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Two simple schemes for generating macroscopicsmany-photond continuous-variable entangled states by
means of continuous interactionssrather than collisionsd between solitons in optical fibers are proposed. First,
quantum fluctuations around two time-separated single-component temporal solitons are considered. Almost
perfect correlation between the photon-number fluctuations can be achieved after passing a certain distance,
with a suitable initial separation between the solitons. The photon-number correlation can also be achieved in
a pair of vectorial solitons with two polarization components. In the latter case, the photon-number-entangled
pulses can be easily separated by a polarization beam splitter. These results offer possibilities to produce
entangled sources for quantum communication and computation.
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I. INTRODUCTION

Quantum-noise squeezing and correlations are two key
quantum properties that can exhibit completely different
characteristics when compared to the predictions of the clas-
sical theory. Almost all the proposed applications to quantum
measurements and quantum information treatment utilize ei-
ther one or both of these properties. In particular, solitons in
optical fibers have been known to serve as a platform for
demonstrating macroscopic quantum properties in optical
fields, such as quadrature squeezingf1–5g, amplitude squeez-
ing f6,7g, and both intrapulse and interpulse correlations
f8,9g.

It is well known that Kerr-induced interactions between
pulses inmultisoliton states are useful for quantum non-
demolition sQNDd measurementssthose that do not disturb
the quantum distribution of the variable being measuredd
f10–17g; see Refs.f18,19g for a review of previous work on
quantum solitons. In these schemes, either soliton collisions
or interactions through cross-phase modulation are utilized to
produce quantum correlations between the two solitons and
then QND measurements can be performed after the colli-
sions or interactions.

Recently, experimental progress in demonstrating various
quantum information processes by using two-mode squeezed
states in optical solitons has been reported; see Refs.f20–22g
and references therein. Motivated by the achievements in the
experiment, the objective of the present work is to study the
quantum properties of interacting two-soliton systems in op-
tical fibers, both in single-polarization and bimodal settings.
In these two-soliton systems, the two soliton states are either
incompletely separated in the time domain with equal group
velocity and same polarization or are formed to be symmet-
ric and antisymmetric bound soliton pulses with different
phase velocities and orthogonal polarizations. The quantum
properties of these interactingsnoncollidingd two-soliton

states have not yet been studied in detail previously and may
offer possibilities to produce entangled sources for quantum
communications and computations.

In the field of quantum information processing and quan-
tum computing, nonlocally entangled optical quantum states
have been shown to be highly useful sources. The applica-
tions include quantum cryptographyf23g, teleportationf24g,
and algorithmsf25,26g. Following Bohm’s suggestionf27g,
the entangled pairs were mostly realized in terms of discrete
quantum variables, such as spin, polarization, etc. However,
the originalgedanken experimentproposed by Einstein, Pod-
olsky, and RosensEPRd utilized continuous variablessthe
coordinate and momentum of a particled to argue that quan-
tum mechanics is incompletef28g. In 1992, Ouet al. used
nondegenerate parametric amplification to demonstrate the
EPR paradox with continuous variablesf29g. Later, Vaidman
proposed a generalized method for the teleportation of
continuous-variable quantum statesf30g. Braunstein and
Kimble analyzed the entanglement fidelity of quantum tele-
portation with continuous variablesf31g. Quantum teleporta-
tion of optical coherent states was experimentally realized by
using the entanglement from squeezed statesf32g. After that,
quantum-information processing with continuous variables
has attracted a lot of interest as an alternative to single-
photon schemes.

In previous works, continuous-variable entangled beams
have been generated by letting two squeezed fieldsssqueezed
vacuum statesf32g or amplitude-squeezed fieldsf33gd inter-
fere through a beam splitter, which mathematically acts as
the Hadamard transformation. By utilizing the continuous
EPR-like correlations of optical beams, one can also realize
quantum-key distributionsf21g and entanglement swapping
f22g. Thanks to these successful applications, squeezed states
become essential for generating entangled continuous-
variable quantum states and play an important role in the
study of the quantum-information processing.

It has been demonstrated that two independent squeezed
pulse states can be simultaneously generated by using optical
solitons in the Sagnac fiber loop configurationf20g. An EPR
pulse source can be obtained by combining the two output
pulse squeezed states by means of a 50:50 beam splitter. In
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contrast to this known method for achieving the entangle-
ment, in this work we propose simple schemes for generating
continuous-variable entangled states throughcontinuous in-
teraction of two solitons, not collision, in single-mode and
bimodalstwo-componentd systems,withoutusing beam split-
ters. The quantum interaction of two time-separated solitons
in the same polarization is described by the quantum nonlin-
ear Schrödinger equationsNLSEd, and in the bimodal sys-
tem, including two polarizations, it is described by a system
of coupled NLSE’s. The photon-number correlation between
the two solitons can be numerically calculated by using the
back-propagation methodf34g. In addition to the transient
multimode correlations induced by cross-phase modulation
f9g, we also find nearly maximum photon-number entangle-
ment in the soliton pair. By controlling the initial separation
of the two solitons, one can achieve a positive quantum cor-
relation with the correlation parameter taking values close to
1.

The paper is organized as follows. The pairs of quantum
solitons in the single-mode and bimodal systems are consid-
ered, respectively, in Secs. II and III. Conclusions are formu-
lated in Sec. IV.

II. SINGLE-MODE SYSTEM

Neglecting loss and higher-order effects, which are imma-
terial for the experimentally relevant range of the propaga-
tion distancez, temporal solitons in optical fibers are de-
scribed by the NLSE in the normalized form

iUz +
1

2
Utt + uUu2U = 0,

where t is the retarded timef35g. The input profile of the
soliton pair is taken as

Usz,td = sechsz,t + rd + g sechsz,t − rdeiu, s1d

whereg, u, and 2r are, respectively, the relative amplitude,
phase, and separation of the solitons. Ifu=0 sthe in-phase
paird, the two solitons will form a breather, periodically col-
liding in the course of the propagation. Otherwise, they move
apart due to repulsion between them. The interaction be-
tween the solitons is produced by the overlap of the “body”
of each soliton with an exponentially decaying “tail” of the
other one. A detailed account explaining the tail-mediated
interaction in the NLSE with the instantaneous cubicsKerrd
nonlinearity can be found in reviewf36g.

It should be mentioned that, rigorously speaking, two in-
teracting solitons cannot be considered as independent
modessin particular, the creation and annihilation operators
for the quanta belonging to the different solitons do not
strictly satisfy the commutation relations for independent
modesd. Nevertheless, weakly interacting far-separated soli-
tons may be treated, in thelowest approximationof the per-
turbation theorysthe interaction itself being the perturba-
tiond, as effectively independent modes. While this fact has
been firmly established for classical solitonsf36,37g, it per-
tains equally well to quantum fluctuations around the soli-
tons. Indeed, one of the formalisms adopted in the classical

perturbation theory, which, to the lowest approximation, is
completely equivalent to other classical techniquesf37g, is
based on the computation of fluctuation eigenmodes around
classical solitons, and this is essentially tantamount to the
way the quantum fluctuations are treatedf38g. Thus, in the
first approximation, one may rely on the notion of correla-
tions between orthogonal number states of each soliton. The
same pertains to the general case of two far-separated vecto-
rial solitons in a two-component system; see Sec. III below.

As said above, one can investigate multimode quantum
fluctuations around the solitons by solving the linearized
quantum NLSEf38g. For the case of two-soliton collisions
f9g, König et al. used an exact classical solution for the in-
phase soliton pair and found that the colliding solitons carry
both intrapulse and interpulse photon-number correlations.
However, the photon-number correlation between the collid-
ing solitons is transient; i.e., the interpulse correlation van-
ishes after the collision. Unlike the case of the collision be-
tween two solitons moving with different velocities, the
photon-number correlations caused by thecontinuous inter-
actionbetween the solitons belonging to the pair initiated by
the configuration in Eq.s1d—i.e., two solitons moving with
the same velocity—persist with the propagation. Although
the interaction between pump and probe solitons with a small
relative velocity was dealt with in the QND schemesf12g,
this situation requires further consideration. General results
for this case are given in the present paper, for both the
single-mode and bimodal systems.

In Fig. 1, we display the result of evaluation of the time-
domain photon-number correlations for the out-of-phasesu
=p /2d two-soliton pair. The correlation coefficients, which
are defined through the normally ordered covariance,

Cij ;
k:Dn̂iDn̂j:l
ÎDn̂i

2Dn̂j
2

, s2d

were calculated by means of the above-mentioned back-
propagation methodf34g. In Eq. s2d, Dn̂j is the photon-
number fluctuation in theith slot Dti in the time domain,

Dn̂i =E
Dti

dtfUsz,tdDÛ†sz,td + U*sz,tdDÛsz,tdg,

whereDÛsz,td is the perturbation of the quantum-field op-
erator,Usz,td is the classical unperturbed solution, and the
integral is taken over the given time slot. As could be intu-
itively expected, nonzero correlation coefficients are found
solely in the diagonal region of the spectrasintrapulse cor-
relationsd if the interaction distance is short, as shown in Fig.
1sAd. As the interaction distance increases,interpulse corre-
lationsbetween the two solitons emerge and grow, as shown
in Figs. 1sBd and 1sCd.

In addition to the time-domain photon-number correlation
pattern, we have also calculated a photon-numbercorrelation
parameterbetween the two interaction solitons as
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C12 =
k:DN̂1DN̂2:l
ÎDN̂1

2DN̂2
2

.

Here DN̂1,2 are the perturbations of the photon-number op-
erators of the two solitons, which are numberedsfirst and
secondd according to their position in the time domain.

In Fig. 2sAd, we show the coefficientC12 for the soliton
pair s1d with the initial relative phaseu=p /2, equal ampli-
tudessg=1.0d, and different values of the separationr. At
the initial stage of the interaction, the photon-number fluc-
tuations are uncorrelated between the solitons,C12<0. After
passing a certain distance, the photon-number correlations
between the two solitons gradually build up, and the pair
may become a nearly maximum-positive-correlated one. In
accordance with the fact that the interaction between the soli-
tons, which gives rise to the correlations, is mediated by their
exponentially decaying tails, the propagation distance needed
to achieve the maximum positive photon-number correlation

decreases with the initial separation between the solitons.
On the other hand, one can fix the initial separation but

vary the initial relative phase between the solitons. For this
case, the results are shown in Fig. 2sBd. Similar to the case of
soliton-soliton collisionsf9g, the photon-number correlation
coefficient oscillates, as a function of the propagation dis-
tance, with the period equal to that of the two-soliton
breather, if the solitons are, initially, in phase. Note that in
the case which may be regarded as intermediate between the
in-phase and out-of-phase ones,u=p /4, the correlation co-
efficient first becomes negative and then positive.

Unlessu=0 swhen the two solitons form a quasibound
state in the form of a breatherd, the two solitons belonging to
the initial configurations1d will separate as a result of the
propagation. Therefore, the interaction between them even-
tually vanishes, and thus the photon-number correlation co-
efficient may saturate before it has a chance to reach the
value corresponding to the total positive correlation, which is
clearly seen in the inset to Fig. 2sAd.

FIG. 1. sColor onlined The pattern of time-domain photon-number correlationsCij of two interacting out-of-phase solitons, withu
=p /2, r=3.5, andg=1.0 in Eq.s1d. The propagation distance isz=6 sad, 30 sbd, and 50scd, in normalized units. The width of the time slots
is Dt=0.1. Note the difference in the bar-code scales in the panelssAd and sBd, sCd.
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III. BIMODAL SYSTEM

The time-division entangled soliton pair in the single-
mode system, considered above, can be separated by an op-
tical switch. Since the actual time separation between the
two solitons is, typically, on the order of a few picoseconds,
a lossless ultrafast optical switch will be required for the
actual implementation of the scheme. The experimental dif-
ficulties can be greatly reduced if another scheme is used,
which utilizes vectorial solitons in two polarizations. The
model is based on the well-known system of coupled
NLSE’s f35g,

i
]U

]z
+

1

2

]2U

]t2
+ AuUu2U + BuVu2U = 0, s3d

i
]V

]z
+

1

2

]2V

]t2
+ AuVu2V + BuUu2V = 0. s4d

HereU andV are the fields in orthogonal circular polariza-
tions, A and B being the self-phase- and cross-phase-
modulation coefficients, respectively, with the relationA:B
=1:2 in theordinary optical fibersf35g. We take the follow-
ing initial configuration for the soliton pairfcf. Eq. s1dg:

U = sechst + t1d + sechst − t1d, s5d

V = sechst + t1d − sechst − t1d. s6d

It is relevant to mention that interactions between far-
separated classical solitons belonging to the different polar-
izations are also mediated by their tails. However, the char-
acter of the interaction is quite different from that in the
single-component model: the interaction is incoherent, and it
decays faster with the increase of the separation between the
solitonsf39g.

Using the methods for the analysis of the classical vecto-
rial solitons developed in Refs.f39–42g, we calculated the

respective quantum fluctuations and the photon-number cor-
relations numerically. It should be noted the total intensity of
the vectorial solitons, defined in terms of the circular polar-
izations, remains unchanged during the propagation, but the
intensities of the linearly polarizedsx and yd components,
Ex=sU+Vd /Î2 andEy=−isU−Vd /Î2, evolve periodically, as
shown in the inset of Fig. 3. In this figure, we display the
evolution of the photon-number correlation between thex
andy components of the vectorial solitons, which are origi-
nally uncorrelated, and then become negatively correlated. It
should be stressed that if one uses the polarization fields
proper,U andV, as the projection basis, there are no strong
photon-number correlations between these two fields. It is
necessary to employ an appropriate basis—for example, the
polarizationsEx and Ey in the present case—to identify

FIG. 2. sColor onlined The photon-number correlation parameterC12 for the soliton pair with different values of the separationsr
=3.0, 3.5, 4.0, whileu=p /2 andg=1.0d in sAd and different values of the relative phasesu=0, p /4, p /2, while r=3.5 andg=1.0d in sBd.
The inset insAd shows the evolution of the interaction solitons by means of contour plots.

FIG. 3. sColor onlined The photon-number correlation coeffi-
cient of interacting vectorial solitons. The inset displays the evolu-
tion of thex component of the classical field.
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highly photon-number-correlated pairs. Recently, Lantzet al.
f43g have shown that vectorial solitons in thespatial domain
can also develop an almost perfect negative correlation be-
tween quantum fluctuations around an incoherently coupled
soliton pair.

IV. CONCLUSION

In this work, we have studied the quantum photon-
number correlations induced by the interactions between two
solitons, mediated by their tails, in the time-division and
polarization-division pairs. In the former case, using the pair
with suitable initial separation and relative phase, one can

generate positive or negative photon-number-correlated soli-
ton pairs. An ultrafast optical switch will be needed to sepa-
rate the two entangled solitons into different channels. On
the other hand, by using the vectorial solitons with two po-
larization components, pairs with negative photon-number
correlations between the solitons can be generated. For this
case, a simple polarization beam splitter will be sufficient to
separate the two entangled solitons.

Such photon-number-correlated soliton pairs feature
unique entanglement properties, which may offer new possi-
bilities for applications to quantum communications and
computation. The applications will be considered in detail
elsewhere.
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