalue 8,<b,—1, and let b* =b,/(0, +1). Suppose that every
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singular line of T has size at least s + 1. Then:

() If s=3 and b <s’—s+1, or if s=2 and b" <2, then distinct maximal cliques
intersect in a singular line, a point or the empty set.

(i) If s=4 and b* <5+ 1, then every edge is in at most two maximal cliques.

THEOREM B [4, p. 160]). Let I be a distance-regular graph of diameter d =2 with
eigenvalues k = 03> 6,> - >0, and pur b* =b,/(6, + 1) and b~ =b,/(8, + 1). Then
the size of a cliqgue C in T is bounded by |C|<1 - k/60,. If equality holds then every
vertex x ¢ C is adjacent to either 0 or b~ + 1 — k/8, vertices of C. No vertex of I' has
distance d to C.

Basing ourselves on Theorems A and B, we derive incidence structures from the
distance-regular graph considered in the Main Theorem, regarding classes of maximal
cliques as lines. It is worth mentioning that, in these incidence structures, any two
points at distance 2 have (g + 1){e + 1) {i.e. ¢; in (1b)) common neighbors.

Wilbrink and Brouwer [18] proved that certain semi-partial geometries with some
weak Testrictions on parameters satisfy the dual of Pasch’s axiom, and that two
intersecting lines generate a subspace that is a partial geometry. Cuypers recognized
that their arguments remain valid in a more gencral setting (see [6, Section 3]).
Inspired by the work of Wilbrink and Brouwer [18], together with that of Cuypers [6],
we show in Section 2 that the set of maximal cliques of the graph I' considered in the
Main Theorem can be partitioned into two non-empty subsets such that every edge of
I' is contained in exactly one maximal clique of each class. Moreover, maximal cliques
from different classes have fixed but different sizes and intersect in 0 or o + 1 vertices,
where a + 1 is either g + 1 or 4. Both classes of maximal cliques induce structures of
semilinear spaces over I Proposition 2.13 and Corollary 2.13.1 include similar results
mentioned in [18]. As a consequence, the Main Theorem is proved in Section 3.

2. Basic GEOMETRIC STRUCTURES

The graphs J,(n, d) and H,(n, d) have many properties in common. For example,
they both have two classes of maximal cliques; every edge is contained in exactly two
maximal cliques that are in different classes. Throughout the rest of this paper, we
assume that I'is a given distance-regular graph of diameter d = 3 satisfying (A.1), (A.2)
and {A.3) of the Main Theorem. We shall show in this section that these common
properties of J (n,d) and H,(n, d) hold in I, recovering them from the classical
parameters of I'

LemMma 2.1, (i) Distinct maximal cliques of I intersect in a singular line, a point or
the empty set.

(ii) Every edge of I' is contained in exactly two maximal cliques.

Proor. For the given graph I, each singular line has size at least « +1, @ =4 by
(A.2). From (1a) and (2), we have b, =([{]- 1B —a), 6, =[‘T'|(B—a)—1, and
hence b,/(8,+1)=g=a +1 (by {(A.2)). Theorem A shows that (i) holds and that
every edge is contained in at most two maximal cliques. Furthermore, Theorem B
shows that the size of any maximal clique is bounded above by 1 - by/8, =1+ B. From
(1c), @, +2=(B — 1+ a([9]— 1)) +2>1+ B; this shows that every edge is contained
in at least i.wo maximal cliques. Thus (ii) follows immediately. d

Let /., and A,, be the two maximal cliques containing the edge xy. Then /,, N A,,
must be a singular line and I,, UA,, = (N{x)N [{y)) U {x, y} by the previous lemma.
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Lemma 2.2, If x, y € V(') are adjacent, then any vertices u € L,\A,, and v e AN,
are not adjacent.

Proof. If u and v are adjacent, then the edge wv is contained in two maximal
cliques, say /,, and A,,. Since the singular line /,, N A,, (= I(u) N I;(v)) is a clique, it
is contained in at least one of [, and A,, Hence the edge xy is in at least three
maximal cliques, a contradiction, O

Lemma 2.3, Let [, and A,, be the two maximal cliques containing the edge xy, and
let m be a maximal clique different from ., and A,, with x e m. Then im N1, |=1 iff
Iz MAL>1, ie. mM A, is a singular line.

Proor. If |mnNi, =1, then mnN/L,={x} and a(y,m)=1 Then there exists
u e Li{y)Nim (u#x) by assumption (A.3). Since u e N{x)NI(y) and u ¢, we
have u € A,,. It follows that x, u e m N A,,, and hence m N A,, is a singular line.

Conversely, if [mNA,|>1, let wemNA,, w7x. Clearly, w ¢ [,; otherwise the
edge xw will be contained in three maximal cliques. Similarly, y ¢ m. Suppose, to the
contrary, that [mNl,t>1. LetvemNl,, v#x Then v e [\, and w € A,,\,, are
adjacent (contained in m), a contradiction to Lemma 2.2. O

CoroLLary 2.3.1. If I}, I, and I, are any three distinct maximal cliques with
LNnbL=LN={x}, then I, N[5 = {x}.

Proor. If |}, M| >1, say x,y e {, N/, then I, and [; are the two maximal cliques
containing the edge xy. By Lemma 2.3, [l N {| =1 iff I/, M i3> 1, a contradiction. [

By Lemma 2.3 and Corollary 2.3.1, for any given x e V/(I'), the set of all maximal
cliques containing x can be partitioned into two families in the following way. Let /,
and A, be two maximal cliques containing the point x, with [, N A, being a singular
line. Let

Z1(x) = {m | m is a maximal clique containing x and |m N [,|=1},
Zy(x) ={m | m is a maximal clique containing x and |m N A,| = 1}.

It is worth mentioning here that this partition is independent of the choice of I, and A,.
Some properties of X,{x) and X»(x) are summarized in the following lemma.

Lemma 2.4, (i) LN L ={x} forany 1, I; € Z,(x);

(ii) A1 NA; ={x} for any A, A, € Z,(x);

(iii) if{ € Z\(x) and A € Z,(x) then [ N A is a singular line, and

(iv) {IN{x} |l e Z,(x)} and {A\x} | A e Zo(x)} are two partitions of I(x).

LemMa 2.5, Ler 1) and I, be two maximal cliques with [, N1, ={x}, and let m be a
maximal cligue intersecting I, in a single vertex different from x. Then jm N <1.

Proor. Let m NI, ={y}. Suppose, to the contrary, that m N/, is a singular line.
Clearly, x ¢ m NI; otherwise x, y e m N{;, which contradicts [m N/[| = 1. Similarly,
y ¢ m My, otherwise x, ¥y €/, M{,, which contradicts |/, N{;]=1. Then y e m\, and
x e [,\n are adjacent (contained in /,), a contradiction to Lemma 2.2. O
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LemMa 2.6. (i) Ifx,y € V(I') with a(x, y) = 2, then there are exacily q + 1 cliques in
Zu(x) at distance 1 fromy, k=1,2.

(i) Every singular line of I has a size of @ + 1.

(iit) |(x) Nm|=0or a + 1, for any vertex x and maximal clique m not containing x.

Proor. Let x and y be two vertices with a(x,y)=2. Assume that
Il ..., e Zi(x) (resp. € Z(x)) are at distance 1 from y, and let
my, My, ..., meZ,(y)(p=1or2) be at distance 1 from x such that |/;Nmy| =1 for
some i,j(l<iss;1=j=¢). By Lemma 2.5, each [ and each m; have at most one
point in common.

For a given m;(1<j<1), let z e [[(x)Nm; One of the two maximal cliques
containing x and z, say A,,, intersects m; in a singular line, and A, Nm; S [i(x) Ny,
hence, by (A.2),

(D) Nm|=|A, Nm|Zza + 1. 3)

Clearly, {{, Nm; |1 si<s;1=jsci(x) N L(y). Observe that {Ii(y)N{, ilsi=s}
and {I}(x) Nm; | 1<j =1} form two partitions of I (x} N I}(y) by Lemma 2.4(iv). Thus
each vertex of I(x)NI(y) lies in exactly one {; and exactly one m; Hence
LONL(Y)={Nm|1=siss;1=<j=<1} Then

(@ + D@+ D=IRE)NLG) (e cyin(1b))
=2 IL(x) Nmyl
j=1
=ta+1) {by (3)). (4)
Hence ¢t =g + 1. Similarly, s = (g + 1}. Furthermore,

(gtNg<{g+)a+1) (by(A2))
=hx) N 1iy)l

5 [}
> D lhnm
i=l j=1

M

i

™

(5)

It follows that (g + 1) =st= (g + 1)q. Hence either s=t=¢q + 1, or {s, 1} ={g, g + 1}
The possibility of {s, t} = {g, g + 1} can be excluded in the following way.

Suppose, to the contrary, that {s, t}={g, g + 1}. Then the equalities in (5) actually
hold. Hence a +1 = g, and each /; and each m; must intersect. The subgraph induced
on L(x) N I(y) is therefore an (& + 1) X {& + 2)-grid, which implies that the sizes of
singular lines are o« +1 and a +2 (both occur). Let x be a vertex contained in a
singular line of size a«+2, say /{NA where e X(x) and A e Z(x). Let
meX(x),m#] and wemnA, w#x. Clearly, |[(w)NI=|INAl=a+2 By
Lemma 2.1(ii), |[AUI|=|AUm| =2, +2 in (lc), and hence |[\A| = |m\A|. Moreover,
since every vertex i e /N A is at distance 2 from w and |[[;{w) N {| =« + 2, the subgraph
induced on I(u}NTi(w) is an (o +1)X(a +2)-grid. Hence |[L{u)Nm|=a + 1
Count the set {(u,v)|uelNA, vem\A are adjacent} in two ways
tl\Al a = ZMEI\A |n(u) Am - {x}i = EUEm\A. ”—‘l(v) ni- {xH = |m\A1 a = il\A| . Hence
[H(w)Ni=a +1 for all v € m\A. It follows that all singular lines through x contained
in / except INA are of size o + 1. Similarly, /N A is the unique singular line of size
a +2 through x contained in A. Hence IMNA|=a+2, and ImNA|=a +1. Let
A'e Xy(x), A'#A. As shown above, |INA'|l=mNA'|=a+1, and hence
|INA'| =1m\A'| + 1, a contradiction to [ UA'|=|mUA’| (ie. a, +2).
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Since s =1 =g +1, (i} follows. With this result, (ii} and (iii} follow from (3) and (4)
immediately. |

CoroLLary 2.6.1. Let | and m be two maximal cligues with Inm)=1. Then
il = |m|.

Proor. Let {z} =/Nm. By Lemma 2.6(iii), [[;(x)Nm|=I[(y)NI|=a +1 for all
x e,y e m{x,y #z). Counting the set {(x, y) | x e Mz}, y e m\(z} are adjacent} in two
ways show that ()| — 1)a = (jm| — 1)a, and hence |{| = |m|. ]

We now show that there are exactly two sizes for maximal cliques and hence the set
of all maximal cliques of I' can be partitioned into two families according to their sizes.

CoroLLary 2.6.2. A maximal cligue is of size 8+ 1 or a[{]+ L

Proor. Let x and y be two adjacent vertices, and let /,, € Z,(x) and A,, € Z,(x} be
the two maximal cliques containing x and y. By Lemma 2.4, we have
{{Nn A NMx}| ! e X,(x)} forms a partition of A Mx} So a divides |A,,| —1 by Lemma
2.6(ii). Similarly, « divides |/,,| — 1. We may assume that |Aj = ra + 1 for all A € Z,(x),
and /| =sa + 1 for all / € Z\(x) by Corollary 2.6.1 for some integers r and 5. Note that
|Z1(x) = (|[Axy| — 1)/a =7 and |Z5(x)j =s. Since I, UA,, = (x)NL(y)Vix, y}

a1+2=B+1+a([ﬂ—1)=(sa+1)+(m+1)—(a+1);

pmces 1)

Since I;(x) = U-’EZ‘l(x) ([\{x}), b(_) = [(f]ﬁ = EIEEI(J‘) il\{x}| =rsa and hence

d
p-ro/|]
Comparing (6) and (7), we have

o[8[
HReE e A (R

Hence either r = [{] or s = [{]. We may assume that r =[{], ie. |[A,,| = a[{] + 1; then
.| =sa +1=p+1 by (6). O

hence

Then

At this point, two semilinear incidence structures can be derived from I’ by Lemma
2.1, Corollaries 2.6.1 and 2.6.2, and (A.l), without using the Bose—Laskar argument.
Indeed, Corollary 2.6.2 and assumption (A.1) show that there are two different sizes
for maximal cliques. Moreover, the connectedness of I and Corollary 2.6.1 show that
the set of all maximal cliques of I' can be partitioned into two families X, and X,
according to their sizes, such that both the incidence structures (V(I'), X,, €) and
(V(I), 2, €) are semilinear. For the rest of this paper, we may assume that
2(x)eZ, and Z,(x)=Z, for any vertex x, and that |m|=8+1 if me X, and
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im| = a[9]+1if m e Z,. It follows that every vertex of I'is in [4] cligues of ¥, and in
Bla cliques of X, Some properties of (V(I'), X, €) and (V(I), Z;, €) will be
summarized in Propositions 2.12 and 2.13, and Corollary 2.13.1, after we determine the
geometric structures induced on each maximal clique in Theorem 2.7 to Corollary
2.11.1.

Theorem 2.7. a+1=g+1orq.

Proor. Let x and y be two vertices with a(x,y)=2, and let A, € Z(y) be at
distance 1 from x. Then |I;(x) N A,| = a + 1. Every vertex z € [}{(x) N A, determines a
unique maximal clique m,, € £i(y) at distance 1 from x, and distinct vertices of
L(x)N A, determine distinct maximal cliques of Z(y) at distance 1 from x. Thus, by
Iemma 2.6(i) and assumption (A.2),g+1=a+1=¢g, andhence a + [ =g +1orgq.

ul

Let x,yeV() with a(x,y)=2. As shown in Lemma 2.6(i), let
Ly ooy dger € 2(x) (k=1,2) be the maximal cliques at distance 1 from y, and let
M, ..., M, € Z(y) be those at distance 1 from x. Then |, Nm|<1(1<jj<sq+1)
CoroLLarYy 2.8, Let x,y and [, ..., L, my,..., My be as above. If
a+1=g+1, then I, intersects my; for all i,j=1,2,...,g+1 If a+1=gq, then |

intersects m, iff i#j(l<i,j<q + 1), up to a relabelling.

Proor. By Lemma 2.6(ii), |[L(x)Nm=a+1=q and |[[[(y)Nf|=a+1=g
(1=ij=g+1). Then

It my 1=, j<q + 1= |L{x) N Li(y)
=(g+1)}{a+1) (i.e. ¢; in (1b})
={(1gv+1)2 fat+tl=g+]1,

{g+ g ifa+l=g,
as required. d

We shall show in the following that more common properties of the graphs J (n, d)
and H,(n, d) hold in I

Lemma 2.9.  Let x be a vertex and m be 2 maximal clique with d(x, m) =2. Then
D) ILx)Nml=alg+1)+1;
() [Lx)nLi{w)Nn LHi{w)|=a+1 for all distinct vertices wy, w, e I3{x)Nm, and
Ty N Li(wi) N L(wy) is contained in a unique maximal cligue.

Proor. First assume that m € X, and let y € L{x}Nm. Then m e 2;(y), and
x,y)=2. By Lemma 2.6(i), there are exactly g+1 maximal cliques
A Ay, Age € Zo(y) at distance 1 from x. Since A; Nm S L(x)Nm for each
i=1,...,qg+1, we have

g+l

I ml > | U (A4, Nm\{yh)| +1

g+1

= Z A; Ny} +1
=a(g+1)+1. (8)
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Let 4 be the set of g + 1 cliques in Z,(y) at distance 1 from x. Clearly, m e Z,(y M\ L.
Observe that the above argument is valid for all cliques & in Z,(y)\#, and thus we
have |L{x)Nhl=a(g+1)+1 and h3x)|<B+1—(a(g+1)+1). By Lemma
2.4(iv), we see that {hi\I5(x) | h € Z,(y)\#} forms a partition of I3(x) N I;(y). Then

d
(I5]-@+ )6 -a@rm=iE@nton  Gebsinga)
= 2 ()

heXy(yi

<([*]-@+ 1)@ - atq + 1.

Thus [\ 3(x)| = 8 — a(q + 1), and hence [I(x) NA|=a(g + 1)+ 1 for all h e Z,(y)\t.
So {L(x)Nm|=a(g +1)+1. Similar arguments work for the case of m e X,, and
hence (i) follows.

To prove (ii), assume that me X, (k=1,2). Let w,w, e L(x)Nm, and let
Ay, Ag e Z(w)) (j#k) be at distance 1 from x. Then [I{x)NA;|=ea+1 for
each i=1,...,9+1, by Lemma 2.6(ii1), As shown in (1),
IGx)Nm|=alg +1)+ 1= (A, "m\{w,})| + 1, and hence w, must be in one of
Ay ..., Ages say A). Since

{(Hi(w) N L(wy)) Uwy, wyl =m U A,
and
hix)yNm=0a,  Lx)NLm)NL{w)=L{x)N A,

as required. O

We now determine the geometric structures induced on T = [(x) Nm for a pair
(x, m) with x a vertex and m a maximal clique with 4(x, m) = 2. Consider the incidence
structure II = (T, L(T), €), where L(T)={ANm |A is a maximal clique with
a(x, A)=1, |AN T|=2}. Note that A and m must be in different families.

Lemma 2.10. Il is a projective plane of order q if & +1 =g + 1, or an affine plane
of order g if « +1=q.

Proor,  As shown in Lemma 2.9(ii), any two points of T are on a unique maximal
clique A with 3(x, A) = 1. Hence T is a linear space with a{q + 1) + 1 points by Lemma
2.9(1) and lines of size « + 1 by Lemma 2.6(ii). Hence ITis a 2-(a{(g + 1)+ 1, +1,1)
design, and the lemma follows immediately from Theorem 2.7. O

We can remark further on the structures over IT; as follows.

LemMa 211, If u, v and w are points of a maximal cligue A not contained in any
singular line, then there exists a vertex x with d(x, A) =2 such that u, v and w belong to
the projective (affine) plane IL{x} N A.

Proor. In addition to A, let {,, (resp. I,,) be the other maximal clique containing
the edge uv (resp. uw). Hence {,,, [, e Zand A € Z; (i #f in {1,2]). Let y, e [,,\A. In
addition to u,y, is adjacent to « vertices of [,\A by Lemma 2.6(iii). Let
vz € [(y) N {Lu\A), and let m be the clique in 2 containing vy, and y,. By Lemma 2.2,
am, A)=1.
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Let Y be the set of vertices in m at distance 1 from A, and let Z be the set of vertices
in A at distance 1 from m. Counting the set {(y,z)|y € Y and z € Z are adjacent} in
two ways shows that |Y|(a +1)=|Z|(a +1). So |Y|=|Z|. Observe that |Y|<|m|,
|Z|=<|A| and |m|#|A|. If |m|>|A| then there is a point penn\Y such that
Zc L(p)N A; otherwise, there is a point p' € AAZ such that YSLi(p')Nm. So
|Y|=|Z|<a(g +1)+ 1. Hence there is a point x € m\Y such that da(x, A)=2 and
u, v, we L{x}NA. a

Remark. Indeed, |Y|=|Z|=a(g¢+1)+1 in the above proof, by a counting
argument similar to the one used in [10, Lemma 3.3]. This will be used in the proof of
Proposition 2.13(ii) when the argument of [10, Proposition 3.4] is applied.

By Lemmas 2.10 and 2.11, the following corollary follows from a theorem of Veblen
and Young [17] and a theorem of Buekenhout [5].

CoroLiary 2.11.1. g is a prime power and every maximal clique together with the
singular lines that it contains is either a projective space of order g ifa + 1 =g + 1, or an
affine space of order g if a +1=gq.

From Lemma 2.6(iii) and Corollary 2.6.2, the following proposition holds.

Prorosition 2.12. (1) The incidence structure (V(I),X,, €} has the following
properties:
(i) every line has B + 1 points;
(ii) every point is on [{] lines;
(iii) for any linel € X, and any point x ¢ I, |[[(x)N{|=0, a + 1.
(2) The incidence structure (V(I'), Z,, €) has the following properties:
(1) every line has a[{] + 1 points;
(il) every point is on B/« lines;
(iii) for any line l € X, and any point x ¢ I, |[{x)N | =0, « + 1.

As shown above, maximal cliques in different families 2, and X, share the same
geometric structures but for their sizes. The roles that X, and X, play in (V(I"), £\, €)
are interchanged in (V(I'), Z,, ). For the rest of this section, 2, (resp. 2, j# k) is
called the line set (resp. the assembly set) of the incidence structure (V(IN), %, €),
where 1 <k, j<2.

Let us recall the definition of the axiom of parallelism. which holds for (V(I), %, €)
in the case of « +1=g¢q. For a semilinear incidence structure {#, ¥, €), two lines
m, I € Zwith a(m, [) =1 are called parallel if 3(x, m)=1forallx e/ and a(y, /) =1 for
all y e m. An incidence structure is said to satisfy the axiom of parallelism if for any
point x and line m with d(x, m) = 1, there is a unique line { through x parallel to m.

ProposiTion 213, (i) In the case of a +1=q + 1,(V(I), %, €)(k =1, 2) satisfies
both Pasch’s axiom and the dual of Pasch’s axiom.

(ii) In the case of a +1=¢q,(V(I"), &, €) (k =1, 2) satisfies the dual of Pasch’s
axiom and the axiom of parallelism.

Proor. First we prove that (V(I'), Z;, ) satisfies the dual of Pasch’s axiom in both
cases, If x and y are two vertices of a line s, and u and v are two vertices not in m
adjacent to both x and y, then # and v must be in the assembly containing x and y.
Thus « and v are adjacent, and hence they are in a common line.
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To prove that (V(I), Z,, e) satisfies Pasch’s axiom in the case of a +1=¢g + 1,
suppose that line m; (i =1, 2) intersects the two lines {, and /, in vertices x;, and x;,,
respectively, distinct from x =/, N 4. If x, ; is adjacent to x,,, then the lines m; and /;
meet the assembly on x and x, ; in the four lines of a projective plane containing x, ; for
all i, j. Inside the plane one can find a point of intersection of m, and m,. If x, |, and x,,
are not adjacent, then m, and m, intersect, by Corollary 2.8. Hence (i) follows.

To prove the rest of (ii), we first show that parallelism can be defined among lines.
Let m and / be two lines with a(m, /)= 1, and let x e/ and y e m be adjacent. Since
I{x)N'm and I1(y)N/{ are contained in the assembly on x and y, each y' e Ii{x}Nm
and each x’ e I'i(y) N are adjacent. Hence a{u, m) = 1 for all u e [ iff a(v, {) =1 for all
vem Now (ii) can be proved by an argument similar to the one used in [10,
Proposition 3.4]. O

Let x be a point and m be a line with a(x, m)=1and let/,, ..., [, be the lines of x
intersecting m. For the case of @ +1 =g, let I, be the unique line of x parallel to m.
Proposition 2.13 leads to the following corollary, aiso considered by Wilbrink and
Brouwer in [18].

Coroirary 2.13.1. (i) For the case of a +1=q +1, if m’ is a line not through x

intersecting two lines of I, ..., I .\, then m' intersects m and all lines of ,, ..., 1.\
{(ii) For the case of « + 1 =g, if m' is a line not through x intersecting I, and one line
of I, ..., 1, then m' intersects m and q — 1 lines of I,, .. ., I,.

Proor. (i) is an immediate consequence of Pasch’s axiom. To prove (ii), let
mni={y},i=1,...,q. Suppose that m' intersects {, and [ for some j, and
m' Ny ={z}. If z is adjacent to y;, then the lines m, m’, I, and /; meet the assembly on
x and y; in the four lines of an affine plane containing x, z and y,. Since /, and m’ are
two lines of z, and {; is parallel to s, m’ must intersect m and g — 1 lines of {,, ..., [,
in the affine plane. If z and y; are not adjacent, then d(z, y;) = 2. Since /, is parallel to m
and &(z, m)=9(y;, lo}=08(y, m'}=1, m' must intersect m, by Corollary 2.8. Let
m'Nm={w} If w=y, for some i#j (1 =i j=gq), then d(w, x)=1 and m’ intersects
g —1lines of /5, ..., I, inside the affine plane containing x, z and w of the assembly on
x and w; otherwise, d(w, x) =2, and the result thus follows from Corollary 2.8. O

3. Proor oF THE MAIN THEOREM

We have established two semilinear spaces from Iin Section 2. We now show in this
section that these incidence structures are projective incidence structures if ¢ +1=
g + 1, or attenuated spaces if a +1=gq.

By Theorem 2.7, a« + 1=g + 1, or g. We first show that if & +1=g + 1, then the
above incidence structures (V(I'), X, €) (k =1, 2) mentioned in Proposition 2.12 are
projective incidence structures. By assumption (A.l} withd=3anda +1=g +1, it s
easy to see that (V(I'), X, e){k =1, 2) satisfy the hypothesis of a theorem of
Ray-Chaudhuri and Sprague in [11] (see also [6, Theorem 4.6]). Hence their
collinearity graphs I are isomorphic to J,(, d), where B +1=[""{*'] for some
integer n=2d + 1 by (A.1). This gives assertion (1) of the Main Theorem. Note that
the constraint n = 3d for J,(n, d) in [13] is partially improved to n =24 + 1.

We now turn to the case of @ +1=4¢g. An argument similar to that used in [7,
Proposition 2.3] shows that the 2-spaces of (V(I), X, €) (resp. (V(I'), Z;, €)),
obtained by the construction given in [10, Section 4], are the (2, g, g)- (resp. (2,4, h)-)
attenuated spaces, where B+1=g¢gf and «af[Y]+1=gq" respectively. The second
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assertion of the Main Theorem follows from the arguments indicated in [10, Section 5]
and of course [14] also applies. Hence their collinearity graphs I” are isomorphic to
H,(n,d) with B +1=gq" for some integer n=d +1 by (A.1). Note again that the
constraint n = 2d for H,(n, d) in [10] is partially improved to n=d + 1.

Remark. As pointed out by one of the referees, the incidence structures
(V(I'), Z;, €)(k =1,2) mentioned in Proposition 2.12 satisfy the hypothesis of [6,
Proposition 3.2]. It follows that two intersecting lines of (V(I'), X, €) (resp.
(V(I'), X,, €)) are contained in a geodesically closed subgraph of I" isomorphic to
H,(n, 2) (resp. H,(d, 2)). Although the arguments used in [6, 7] work for the cases of
a + 122, the hypothesis o + 12 max{5, ¢} is assumed in the main theorem since
Theorem A(ii) is used.
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